
LEARNING BY RE-EXPRESSING CONCEPTS

FOR EFFICIENT RECOGNITION *

Richard M. Keller

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903

Abstract

Much attention in the field of machine learning has been
directed at the problem of inferring concept descriptions
from examples. But in many learning situations, we are
initrally presented with a fully-formed concept description,
and our goal IS instead to re-express that description with
some particular task in mind. In this paper, we specifjcally
consider the task of recognizing concept instances
efficiently. We describe how concepts that are accurate,
though computationally inefficient for use in recognizing
instances, can be re-expressed in an efficient form through
a process we call concept operationalization Various
techniques for concept operationalization are illustrated in
the context of the LEX learning system.

I Introduction and Motivation

Historically, machine learning research has focused on
the task of inferrrng concept descriptions based on a set
of examples, and it is only recently that other types of
learning have begun to come under investigation [2]. In this
paper, we focus on the process of concept reformulation
rather than concept acquisition. We assume that a learning
system acquires concepts in some unspecified manner,
whether by inductive or deductive means or by being told.
For a variety of reasons, it may be necessary to re-
express an acquired concept in different terms. In
particular, the concept may be expressed tn a manner that
is computationally inefficient for the purpose of recognizing
examples. In such cases, the learning system is faced with
the task of reformulating the concept so that recognition
can occur more swiftly. We call this task concept
operationalization, in the spirit of recent, related work by
Mostow CS] and Hayes-Roth [3].

Consider the problem of using a concept description to
efficiently recognize examples of arch structures. Winston’s
pioneering concept learning system [1 I] succeeded both in
formulating an arch concept description and In subsequently
using that description to recognize arch instances. An arch
Instance was given in terms of various visual and structural
features of its component parts (e.g. shape, orientation, and
relative placement) The program inductively inferred a
structural description of the arch concept, similar to the
one shown below, based on a set of tralnrng examples:

Structural Arch Concept

An arch is a structure which:
(ij is composed of 3 objects, 2 of which must be bricks
(ii) the bricks must be standing adjacent yet not touching
(iiilthe other object must be lying horizontally, supported

by the bricks.

*Work supported by NIH Grant #RR-64309. and a RWWrs Unwrsltl
Graduate Fellowship.

Using this description, arch recognition was quite efficient.
The program simply had to match the structural features of
a prospective arch instance against the structural
description.

Now imagine that Instead of giving his system a set of
training examples to be used in concept formation, Winston
short-circuited the process and inittally provided his system
with a complete, although non-structural description of the
arch concept. For example, he might have provided a
functional description of an arch:

Functional Arch Concept

An arch is a structure which:
0) spans an opening, and
(ii) supports weight from above, or to either

side of the opening.

Although the functional description is just as valid as the
structural one, recognition is no longer a simple matter. It 1s
not clear how to match the structural features of an
instance against a functional definition without some
intermediary processing In particular, either 0) the instance
must be altered to include functional features as well as
structural features a priori, or (ii) the functional features
must be computationally derived each time a new structural
instance is processed, or (iii) the functional definition must
be re-expressed permanently in structural terms Of these
options, (iii) represents the most practical long-term solution
to the recognition problem. In the context of the arch
example, the structural re-expression of the functional
definition involves the use of physics knowledge, as well as
other domain-independent knowledge, to relate form and
function**. Once the arch description has been re-
expressed in a manner suitable for efficient recognition we
will consider it to be an operational concept description

In the balance of this paper, the task of concept
operationalization is more precisely defined. Section
II describes how the notion of concept operationallzation
initia!ly arose in the context of our recent experiences with
the LEX learning system [5]. Section III follows with a
more formal specification of the concept operationallzation
task Various techniques for dealing with this task are then
introduced and illustrated in Section IV. Section V concludes
with some comments about related research and some
issues that must be addressed prior to a full-scale
implementation of the proposed techniques.

II Concept Operationalization and Problem Solving

To explore further the notion of concept
operationalization, we base our dlscusslon on the LEX --

wComcldentally, since the mltial wrlttng of this paper it nas come tc

my attention that Wlnston is pursuing the relatlonshlp between form and

function using tecnmques relared to those described here [12 1

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

learning system. While the framework proposed in this
paper has not been incorporated into LEX, it arises out of
our recent experience with this system, and our attempt
generalize upon its methods.

LEX is a program which learns to improve Its problem
solving performance in integral calculus. Problems are
solved by the system using a least-cost-first forward state
space search method. The starting state in the search
contains a well-formed numeric expression with an integral
sign. LEX’s task is to solve the integral by applying a
sequence of operators that will transform the starting state
into one containing no integral sign. A set of approxrmately
50 calculus and arithmetic simplification operators is initially
given to the system. Each operator specifies (i) an operation
to be performed, and (ii) a set of numeric expressions to
which the operator may legally be applied. Here are three
sample operators:

OP 1: jsin(x)dx ---) cos(x)
OP2: Sk l f(x)dx - k-ff(x)dx
OP3 Integration by Parts:

j.f l(x)*f2’(x)dx * f l(x)*f2(x) - +ff2(x)*f l’(x)dx
where k:constant, f(x):function, and f’(x):derlvative of f(x)

As LEX solves problems, it learns to prune Its search
tree by refusing to apply operators in those situations
where experience has shown an application to be
“nonproductive”, although legal. For example, it is often legal

to apply ‘integration by parts’ (whenever the integral
contains a product), but it is much less frequent that the
application will lead to a solution. The criterion to use in
deciding whether an operator application is to be
considered productive or nonproductive is given to the
system initially as the Minimum Cost Criterion shown below:

Minimum Cost Criterion: Any operator application that
extends the search tree in the direction of the
minimum cost*w solution is considered a productive
operator application.

LEX’s learning task is to acquire the ability to efficiently
distinguish between productive and nonproductive operator
applications By definition, this ability should improve the
system’s problem solving behavior. Note that with prior
knowledge of the Minimum Cost Criterion, LEX begins by
knowing in principle how to distinguish between
productive and nonproductive operator applications: simply
expand the search tree until a minimum cost solution is
found and then classify the operator applications
accordingly. However, this method is grossly self -defeating,
since a process that simply deliberates about which
operator to apply next cannot be granted the luxury of
conducting an exhaustive search for the minimum cost
solution’

Although direct use of the Minimum Cost Criterion to
recognize productive operator applications is prohibitive, the
Criterion is used by LEX in other significant ways. The
most recent version of LEX**** [6] employs both a
procedural and a declarative representation of the Criterion
in the processing of Instances. Initially, the procedural
Criterion (called the CRITIC) classifies an individual training
instance (i.e. an operator application) as positive or negative
(productive or nonproductive). If the instance is positive, the
declarative Criterion is then used to analyze which features
of the instance were specifically relevant to the CRITIC’s

positive classificatory decision Once the relevant features
have been identified, LEX generalizes the positive instance
by discarding irrelevant features The generalized, rather
than the original, positive instance IS then fed to LEX’s
inductive learnlng mechanism*w*? This mechanism then
constructs an efficient method for recognizing positive
instances based on syntactic patterns in the instances

Let us describe a subset of the RL that IS of particular
interest. The efficient recognizer language (ERL) contains
only those RL terms that describe either (i) features
encoded directly in instances, or (ii) features efficiently
computable from encoded features. Any RL term that
references other types of features is part of the
IRL (inefficient recognizer language). Finally, we will
define a recognizer expressed solely In terms of the ERL
to be an operational recognizer******. Notice that for the
arch example, the RL IS a language containing both
functional and structural terms, while the ERL is restricted
to structural terms and the IRL IS restricted to functional
terms Thus, the structural arch recognize: is operatlonal.
while the functlonal arch recognizer is not

We are now In a position to define our task.

Given:

Concept Operationalization Task

1. Recognizer language RL,
2. Efficient recognizer language ERL where ERL o RL,
3. Inefficient recognizer language IRL where IRL=RL-EEL,
4. Recognrzer R, expressed in RL, containing IRL terms

Find
An operational recognizer, ER, expressed In the ERL,

which recognizes the same instances as R

Mx*+Slnce the generalized instance represents a set of posltlve

instances. the LEA analysis technique has the effect of squeezing a

number of trarnrng Instances out of a single one. LEX does not currently

generalrze negative instances In thts manner, although the corresponding

analysrs IS feastble in prlnctple.

**Cost IS measured by cpu ttme expended to reach tne goal state

***/A I I components of this versron have been Implemented

on several examples, but have not been completely Interfaced

and tested

Mm*+ln formulatrng thus problem, we make the simplrfying assumption

that a recognrzer is either operatronal or nonoperational The

operationallty of a recognizer IS more properly consrdered to be a

matter of degree

Informally, the task here is to move a recognizer into
the ERL so that It can be used for efficient recognition
Since the set of positive instances recognized by R is
never explicitly given, a major difficulty with this task lies
in proving that a candidate ERL recognizer will identify the
same set of positive instances as R. Our approach to the
task addresses this problem by applying a series of
transformations to R that have well-defined effects on the
set of instances recognized by R. Another problem with
this task concerns what to do when there exists no ERL
recognizer that identifies all of the positive instances There
are primarily two options available in this case: (i) settle for
an ERL recognizer that identifies a subset of the positive
instances, or (ii) expand the ERL until an appropriate
recognizer is included in the ERL. The second option
involves finding an appropriate IRL term to incorporate into
the ERL, and then developing an efficient method of
computing the feature described by the IRL term. This
approach has been pursued by Utgoff [lo].

We are now in a position to illustrate how we view
LEX’s learning task in terms of operationalization. Figure
Ill- 1 presents LEX’s non-operational Minimum cost
Criterion, phrased in terms of a recognizer in predicate
calculus. The POS-INST-0 predicate recognizes only
productive operator application instances. The instance data
structures are pairs of the form (OP,STATE), where OP is
to be applied to the integral calculus expresston contained
in STATE. In order for (OP,STATE) to be a posltlve
instance, POS-INST-0 specifies that STATE must contain a
non-solved integral expression, and that the application of
OP to STATE must produce a new state that lies on the
path to a solved expression. Furthermore, no other path
should lead to a less costly solution.

Note that POS-INST-0 contains reference to features
(e.g. solvability and cost) which are neither directly encoded
nor easily derivable from the instance data structure. For
example, to determine whether STATE is SOLVABLE, It is
necessary to complete an exhaustive search of the subtree
beneath STATE. Furthermore, to compute the cost of
STATE requires a complete record of all operators applied
to reach STATE from the root of the search tree. Due to
these lnef f iciencies, POS-INST-0 is non-operational and
terms such as SOLVABLE and MORE-COSTLY-STATE are
part of LEX’s IRL.

On the other hand, consider the followlng example
recognizer which is expressed in LEX’s ERL

POS-INST-A(OP3,state)c
MATCH(J-trlg(xj*poly(x)dx, Expression(state1)

ERL terms have been restricted to apply solely to features
of integral calculus expressions If specific features are
present in an expression, then the features are said to
MATCH the expresslon A feature MATCH IS efflclently
computable from the instance data structure with the aid of

a grammar for calculus expresslons C 101 For example, if

we want to evaluate POS-INST-A(OP3, Ssin(x)* 3x*dx), we
invoke MATCH to determine whether sin(x) is a

trigonometric function and 3x2 is a polynomial function.

In the next section will illustrate how POS-INST-0 can
be transformed into a more efficient ERL recognizer.

iV Operationalization Techniques

Each operatlonakzation technique dlscussed in this
section specifies a transformation that can be applied to a
given recognizer in order to produce a new, and hopefully
more efficient recognizer. The set of techniques described
IS intended to be general, although not comprehenslve.
Consult [8] for Mostow’s thorough treatment of a broader
spectrum of operationalization techniques

A. General description of techniques

In Table IV- 1 we describe and characterize a number
of operatlonalization techniques definitional expansion,
enumeration, redundancy elimination, constraint
propagation, disjunct selection, instantiation, conjunct
addition and conjunct deletion Each technique consists
of a single replacement rule that can be used to transform
a predicate calculus subexpression found in a recognizer.
For example, we can use Definitional Expansion- 1 to
transform Foo(x)hBaz(x) into Bar(x)hBaz(x) if we know that
Foo(x)*Bar(x). Starting with a non-operational recognizer,
the replacement rules are sequentially applied with the goal
of transforming IRL terms into ERL terms This process will
be illustrated in the next subsection.

Figure III -1: IRL Recognizer for productive operator applications

POS-INST-O(op,state)++ -GOAL(state)
A APPLICABLE(op,state)
A SOLVABLE(Successor-state(op,state))
A [(Votheropeoperators 1 otheropfop)

-APPLICABLE(otherop,state)
v -SOLVABLE(Successor-state(otherop,state)I
v MORE-COSTLY-STATE(Goal-state-reachable(otherop,state),

Goal-state-reachable(op,state))l
SOLVABLE(state)++ GOAL(state)

v 3op [APPLICABLE(op,state)
A SOLVABLE(Successor-state(op,state)Il

Meaning of PREDICATES (uppercase) and Functions (capitalized):

q POS-INST-O(op,state). the application of op to state is productive
II SOLVABLE(state): there is a path leading from state to a goal state
m APPLICABLE(op,state): legal to apply op to state
q GOAL(state): state is a goal state
m MORE-COSTLY-STATE(state l,state2) cost to state 1 exceeds cost to state2
m Successor-state(op,state). returns state resulting from application of op to state
IJ Goal-state-reachable(op,state). returns goal state at the end of the path starting

with the application of op to state

184

1 TECHNIQUE 1 REPLACEMENT RULE
CONCEPT-PRESERVING TRANSFORMS 1

1 Definitional Expansion- 1 1 Replace A wdh B If A - B

1 Enumeration Replace [Vx] f(x) with f(A)Af(B)A

TRedundancy Elimination) Replace (ANBAA)) with (BAA)

1 Constraint Propagation Replace c(X.f(Y)) with c(Z.YL

where Z=f
-1

(X)

CONCEPT-SPECIALIZING TRANSFORMS
Def lnitional Expansion-2
Conlunct Addition
Disjunct Selection

Replace A with B ff B + A

Replace (AAB) with (AABAC)
Replace (AWVC) with B

I Instantiation 1 Replace 3x 1 f(x) with f(A)

1 CONCEPT-GENERALIZING TRANSFORMS
1 Conjunct Deletion 1 Replace (AABAC) with (AAC)

1 Definitional Expansion-3 1 Replace A wltr‘ B If A ---$ B

Table IV-l: OPERATIONALIZATION TECHNIQUES

It is useful to view the operationalization process in
terms of a heuristic search through a space of concepts,
where states in the space are recognizers and operators
are operationalizing transforms. The starting state represents
the initial IRL recognizer. The goal states contain ERL
recognizers that identify the same posittve instances as the
Initial IRL recognlzer. (Failing this, the goal states are those
that identify the largest number of positive instances.) There
are various pieces of knowledge that can be used to guide
this search. Broadly, these include:

@ Kno;Nledge about the effect of a transform on the set
of instances recognized as positive. Any transform
which modifies this set should be avoided.

Ex: If only concept-preserving transforms are used
during concept operationalization, the set of instances
recognized by the final ERL recognizer is guaranteed
to be identical to the set recognized by the initial IRL
recognizer. On the other hand, concept-specializing
transforms reduce the set recognized as positive,
while concept-generalizing transforms enlarge the
set so that some negative instances will be falsely
included as positive. Concept-generalizing transforms
are therefore the most dangerous type to apply during
concept operationalization

@ Definitional knowledge about which IRL terms have ERL
expansions. This knowledge can be used in means-
ends guidance.

Ex: A definition that expresses GOAL in terms of
MATCH translates between the IRL and the ERL. Re-
expressing parts of the original IRL recognizer In
terms of GOAL is therefore a useful subtask.

* Examples of transformation sequences that have
resulted In useful ERL recognizers in the past These
can be used to focus the search.

Ex: To provide guidance in the selection and
expansion of clauses in an IRL recognizer, it may be
possible to use a previously-formulated transformation
sequence as a a kind of macro-operator. In this way,
the construction of a new sequence could be guided
by previous experience.

@ Domain-specific knowledge that can be used to
prevent the over-specialization of a recognizer.

Ex: Any recognizer containing the following
instantiated def lnitional expansion of SOLVABLE
(defined in Figure Ill- 1) IS legal, but identifies no
instances at all:

GOAL(Successor-state(OP3,Successor-statelOP 1 ,statel)I

8

B.

We know that the use of this expansion causes over-
specialization because our knowledge about Integration
operators informs us that OP3 cannot actually be
applied to any state produced by OPl

Knowledge about the goals and constraints of the
learning system This type of knowledge can serve to
justify the use of a concept-altering transform

Ex: If the predicate Red(x) is not In our ERL, It may
be necessary to perform Conjunct Deletion to remove
it from the expression Red(x)ARound(x)AHeavy(x) To
justify the use of this concept-generalizing transform,
it may be helpful to know that i) the goal of the
system in question involves (for example) learning how
to make efficient use of mechanical equipment, and
that ii) color does not generally effect mechanical
properties

Operationalization techniques applied to LEX

To more fully illustrate the techniques introduced in
Section IV.A, we would like to illustrate operatlonalizatlon in
the context of a specific hand-generated example In
particular, consider the task of operatlonallzing LEX’s IRL
recognlzer for productive operator applications (POS-
INST-0 In Figure Ill- 1). One possible transformation
sequence IS depicted in Figure IV-2

Figure W-2: dperationalization of POS-INST-0
POS-INST-0 (from Figure Ill- 1)

1 4 Via Disjunct Selection on -APPLICABLE 1
‘POS-INST- 1 (op,state)+ -GOAL(state)

A APPLICABLE(op,state)
A SOLVABLE(Successor-state(op.state)I
A [(Votherop=operators 1 otherop#op)

-APPLICABLE(oth&op,state)]
J- Via Definitional Expansion-l on SOLVABLE I

POS-INST-2(op,state+ -GOAL(state)
A APPLICABiE(op,state)
A [GOALtSuccessor-state(op,state)J

v 3opx (APPLICABLE(opx, Successor-state(op,state))
A SOLVABLE(Successor-stateiopx,

[(Votherop=operators
Successor-stat&op,state)III 1

otherop#op) A

-APPLICABLE(oth&-op,state)]
1 4 Via Disjunct Selection on GOAL
POS-INST-3(op,state)+ -GOAL(state!

I

A APPLICABLE(op,state)
A GOAL(Successor-state(op,state))
A [WotheropEoperators 1 otherop+op)

-APPLICABLE(otherop,state)]
1 4 Via Instantiation of op,Enumeration of -APPLICABLEI
POS-INST-4(0P 1 ,state)+- -GOAL(state)

A APPLICABLE(OP 1 ,state!
A GOAL(Successor-state(OP 1 ,state))
A -APPLICABLE(OP2,state)
A -APPLICABLE(OP3,state)

A -APPLICABLE(OPN,state)
1J

POS-INST-5(0P 1 ,state+ -MATCH(expr-with-no-J,state)
A MATCH(Jsin(x)dx,state)
A MATCH(expr-with-no-S,Successor-state(OP 1 .state))
A -MATCH(Jk * f (x)dx,state)
A -MATCH(Jf 1 (x) . f 2’(x)dx,state)
. .

A -MATCH(Precondltlons(OPN),state)
Via Constraint Propagation

I
MATCH(expr-with-no-S,Successor-state(OP 1 ,state!)

==> MATCH(f (x)-l-sin(x)dx,statei -i
1 and Redundancy Elimination I

POS-INST-6(OP 1 ,state)+- MATCH(f(x)Jsln(x)dx,state!

185

To motivate this operationalization sequence, consider
applying means-ends analysis to the task. In order to arrive
at an ERL recognizer, it is necessary to apply a technique
that translates IRL predicates into ERL predicates. The only
such technique available is Definitional Expansion. Among
those predicate definitions that translate between the IRL
and the ERL are:

APPLICABLE(op,state) *
MATCH(Preconditions(op). Expression(state)), and

GCAL(state! -
MATCH(term-with-no-S, Expression(state)).

The transformation sequence shown can be viewed as an
attempt to re-express POS-INST-0 solely in terms of
APPLICABLE and GOAL. This has been accompllshed in
POS-INST-4. From this point, it is easy to move into the
ERL. The final step of the sequence produces POS-INST-6,
which recognizes the application of OP 1 to STATE as a
productive operator application whenever Jsin(x)dx appears
within the numeric expression contained in STATE.

While LEX does not actually represent the
operationalizing transforms of Table IV- 1 explicitly, there is
a close relationship between the operationalization sequence
in Figure IV-2 and its counterpart in LEX. In particular, the
process (explained in Section II) that LEX goes through in
analyzing a single positive instance can be vlewed as the
application of a sequence of operationalizing transforms
This sequence changes POS-INST-0 into a very specific
ERL recognizer that identifies only the single Instance
However, the transformation sequence can then be used a
template for the construction of a new sequence leading to
a more general recognizer. By using the equivalent of a
template, the LEX implementation eliminates much of the
search process inherent in operationalization. Selection and
expansion of clauses is carried out in accordance with the
template, and Constraint Propagation and Redundancy
Elimination are automatically invoked after IRL predicates
have been translated into the ERL. The use of concept-
generalizing transforms is avoided altogether. These pre-
compiled decisions have made the LEX operationalization
task manageable, and have permitted us to avoid some
difficult control issues that arise in the full-blown concept
operationalization scenario described in Section 1V.A.

V Conclusions

The operationalization techniques described in this paper
are not particularly novel; similar methods have been applied
to automated design and synthesis tasks (see, for example,
work in automatic programming [4, 11). What is different
about our approach, along with Mostow’s [9], is the
explicit application of these techniques in the context of
learning and problem solving [7, 61. We are beginning to
acknowledge that design activities are intimately related to
learning abilities, and that the ability to use one’s knowledge
appropriately to achieve a particular goal (i.e to design a
solution to a problem) is a fundamental learning skill.

It is clear that much work remains to be done in the
area of controlllng the search for solutions to the concept
operationalization task. In particular, we need to understand
how various sources of knowledge can be used not only
to guide, but also to justify the operationalizatlon process
Justif ication involves the defense of operationalization
decisions based on goals, constraints and preferences
operating within the concept learning environment Based on
the nature of recent research in machine learning, more
attention to such environmental factors is central to
progress in this field.

VI Acknowledgments

I would like to thank Tom Mitchell for his significant
contribution to the ideas expressed in this paper, and for
his help and encouragement. Many of my ideas have also
been clarified by discussions with Smadar Kedar-Cabelli. I
thank Paul Utgoff for his assistance in implementation and
for several careful readings of earlier drafts of this paper.
John Bresina, Donna Nagel, Don Smith, and Peter Spool also
supplied useful comments

111

c21

c31

L-41

c51

C61

II71

C81

c91

Cl01

Cl 11

II121

References

Barstow, D. R., Automatic Construction of
Algorithms and Data Structures Using a
Knowledge Base of Programming Rules, Ph.D
dissertation, Stanford University, November 1977.

Carbonell, J. G., Michalski, R. S. and Mitchell, T. M.,
“An Overview of Machine Learning,” Machine
Learning, Michalski, R S., Carbonell, J G and
Mitchell, T. M. (Eds.), Tioga, 1983.

Hayes -Roth, F., Klahr, P., Burge, J. and Mostow,
D. J., “Machine Methods for Acquiring, learning, and
Applying Knowledge”, Technical Report R-624 1, The
RAND Corporation, 1978.

Manna, Z. and Waldinger R., “Knowledge and
Reasoning in Programming Synthesis,” Studies in
Automatic Programming Logic, Manna, Z. and
Waldinger R. (Eds.), North-Holland, 1977.

Mitchell, T. M., Utgoff, P. E. and Banerji, R. B.,
“Learning by Experimentation: Acquiring and Refining
Problem-Solving Heuristics,” Machine Learning,
Michalski, R. S., Carbonell, J. G and Mitchell, T. M
(Eds.), Tioga, 1983.

Mitchell, T., “Learning and Problem Solving,”
Proceedings of / JCAI - 83, Karlsrhue, Germany,
August 1983.

Mitchell, T. M. and Keller, R. M., “Goal Directed
Learning,” Proceedings of the Second International
Machine Learning Workshop, Urbana, Illinois, June
1983.

Mostow, D. J., Mechanical Transformation of Task
Heuristics into Operational Procedures, Ph.D.
dissertation, Carnegie-Mellon University, 198 I.

Mostow, D. J., “Machine Transformation of Advice
into a Heuristic Search Procedure,” Machine
Learning, Michalski, R S., Carbonell, J G and
Mitchell, T. M. (Eds.), Tioga Press, Palo Alto, 1983

Utgoff, P. E. and Mitchell, T. M., “Acquisition of
Appropriate Bias for Inductive Concept Learning,”
Proceedings of the Second National Conference on
Artificial Intelligence. Pittsburgh, August 1982.

Wlnston, P. H., “Learning Structural Descrlptlons
from Examples,” The Psychology of Computer
Vision, Winston, P. H. (Ed.), McGraw Hill, New York,
1975, ch. 5.

Winston P.H., Binford T.O., Katz B. and Lowry M.,
“Learning Physical Descriptions from Functional
Definitions, Examples, and Precedents,” Third

National Conference on Artificial Intel t igence
Washington, D.C., 1983.

186

