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Abstract 

Much attention in the field of machine learning has been 
directed at the problem of inferring concept descriptions 
from examples. But in many learning situations, we are 
initrally presented with a fully-formed concept description, 
and our goal IS instead to re-express that description with 
some particular task in mind. In this paper, we specifjcally 
consider the task of recognizing concept instances 
efficiently. We describe how concepts that are accurate, 
though computationally inefficient for use in recognizing 
instances, can be re-expressed in an efficient form through 
a process we call concept operationalization Various 
techniques for concept operationalization are illustrated in 
the context of the LEX learning system. 

I Introduction and Motivation 

Historically, machine learning research has focused on 
the task of inferrrng concept descriptions based on a set 
of examples, and it is only recently that other types of 
learning have begun to come under investigation [2]. In this 
paper, we focus on the process of concept reformulation 
rather than concept acquisition. We assume that a learning 
system acquires concepts in some unspecified manner, 
whether by inductive or deductive means or by being told. 
For a variety of reasons, it may be necessary to re- 
express an acquired concept in different terms. In 
particular, the concept may be expressed tn a manner that 
is computationally inefficient for the purpose of recognizing 
examples. In such cases, the learning system is faced with 
the task of reformulating the concept so that recognition 
can occur more swiftly. We call this task concept 
operationalization, in the spirit of recent, related work by 
Mostow CS] and Hayes-Roth [3]. 

Consider the problem of using a concept description to 
efficiently recognize examples of arch structures. Winston’s 
pioneering concept learning system [ 1 I] succeeded both in 
formulating an arch concept description and In subsequently 
using that description to recognize arch instances. An arch 
Instance was given in terms of various visual and structural 
features of its component parts (e.g. shape, orientation, and 
relative placement) The program inductively inferred a 
structural description of the arch concept, similar to the 
one shown below, based on a set of tralnrng examples: 

Structural Arch Concept 

An arch is a structure which: 
(ij is composed of 3 objects, 2 of which must be bricks 
(ii) the bricks must be standing adjacent yet not touching 
(iiilthe other object must be lying horizontally, supported 

by the bricks. 
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Using this description, arch recognition was quite efficient. 
The program simply had to match the structural features of 
a prospective arch instance against the structural 
description. 

Now imagine that Instead of giving his system a set of 
training examples to be used in concept formation, Winston 
short-circuited the process and inittally provided his system 
with a complete, although non-structural description of the 
arch concept. For example, he might have provided a 
functional description of an arch: 

Functional Arch Concept 

An arch is a structure which: 
0) spans an opening, and 
(ii) supports weight from above, or to either 

side of the opening. 

Although the functional description is just as valid as the 
structural one, recognition is no longer a simple matter. It 1s 
not clear how to match the structural features of an 
instance against a functional definition without some 
intermediary processing In particular, either 0) the instance 
must be altered to include functional features as well as 
structural features a priori, or (ii) the functional features 
must be computationally derived each time a new structural 
instance is processed, or (iii) the functional definition must 
be re-expressed permanently in structural terms Of these 
options, (iii) represents the most practical long-term solution 
to the recognition problem. In the context of the arch 
example, the structural re-expression of the functional 
definition involves the use of physics knowledge, as well as 
other domain-independent knowledge, to relate form and 
function**. Once the arch description has been re- 
expressed in a manner suitable for efficient recognition we 
will consider it to be an operational concept description 

In the balance of this paper, the task of concept 
operationalization is more precisely defined. Section 
II describes how the notion of concept operationallzation 
initia!ly arose in the context of our recent experiences with 
the LEX learning system [5]. Section III follows with a 
more formal specification of the concept operationallzation 
task Various techniques for dealing with this task are then 
introduced and illustrated in Section IV. Section V concludes 
with some comments about related research and some 
issues that must be addressed prior to a full-scale 
implementation of the proposed techniques. 

II Concept Operationalization and Problem Solving 

To explore further the notion of concept 
operationalization, we base our dlscusslon on the LEX -- 

wComcldentally, since the mltial wrlttng of this paper it nas come tc 

my attention that Wlnston is pursuing the relatlonshlp between form and 

function using tecnmques relared to those described here [ 12 1 
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learning system. While the framework proposed in this 
paper has not been incorporated into LEX, it arises out of 
our recent experience with this system, and our attempt 
generalize upon its methods. 

LEX is a program which learns to improve Its problem 
solving performance in integral calculus. Problems are 
solved by the system using a least-cost-first forward state 
space search method. The starting state in the search 
contains a well-formed numeric expression with an integral 
sign. LEX’s task is to solve the integral by applying a 
sequence of operators that will transform the starting state 
into one containing no integral sign. A set of approxrmately 
50 calculus and arithmetic simplification operators is initially 
given to the system. Each operator specifies (i) an operation 
to be performed, and (ii) a set of numeric expressions to 
which the operator may legally be applied. Here are three 
sample operators: 

OP 1: jsin(x)dx ---) cos(x) 
OP2: Sk l f(x)dx - k-ff(x)dx 
OP3 Integration by Parts: 

j.f l(x)*f2’(x)dx * f l(x)*f2(x) - +ff2(x)*f l’(x)dx 
where k:constant, f(x):function, and f’(x):derlvative of f(x) 

As LEX solves problems, it learns to prune Its search 
tree by refusing to apply operators in those situations 
where experience has shown an application to be 
“nonproductive”, although legal. For example, it is often legal 

to apply ‘integration by parts’ (whenever the integral 
contains a product), but it is much less frequent that the 
application will lead to a solution. The criterion to use in 
deciding whether an operator application is to be 
considered productive or nonproductive is given to the 
system initially as the Minimum Cost Criterion shown below: 

Minimum Cost Criterion: Any operator application that 
extends the search tree in the direction of the 
minimum cost*w solution is considered a productive 
operator application. 

LEX’s learning task is to acquire the ability to efficiently 
distinguish between productive and nonproductive operator 
applications By definition, this ability should improve the 
system’s problem solving behavior. Note that with prior 
knowledge of the Minimum Cost Criterion, LEX begins by 
knowing in principle how to distinguish between 
productive and nonproductive operator applications: simply 
expand the search tree until a minimum cost solution is 
found and then classify the operator applications 
accordingly. However, this method is grossly self -defeating, 
since a process that simply deliberates about which 
operator to apply next cannot be granted the luxury of 
conducting an exhaustive search for the minimum cost 
solution’ 

Although direct use of the Minimum Cost Criterion to 
recognize productive operator applications is prohibitive, the 
Criterion is used by LEX in other significant ways. The 
most recent version of LEX**** [6] employs both a 
procedural and a declarative representation of the Criterion 
in the processing of Instances. Initially, the procedural 
Criterion (called the CRITIC) classifies an individual training 
instance (i.e. an operator application) as positive or negative 
(productive or nonproductive). If the instance is positive, the 
declarative Criterion is then used to analyze which features 
of the instance were specifically relevant to the CRITIC’s 

positive classificatory decision Once the relevant features 
have been identified, LEX generalizes the positive instance 
by discarding irrelevant features The generalized, rather 
than the original, positive instance IS then fed to LEX’s 
inductive learnlng mechanism*w*? This mechanism then 
constructs an efficient method for recognizing positive 
instances based on syntactic patterns in the instances 

Let us describe a subset of the RL that IS of particular 
interest. The efficient recognizer language (ERL) contains 
only those RL terms that describe either (i) features 
encoded directly in instances, or (ii) features efficiently 
computable from encoded features. Any RL term that 
references other types of features is part of the 
IRL (inefficient recognizer language). Finally, we will 
define a recognizer expressed solely In terms of the ERL 
to be an operational recognizer******. Notice that for the 
arch example, the RL IS a language containing both 
functional and structural terms, while the ERL is restricted 
to structural terms and the IRL IS restricted to functional 
terms Thus, the structural arch recognize: is operatlonal. 
while the functlonal arch recognizer is not 

We are now In a position to define our task. 

Given: 

Concept Operationalization Task 

1. Recognizer language RL, 
2. Efficient recognizer language ERL where ERL o RL, 
3. Inefficient recognizer language IRL where IRL=RL-EEL, 
4. Recognrzer R, expressed in RL, containing IRL terms 

Find 
An operational recognizer, ER, expressed In the ERL, 

which recognizes the same instances as R 

Mx*+Slnce the generalized instance represents a set of posltlve 

instances. the LEA analysis technique has the effect of squeezing a 

number of trarnrng Instances out of a single one. LEX does not currently 

generalrze negative instances In thts manner, although the corresponding 

analysrs IS feastble in prlnctple. 

**Cost IS measured by cpu ttme expended to reach tne goal state 

***/A I I components of this versron have been Implemented 

on several examples, but have not been completely Interfaced 

and tested 

Mm*+ln formulatrng thus problem, we make the simplrfying assumption 

that a recognrzer is either operatronal or nonoperational The 

operationallty of a recognizer IS more properly consrdered to be a 

matter of degree 



Informally, the task here is to move a recognizer into 
the ERL so that It can be used for efficient recognition 
Since the set of positive instances recognized by R is 
never explicitly given, a major difficulty with this task lies 
in proving that a candidate ERL recognizer will identify the 
same set of positive instances as R. Our approach to the 
task addresses this problem by applying a series of 
transformations to R that have well-defined effects on the 
set of instances recognized by R. Another problem with 
this task concerns what to do when there exists no ERL 
recognizer that identifies all of the positive instances There 
are primarily two options available in this case: (i) settle for 
an ERL recognizer that identifies a subset of the positive 
instances, or (ii) expand the ERL until an appropriate 
recognizer is included in the ERL. The second option 
involves finding an appropriate IRL term to incorporate into 
the ERL, and then developing an efficient method of 
computing the feature described by the IRL term. This 
approach has been pursued by Utgoff [lo]. 

We are now in a position to illustrate how we view 
LEX’s learning task in terms of operationalization. Figure 
Ill- 1 presents LEX’s non-operational Minimum cost 
Criterion, phrased in terms of a recognizer in predicate 
calculus. The POS-INST-0 predicate recognizes only 
productive operator application instances. The instance data 
structures are pairs of the form (OP,STATE), where OP is 
to be applied to the integral calculus expresston contained 
in STATE. In order for (OP,STATE) to be a posltlve 
instance, POS-INST-0 specifies that STATE must contain a 
non-solved integral expression, and that the application of 
OP to STATE must produce a new state that lies on the 
path to a solved expression. Furthermore, no other path 
should lead to a less costly solution. 

Note that POS-INST-0 contains reference to features 
(e.g. solvability and cost) which are neither directly encoded 
nor easily derivable from the instance data structure. For 
example, to determine whether STATE is SOLVABLE, It is 
necessary to complete an exhaustive search of the subtree 
beneath STATE. Furthermore, to compute the cost of 
STATE requires a complete record of all operators applied 
to reach STATE from the root of the search tree. Due to 
these lnef f iciencies, POS-INST-0 is non-operational and 
terms such as SOLVABLE and MORE-COSTLY-STATE are 
part of LEX’s IRL. 

On the other hand, consider the followlng example 
recognizer which is expressed in LEX’s ERL 

POS-INST-A(OP3,state)c 
MATCH(J-trlg(xj*poly(x)dx, Expression(state1) 

ERL terms have been restricted to apply solely to features 
of integral calculus expressions If specific features are 
present in an expression, then the features are said to 
MATCH the expresslon A feature MATCH IS efflclently 
computable from the instance data structure with the aid of 

a grammar for calculus expresslons C 101 For example, if 

we want to evaluate POS-INST-A(OP3, Ssin(x)* 3x*dx), we 
invoke MATCH to determine whether sin(x) is a 

trigonometric function and 3x2 is a polynomial function. 

In the next section will illustrate how POS-INST-0 can 
be transformed into a more efficient ERL recognizer. 

iV Operationalization Techniques 

Each operatlonakzation technique dlscussed in this 
section specifies a transformation that can be applied to a 
given recognizer in order to produce a new, and hopefully 
more efficient recognizer. The set of techniques described 
IS intended to be general, although not comprehenslve. 
Consult [8] for Mostow’s thorough treatment of a broader 
spectrum of operationalization techniques 

A. General description of techniques 

In Table IV- 1 we describe and characterize a number 
of operatlonalization techniques definitional expansion, 
enumeration, redundancy elimination, constraint 
propagation, disjunct selection, instantiation, conjunct 
addition and conjunct deletion Each technique consists 
of a single replacement rule that can be used to transform 
a predicate calculus subexpression found in a recognizer. 
For example, we can use Definitional Expansion- 1 to 
transform Foo(x)hBaz(x) into Bar(x)hBaz(x) if we know that 
Foo(x)*Bar(x). Starting with a non-operational recognizer, 
the replacement rules are sequentially applied with the goal 
of transforming IRL terms into ERL terms This process will 
be illustrated in the next subsection. 

Figure III -1: IRL Recognizer for productive operator applications 

POS-INST-O(op,state)++ -GOAL(state) 
A APPLICABLE(op,state) 
A SOLVABLE(Successor-state(op,state)) 
A [(Votheropeoperators 1 otheropfop) 

-APPLICABLE(otherop,state) 
v -SOLVABLE(Successor-state(otherop,state)I 
v MORE-COSTLY-STATE(Goal-state-reachable(otherop,state), 

Goal-state-reachable(op,state))l 
SOLVABLE(state)++ GOAL(state) 

v 3op [APPLICABLE(op,state) 
A SOLVABLE(Successor-state(op,state)Il 

Meaning of PREDICATES (uppercase) and Functions (capitalized): 

q  POS-INST-O(op,state). the application of op to state is productive 
II SOLVABLE(state): there is a path leading from state to a goal state 
m APPLICABLE(op,state): legal to apply op to state 
q  GOAL(state): state is a goal state 
m MORE-COSTLY-STATE(state l,state2) cost to state 1 exceeds cost to state2 
m Successor-state(op,state). returns state resulting from application of op to state 
IJ Goal-state-reachable(op,state). returns goal state at the end of the path starting 

with the application of op to state 
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1 TECHNIQUE 1 REPLACEMENT RULE 
CONCEPT-PRESERVING TRANSFORMS 1 

1 Definitional Expansion- 1 1 Replace A wdh B If A - B 

1 Enumeration Replace [ Vx ] f(x) with f(A)Af(B)A 

TRedundancy Elimination ) Replace (ANBAA)) with (BAA) 

1 Constraint Propagation Replace c(X.f(Y)) with c(Z.YL 

where Z=f 
-1 

(X) 

CONCEPT-SPECIALIZING TRANSFORMS 
Def lnitional Expansion-2 
Conlunct Addition 
Disjunct Selection 

Replace A with B ff B + A 

Replace (AAB) with (AABAC) 
Replace (AWVC) with B 

I Instantiation 1 Replace 3x 1 f(x) with f(A) 

1 CONCEPT-GENERALIZING TRANSFORMS 
1 Conjunct Deletion 1 Replace (AABAC) with (AAC) 

1 Definitional Expansion-3 1 Replace A wltr‘ B If A ---$ B 

Table IV-l: OPERATIONALIZATION TECHNIQUES 

It is useful to view the operationalization process in 
terms of a heuristic search through a space of concepts, 
where states in the space are recognizers and operators 
are operationalizing transforms. The starting state represents 
the initial IRL recognizer. The goal states contain ERL 
recognizers that identify the same posittve instances as the 
Initial IRL recognlzer. (Failing this, the goal states are those 
that identify the largest number of positive instances.) There 
are various pieces of knowledge that can be used to guide 
this search. Broadly, these include: 

@ Kno;Nledge about the effect of a transform on the set 
of instances recognized as positive. Any transform 
which modifies this set should be avoided. 

Ex: If only concept-preserving transforms are used 
during concept operationalization, the set of instances 
recognized by the final ERL recognizer is guaranteed 
to be identical to the set recognized by the initial IRL 
recognizer. On the other hand, concept-specializing 
transforms reduce the set recognized as positive, 
while concept-generalizing transforms enlarge the 
set so that some negative instances will be falsely 
included as positive. Concept-generalizing transforms 
are therefore the most dangerous type to apply during 
concept operationalization 

@ Definitional knowledge about which IRL terms have ERL 
expansions. This knowledge can be used in means- 
ends guidance. 

Ex: A definition that expresses GOAL in terms of 
MATCH translates between the IRL and the ERL. Re- 
expressing parts of the original IRL recognizer In 
terms of GOAL is therefore a useful subtask. 

* Examples of transformation sequences that have 
resulted In useful ERL recognizers in the past These 
can be used to focus the search. 

Ex: To provide guidance in the selection and 
expansion of clauses in an IRL recognizer, it may be 
possible to use a previously-formulated transformation 
sequence as a a kind of macro-operator. In this way, 
the construction of a new sequence could be guided 
by previous experience. 

@ Domain-specific knowledge that can be used to 
prevent the over-specialization of a recognizer. 

Ex: Any recognizer containing the following 
instantiated def lnitional expansion of SOLVABLE 
(defined in Figure Ill- 1) IS legal, but identifies no 
instances at all: 

GOAL(Successor-state(OP3,Successor-statelOP 1 ,statel)I 

8 

B. 

We know that the use of this expansion causes over- 
specialization because our knowledge about Integration 
operators informs us that OP3 cannot actually be 
applied to any state produced by OPl 

Knowledge about the goals and constraints of the 
learning system This type of knowledge can serve to 
justify the use of a concept-altering transform 

Ex: If the predicate Red(x) is not In our ERL, It may 
be necessary to perform Conjunct Deletion to remove 
it from the expression Red(x)ARound(x)AHeavy(x) To 
justify the use of this concept-generalizing transform, 
it may be helpful to know that i) the goal of the 
system in question involves (for example) learning how 
to make efficient use of mechanical equipment, and 
that ii) color does not generally effect mechanical 
properties 

Operationalization techniques applied to LEX 

To more fully illustrate the techniques introduced in 
Section IV.A, we would like to illustrate operatlonalizatlon in 
the context of a specific hand-generated example In 
particular, consider the task of operatlonallzing LEX’s IRL 
recognlzer for productive operator applications (POS- 
INST-0 In Figure Ill- 1). One possible transformation 
sequence IS depicted in Figure IV-2 

Figure W-2: dperationalization of POS-INST-0 
POS-INST-0 (from Figure Ill- 1) 

1 4 Via Disjunct Selection on -APPLICABLE 1 
‘POS-INST- 1 (op,state)+ -GOAL(state) 

A APPLICABLE(op,state) 
A SOLVABLE(Successor-state(op.state)I 
A [(Votherop=operators 1 otherop#op) 

-APPLICABLE(oth&op,state)] 
J- Via Definitional Expansion-l on SOLVABLE I 

POS-INST-2(op,state+ -GOAL(state) 
A APPLICABiE(op,state) 
A [GOALtSuccessor-state(op,state)J 

v 3opx (APPLICABLE(opx, Successor-state(op,state)) 
A SOLVABLE(Successor-stateiopx, 

[(Votherop=operators 
Successor-stat&op,state)III 1 

otherop#op) A 

-APPLICABLE(oth&-op,state)] 
1 4 Via Disjunct Selection on GOAL 
POS-INST-3(op,state)+ -GOAL(state! 

I 

A APPLICABLE(op,state) 
A GOAL(Successor-state(op,state)) 
A [WotheropEoperators 1 otherop+op) 

-APPLICABLE(otherop,state)] 
1 4 Via Instantiation of op,Enumeration of -APPLICABLEI 
POS-INST-4(0P 1 ,state)+- -GOAL(state) 

A APPLICABLE(OP 1 ,state! 
A GOAL(Successor-state(OP 1 ,state)) 
A -APPLICABLE(OP2,state) 
A -APPLICABLE(OP3,state) 

A -APPLICABLE(OPN,state) 
1J 

POS-INST-5(0P 1 ,state+ -MATCH(expr-with-no-J,state) 
A MATCH(Jsin(x)dx,state) 
A MATCH(expr-with-no-S,Successor-state(OP 1 .state)) 
A -MATCH(Jk * f (x)dx,state) 
A -MATCH(Jf 1 (x) . f 2’(x)dx,state) 
. . 

A -MATCH(Precondltlons(OPN),state) 
Via Constraint Propagation 

I 
MATCH(expr-with-no-S,Successor-state(OP 1 ,state!) 

==> MATCH(f (x)-l-sin(x)dx,statei -i 
1 and Redundancy Elimination I 

POS-INST-6(OP 1 ,state)+- MATCH(f(x)Jsln(x)dx,state! 
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To motivate this operationalization sequence, consider 
applying means-ends analysis to the task. In order to arrive 
at an ERL recognizer, it is necessary to apply a technique 
that translates IRL predicates into ERL predicates. The only 
such technique available is Definitional Expansion. Among 
those predicate definitions that translate between the IRL 
and the ERL are: 

APPLICABLE(op,state) * 
MATCH(Preconditions(op). Expression(state)), and 

GCAL(state! - 
MATCH(term-with-no-S, Expression(state)). 

The transformation sequence shown can be viewed as an 
attempt to re-express POS-INST-0 solely in terms of 
APPLICABLE and GOAL. This has been accompllshed in 
POS-INST-4. From this point, it is easy to move into the 
ERL. The final step of the sequence produces POS-INST-6, 
which recognizes the application of OP 1 to STATE as a 
productive operator application whenever Jsin(x)dx appears 
within the numeric expression contained in STATE. 

While LEX does not actually represent the 
operationalizing transforms of Table IV- 1 explicitly, there is 
a close relationship between the operationalization sequence 
in Figure IV-2 and its counterpart in LEX. In particular, the 
process (explained in Section II) that LEX goes through in 
analyzing a single positive instance can be vlewed as the 
application of a sequence of operationalizing transforms 
This sequence changes POS-INST-0 into a very specific 
ERL recognizer that identifies only the single Instance 
However, the transformation sequence can then be used a 
template for the construction of a new sequence leading to 
a more general recognizer. By using the equivalent of a 
template, the LEX implementation eliminates much of the 
search process inherent in operationalization. Selection and 
expansion of clauses is carried out in accordance with the 
template, and Constraint Propagation and Redundancy 
Elimination are automatically invoked after IRL predicates 
have been translated into the ERL. The use of concept- 
generalizing transforms is avoided altogether. These pre- 
compiled decisions have made the LEX operationalization 
task manageable, and have permitted us to avoid some 
difficult control issues that arise in the full-blown concept 
operationalization scenario described in Section 1V.A. 

V Conclusions 

The operationalization techniques described in this paper 
are not particularly novel; similar methods have been applied 
to automated design and synthesis tasks (see, for example, 
work in automatic programming [4, 11). What is different 
about our approach, along with Mostow’s [9], is the 
explicit application of these techniques in the context of 
learning and problem solving [7, 61. We are beginning to 
acknowledge that design activities are intimately related to 
learning abilities, and that the ability to use one’s knowledge 
appropriately to achieve a particular goal (i.e to design a 
solution to a problem) is a fundamental learning skill. 

It is clear that much work remains to be done in the 
area of controlllng the search for solutions to the concept 
operationalization task. In particular, we need to understand 
how various sources of knowledge can be used not only 
to guide, but also to justify the operationalizatlon process 
Justif ication involves the defense of operationalization 
decisions based on goals, constraints and preferences 
operating within the concept learning environment Based on 
the nature of recent research in machine learning, more 
attention to such environmental factors is central to 
progress in this field. 
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