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ABSTRACT 

The objective of this study was a comparison 
of the effectiveness in adapting to an environment 
of populations of structures undergoing modifica- 
tion by four different models: 1) Holland's (2) 
genetic operator model; 2) a cognitive (statistical 
predictive) model; 3) a random point mutation model; 
and 4) a control (non-altered) model. 

INTRODUCTION 

Holland (3) has reviewed the prolonged success 
of lifeforms in adapting to an environment through 
evolution. The biological organism is faced with 
testing a large set of possible genetic expressions 
in its offspring by means of environmental inter- 
action with a relatively small subset of realized 
structures (its own genotype). Nonlinearity and 
epistatic interactions among gene sets complicate 
the problem of achieving a successful, if not 
optimal, genetic complement in offspring. Holland 
has mathematically hypothesized that genetic 
operators (e.g., crossing-over) exploit the 
optimization of reproductive fitness (number of 
offspring) by a means he terms intrinsic parallelism 
Intrinsic parallelism is the testing of a large 
pool of schemata (the set of all partitions and 
combinations thereof of a prototypical structure, 
or genome) by means of a much smaller subset of 
realized structures. More simply, consider the 
structure A consisting of a string of six binary 
digits, (1 0 1 1 0 1). Each binary digit may be 
considered to be a detector in an off/on state 
(i.e., comparable to alleles in genetics). 
Structure A is a member of a set of structures a 
which includes all possible strings of six binary 
digits. There exists a superset E which is the 
set of strings of length six composed of concatena- 
tions of (l,O,# }, where # represents a "don't 
care" position, i.e., its value as 0 or 1 is 
irrelevant. For example, letE& Ebe (1 0 # # 
0 1). This E is termed a "schema," and all 
possible schemata compose E, the "pool of schemata." 
The structure A (1 0 1 1 0 1) is an instance of the 
schemata (1 0 # # 0 1) and (# # # # 0 l), but not 
of (0 # # 0 # 1). Now consider a structure 
Environ (0 0 1 0 0 1) which represents the "state" 
of an environment. Fitness, or performance, may 
then be defined as the number of matching elements 
between structure A and structure Environ with a 
one-to-one correspondence: in this illustration, 
the fitness of A would be 4. Schemata represent 
the contribution to fitness of single detectors 
(i.e., alleles) as well as of combinations of 

I. Primary Data Structures 

Environment (ENVIRON) - a list of 12 randomly- 
selected binary digits (example - (1 1 0 0 0 
0 1 11 0 11)). 
Matrices (MATRICES) - a list of transition 
matrices for each binary digit in the environ- 
ment. It is used to simulate a Markov-chain 
type stochastic variation in the states of the 
environment. (Example - ((.5 -3) (-2 -9) (.6 
-4) . . . (-3 -7)). (-5 .3) would represent 
the transition matrix 

y-j+-+- 

II Primary Measurements 

I , .3 , .I 
I I 

Populations - For each model, a list of 12 
sublists of 12 randomly selected binary digits, 
each of these sublists representing a structure. 
(Example - ((110011110001) 
(001001110010) . . . (011111 
0 0 0 10 0 ))). 

ELEMENTS OF MODEL CONSTRUCTION 

detectors. A subset of structures from cx 
constitutes a population. It is, by definition, 
the goal of adaptation to modify these structures 
in order to optimize the fitness of the population. 
Holland has shown that the genetic operators of 
crossing-over, inversion, and, to a limited extent, 
mutation are highly successful in 1) testing a 
large number of possible schemata through modifi- 
cations on a much smaller number of realized 
structures, and 2) exploiting local optima on the 
way to achieving the global optimum without becoming 
entrapped, as opposed to what occurs in the simple 
hill-climbing technique of heuristic search. The 
purpose of this study was to garner empirical 
evidence from an abstract computer implementation 
of Holland's model with regard to alternative 
models. LISP was the language of choice due to 
the power of its list-processing functions. 

1) Adaptation - modification of structures to 
improve performance 

2) Performance (fitness) - number of one-to- 
one matches between a structure in a 
population and the environment, for a given 
state of the environment. 

3) Averaged Population Performance (population 
fitness) - the average number of matches 
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over the population 
of the environment. 

given transition (Illustration of mechanism): 

4) Tracking - the change in averaged popula- 
tion performance over a stated number of 
environment transitions. 

III. Description of Algorithms for Models 

1) BETA - the population undergoing the 
genetic operations of crossing-over, 
inversion, and mutation (adapted from 
(2) 1. 
A. General Model Algorithm: Initialize 

population, environment, and transi- 

B. 

tion matrices. Find the performance 
for each structure in BETA. Call it 
MU(i). Define the random variable 
RAND on (1 ,...,M} by assigning prob- 
ability MU(i)/M MU(i) to each 

i%L 
structure in BETA, where M is the 
number of structures in the population. 
Make M trials of RAND, each time 
storing the structure at position 
RAND in BETA at successive positions 
in auxiliary list BPRIME. For each 
structure in BPRIME apply inversion 
and mutation, and, if it is a 
structure in an even-numbered position, 
cross it with the immediately pre- 
ceding structure. Set BETA to BPRIME. 
Apply transition matrices to environ- 
ment. Repeat all steps except 
initialization for desired number of 
transitions. 
Algorithm for Crossing-Over : Make 
trial of RAND on 10 I..., 21, where 
is the number of posi tions in each 
structure. IfRAND= 0 or RAND=!?, 
then no crossing-over takes place. 
Otherwise, take positions 1 through 

!La 

RAND of hth structure and append 
positions RAND + 1 through 9, of 
(h-1)th structure. Likewise, take 
positions 1 through RANDOF( h-1)th 
structure and append positions RAND 
+ 1 through R of hth structure. 

(Illustration of mechanism): 

hth Structure: 10 oRAN: 0 01 -- 
(h-1)th structure: 11110101 

After crossing over: 

hth structure: 1 0110101 
(h-1)th structure: 110 0 0 0 01 

C. Algorithm for Invers 
trials of RAND on (1 

ion: 
,--*I 

Make 2 
R) and 

designate the outcomes Xl and X2, 
respectively. Take the segment of 
the structure from position MIN (Xl, 
X2) through position MAX (X1,X2), 
reverse it, and reinsert it into the 
structure. 

minx maxX 

Structure: 10101010 
After inversion: 

Structure: 10 010110 

D. Algorithm for Mutation: Make a trial of 
RAN'D on {l,... ,R} and designate the out- 
come X. Make another trial of RAND on 
integers 0,l and designate the outcome 
CHANGE. Take position X of the struc- 
ture and. change it to CHANGE. 

(Illustration of mechanism) : 

Structure: 0 0 0 0 10 0 x=3; 
After Mutation: 0010100 

Change=1 

2) MEMPOP - the "cognitive" model. This 
routine kept track of the number of times 
in each position that the structure failed 
to match the environment for each transition. 
The routine then calculated the probability 
from the above frequency that it should 
"flip" that position, and adjusted each 
position accordingly. 

3) 

4) 

General Algorithm: Initialize population, 
environment, and transition matrices. 
Create MEMORY, a list of 12 elements, one 
for each position of each structure in 
MEMPOP, and set to 0. For each structure 
in MEMPOP, do the following for the desired 
number of transitions: 1) find performance 
with current environment; 2) for each 
position that does not match, add 1 to the 
sum at the corresponding position in 
MEMORY; 3) for each position in the 
structure, make a trial of RAND distributed 
X(0,1), and if RAND is less than the sum 
at the corresponding position in MEMORY 
divided by the number of transitions, then 
flip that bit. Find the averaged population 
performance over all transitions. 
RANDPOP - underwent random point mutation 
by algorithm for mutation above, with 
number of mutations being generated from 
POISSON(l). Structures were taken through 
transitions separately, as in the algorithm 
for MEMPOP above. 
CONTROLPOP - underwent no modification. 
Structures were taken through transitions 
separately, as in the algorithm for MEMPOP 
above. 

TESTING 

Part I Comparisons Among All Four Models 

All populations were initialized to the same 
set of structures and encountered the same initial 
environment and the same transition matrices. The 
entire set of BETA (genetic model) was necessarily 
carried through the transitions at the same time, 
since structure interaction is inherent in the 
genetic model. Each structure of the other popula- 
tions was carried through the transitions singly. 
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The averaged performance of the population was 
calculated for each transition. Two runs, each of 
which consisted of twenty-five transitions, were 
made with the same initial populations and environ- 
ment but with different transition matrices. 

Statistical analysis of possible differences 
in the 25 averaged population performances among 
the groups was performed under the following 
assumptions: 1) that the underlying distribution, 
though most probably binomial, could be approximated 
by a normal distribution for N=25 (4); 2) that the 
data values, although obviously correlated for the 
BETA population, could be treated as essentially 
independent due to the large number of mutually 
exclusive stochastic events determing the outcome 
of the averages. All statistical analyses were run 
on SAS. A parametric ANOVA was performed to test 
for differences in the mean of the averaged popula- 
tion performance among the 4 groups. Means were 
then grouped into equivalence classes by Duncan's 
multiple range test. To test for the validity of 
the conclusion without the above two aSSmptiOnS, 
a Kruskal-Wallis nonparametric analysis of variance 
by rank test was also run. Alpha was -05 for all 
tests. 

Table 1 - Summary Data on Comparison of Models 

Test 1: Values in Transition Matrix Set to Simu- 
late Environment with Frequent 
Perturbations 

Results: a = -05; Ho: The means of the averaged 
population performance of all groups are not 
significantly different. (Ho for nonparametric 
test: The rank scores are not significantly 
different.) 

Run 1: 

Matrices = ((.5.2) (-9.1) (-4.8) (-2.3) (.7.6) 
(.5.5) (-8.5) (.1.2) (0.0 .3) (.4.7) 
(-8.4) (.5.9)) 

ANOVA: AMONG MS WITHIN MS 

2.08965 0.344845 
F VALUE PROB>F 
6.06 0.0009 

Reject Ho. 

Duncan's MRT: (Boxes indicate equivalence classes.) 

-q /I 5y~;~0 ;y;yop :;p$ 

Kruskal-Wallis (Chisqr approximation): 

GROUP SUM OF SCORES 

BETA 1254.00 
MEMPOP 1751.00 
CONTROLPOP 1064.50 
RANDPOP 980.50 
CHISQR=16.99 PROBXhisqr = -0007 

Reject Ho- 

Run 2: 

Matrices = ((-4.6) (-3.9) (-5.8) (-7.5) (-2.1) 
(.3.3) (-4.6) (.5.1) (.4.7) (.4.2) 
t.9.91 (.3.5)) 

ANOVA: AMONG MS WITHIN MS 
2.62818 0.278441 
F VALUE PROB>F 
9.44 -0001 

Reject Ho. 

Duncan's MRT: 

4 El L:::::Lpop z:;: 5:::;8 

Kruskal-Wallis (Chisqr approximation): 

GROUP SUM OF SCORES 

BETA 979.00 
MEMPOP 1255.50 
CONTROLPOP 1805.50 
RANDPOP 1010.00 
Chisqr = 20.86 PROBXhisqr = -0001 

Reject Ho- 

Test 2: Values in Transition Matrix Set to 
Simulate Environment in Steady State With 
Rare Perturbations 

The same procedure as in Test 1 was used with 
the same initial populations but with a different 
initial environment and different transition 
matrices. 

Matrices = ((.l.l) (-1.1) (-9.9) (-1.1) (-9.9) 
(-1.1) (-1.2) (-1.1) (-1.1) (-9.1) 
(.1.9)) 

Results: a = .05; Ho: same as Test 1 

ANOVA: Among MS=1.09459 Within MS =0.23934 
F Value = 4.57 Prob>F=O.OOSO 

Reject Ho. 

Duncan's MRT: 

-ziz--l~l]\ 

Kruskal-Wallis (Chisqr approximation) : 

GROUP SUM OF SCORES 
BETA 1197.00 
MEMPOP 1743.50 
CONTROLPOP 1040.00 
RANDPOP 1069.50 
CHISQR = 15.32 PROBXhisqr = -0016 

Reject Ho. 

Test 3: Transition Matrices Set to Simulate 
Environment in Absorbing State (Steady 
State With No Fluctuation) 

The same procedure as in Test 2 was followed 
but with transition matrices as follows: 

Matrices = ((00) (00) (00) (00) . . . (00)) 

329 



Results: Cl= .05; Ho: Same as Test 1 
ANOVA: Among MS=41.4344 Within MS=0.366581 

F Value = 113.03 Prob>F=O.OOOl 
Reject Ho. 

Duncan's MRT: 
Group 

I 
Mean1 

MEMPOP BETA 

8.0604 7.9040 I 

CONTROLPOP 

6.1632 

RANDPOP I I 5.4596 

Kruskal-Wallis (Chisqr approximation): 
GROUP SUM OF SCORES 
BETA 1843.50 
MEMPOP 1868.50 
CONTROLPOP 997.50 
RANDPOP 340.50 
CHISQR=77.23 ProbXhisqr = .OOOl 

Reject Ho. 

DISCUSSION 

With regard to obtaining and processing infor- 
mation from an environment with constant, albeit 
rare, perturbation, the genetic model performed 
significantly less well than the cognitive model. 
The mean of its averaged population performance 
was no better than that of a control population 
with no tracking mechanism. Rank scores from the 
Kruskal-Wallis test reflected a similar relation- 
ship. Likewise, random point mutation aid not 
produce results significantly different from the 
genetic or control models. In a stochastically 
fluctuating environment, the cognitive model 
tracked significantly better than all the others, 
but at a very high price in computational over- 
head (see following discussion). 

In the third test, that of an environment 
with no fluctuation, the genetic model performed 
significantly better than the control and random 
models, and as well as the cognitive model. Hence, 
the genetic model did not appear to track an 
environment very well on a short-term basis, but 
in matching a highly stable environment, it per- 
formed, on the basis of structural information, as 
well as the model possessing the highest level of 
information concerning each individual bit. As 
can be noted from the software algorithms, computa- 
tional overhead for the cognitive model may be 
assessed as manipulating n structures times x 
bits per structure. For most applications, x 
is greater than n, giving a rough complexity 
estimate of O(n**2). This complexity is reflective 
not only of arithmetic operations, but of calls to 
the random number generator (also roughly n**2). 
The genetic model, however, retains and manipulates 
information on the basis of the structures them- 
selves, using the "reproductive" fitness as the 
selection criterion for proportion of inclusion 
in the next generation. Computational complexity 
is thus roughly O(n), and the number of calls to 
the random number generator is also O(n). As 
Holland mathematically deduces, the genetic opera- 
tors manipulate the structures so as to 1) increase 
the averaged population performance, and 2) to 
test large instances of schemata. The first con- 
sequence is structure-based information storing 
and updating. The second is bit-based, without 
demanding individual bit updating, or even a query 

concerning the status of individual bits in an 
applications-oriented measure of performance (one 
would simply measure the "performance" in terms of 
a desired property of the system). Therefore, the 
results of these tests provide empirical evidence 
in support of Holland's proposals. 

Part II. Comparisons Between and Within the 
Genetic and Cognitive Models of Changes 
in Fitness over Transitions (No Environ- 
mental Fluctuation) 

The purpose of this section of the experiment 
was to see if and how the genetic and cognitive 
models produce an increase in fitness over time. 
For all the following tests, BETA and MEMPOP were 
set to the same initial population. Transition 
matrices were set to zero. Two runs of fifty 
transitions each were made with two different 
initial environments. The averaged population 
performances were calculated for each transition 
as in Part I. The same statistical assumptions 
as in Part I were made concerning the independence, 
normality, and, initially, the homoscedasity of 
the underlying sample distribution. 

Table 2 - Comparison of Mean Averaged Performance 
Between Genetic and Cognitive Models 

Test 4: Comparison of Mean Averaged Population 
Performance Over 50 Transitions Between 
Genetic and Cognitive Models 

CX= -05; Ho: The means of the averaged pop- 
ulation performances of the two models are the 
same (or rank scores are same for the nonparametric 
test) . 

Results: 
Run 1: 
ANOVA: Among MS=10.0109 Within MS=0.410682 

F Value = 24.38 Prob>F=.OOOl 
Reject Ho. 

Duncan's MRT: 

Wilcoxon 2-Sample Test (Normal Approximation): 

GROUP SUM OF SCORES 
BETA 3335.50 
MEMPOP 1714.50 
5 =5.5840 PROB>/5/=0.0000 

Reject Ho. 

Run 2: 
ANOVA: Among MS=3.6864 Within MS=0.619144 

F Value=5.95 PROB>F=0.0165 
Reject Ho. 

Duncan's MRT: 

Wilcoxon 2-Sample Test (Normal Approximation): 
GROUP SUM OF SCORES 
BETA 2936.50 
MEMPOP 2113.50 
B = 2.8334 PROB>/5/ = 0.0046 

Reject Ho. 
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Conclusion: and its immediate predecessor as above. 

Reject Ho in both runs and conclude that the 
averaged population performance of the genetic model 
is significantly greater than that of the cognitive 
model. 

From the 2 runs of 50 transitions each, the 
change in performance between successive transi- 
tions was calculated by subtracting from each 
population performance (except the first) the value 
of the one immediately preceding it (98 
observations). a= .05; Ho: The means of the 
change in population performance between successive 
transitions are the same for both models (or rank 
scores of differences are same). 

Table 3 - Comparison of Mean Changes for Genetic 
and Cognitive Models 

Test 5: Comparison of Mean Change in Performance 
Between Successive Transitions for Genetic 
and Cognitive Models 

Run 1: 
ANOVA: Among MS=.01805 Within MS=.246721 

F = .07 PROB>F=.7874 
Do Not Reject Ho. -- - 

Group 
BETA 

Mean Difference 
.071429 

MEMPOP -044286 

Wilcoxon a-Sample Test (Normal approximation): 

GROUP SUM OF SCORES 
BETA 2491.00 
MEMPOP 2360.00 
5 = -4618 PROB>/%/ = .6442 

Do Not Reject Ho. --- - 
Run 2: 
ANOVA: Among MS=.0372255 Within MS=.422695 

F = .09 PROB>F = -7673 
Do Not Reject Ho. --~ - 

Group Mean Difference 
BETA .06 
MEMPOP -02 

Wilcoxon 2-Sample Test (Normal approximation) : 
GROUP 
BETA 

SUM OF SCORES 
2500.00 

MEMPOP 2351.00 
% = -5258 PROB>/B/ = .5990 

Do Not Reject Ho. --- - 
Conclusion: Do not reject Ho. Conclude that 
mean change in performance between successive 
transitions is the same for the genetic and 
cognitive models. 

the 

From the above analysis, it was noted that the 
MS within the groups was greater than that between 
them. In order to study the variations of the 
differences in performance within each group, a 
series of paired-sample t-tests were run on BETA 
and MEMPOP separately for both sets of the SO- 
transition data. In computing change over time, 
"lag" is defined to be the number of transitions 
between the two environment states for which the 
population performances are being subtracted. For 
example, lag 1 is the difference between a value 

Table 4 - Differences in Performance Within Groups 
Test 6: Paired Sample t-test for Individual Group 

Change in Performance (Lag=l) 
Ct= .05, Ho: The mean difference between 

successive performances is 0 for the group under 
consideration. 

GROUP RUN 1 RUN 2 
BETA t=1.16 Prob>/t/=.2518 t=.91 Prob>/t/=.3696 
MEMPOP t=.56 Prob>/t/=.5788 t=.18 Prob>/t/=.8585 

Conclusion: For all cases, do not reject Ho. Con- 
clude that the mean change in performance between 
immediately successive transitions is not signifi- 
cantly different from 0 for both the genetic and 
cognitive models. 

Test 7: Effects of Different Lags on Significance 
of Change in Performance (Paired Sample 
t-test) 

Ct= -05, Ho: A lag of X units has no effect 
on change in performance between transitions 
(change = 0). (lag steps not given were not signi- 
ficant up to the final one) 

RUN 1 RUN 2 
GROUP LAG# t Pr>/t/ LAG# t Pr>/t/ 
BETA 3 1.57 -1226 3 1.73 .0907 

5 2.14 .0382 S 
12 1.97 .0567 
15 2.06 .0467 S 

MEMPOP 21 -1.56 -1301 9 - -69 .4955 
23 -1.24 -2267 20 -2.30 -0291 s 

(in negative 
direction) 

*S means significant 

Conclusion: Conclude that a smaller amount of lag 
time is required for the change in performance to 
be significant for BETA than for MEMPOP. Also, 
the t-statistic was in the positive direction for 
BETA indicating net improvement, whereas it was 
negative for MEMPOP indicating net deterioration. 

SUMMARY AND CONCLUSIONS 

This experiment consisted of two major 
sections: 1) model performance in stochastically- 
changing environments with varying rates of 
fluctuation, and 2) model performance in a non- 
changing environment. 

In the first case, it was concluded that the 
genetic model performed poorly in tracking the 
changing environments even when the rate of 
fluctuation was slow. Indeed, it aid Rio better 
than simple chance (the control model). Likewise, 
the random point mutation model fared no better, 
although it has been used to introduce stochastic 
and, as is hoped, eventually progressive change in 
the performance of adaptive systems, in fields 
from traditional biological evolutionary theory 
to checkers-playing programs. The cognitive model, 
as was expected, performed significantly better in 
tracking the environment, but at an unrealistic 
computational cost. It would appear that none of 
these models offers any gain over established AI 
routines in tracking independent components of a 
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stochastic environment. 

Many real-world stochastic environments, how- 
ever, are not composed of independently-varying 
components. Information about the change in one 
component can be used to predict caused or corre- 
lated changes in another. The description of these 
relationships is the goal of empirical sciences, 
and may be considered in this example to be a 
statistical extension of the cognitive model. Yet 
it is often not the individual components or even 
their relationships which concern us, but their 
collective mean states over time, which may be 
termed the "pattern" of the environment. Whereas 
the cognitive model may perform "well enough" on 
a component-sampling basis for pattern tracking, 
the genetic model actually outperforms it when the 
pattern is completely consistent over even a few 
transitions (note the results in Part II). At the 
same time, the genetic model does not discard 
sources of new schemata when an optimum is obtained, 
allowing for recovery over another set of absorbing 
transitions when the pattern is altered in a 
realistic, correlated fashion. In contrast, it is 
possible for a component-sampling model to lock into 
a present optimum that was maintained over suffi- 
cient transitions: the probability for change 
would become miniscule. In particular, note the 
results of the Part II lag tests -- the initial 
performance level was maintained with very little 
variation. 

One area of current software development for 
which these findings have special significance is 
that of voice recognition and synthesis. Again, 
the concern is with an overall pattern in the 
collective mean states of phonemes, not in their 
individual variation. A population of structures 
consisting of variations in specific phoneme 
enunciation (alleles) might be maintained and 
genetically manipulated to quickly and accurately 
match incoming phonemic constructs. A wider 
range of enunciation variability could be tolerated 
with a level of accuracy at least as good as 
individual component sampling at much less the 
computational overhead. 

There are also implications in the field of 
population and evolutionary biology for these 
findings. It has recently been postulated that 
evolution occurs in spurts, rather than with a 
steady progression (1). "Missing links" have been 
found for very few species. As can be discerned 
from the lag data below for the genetic group (BETA) 
large lljumps" in performance change occur over very 
small transition increments. A steady state is then 
achieved, with another "jump" then occurring. 

RUN 1 

Lag No. t Pr /t/ 
1 1.16 -2518 
3 1.57 .1226 
7 1.66 -1036 

jump 
r 

8 1.73 -0906 

10 1.97 .0563 
11 1.94 -0593 
12 1.97 -0567 

RUN 1 (continued) 

Lag No. t Pr /t/ 

c 
13 1.91 -0644 

jump 14 1.94 -0607 
15 2.06 -0467 

RUN 2 
Lag No. t Pr /t/ 
l-l .91 -3696 

jump L P 3 1.73 -0907 
jump t 5 2.14 .0382 

A caveat must be issued concerning the high 
level of abstraction of this model and its use of 
the simplest, and by no means only, genetic opera- 
tors. However, observance of such a sequence of 
change even at this level is significant and 
warrants further refinement and testing of the 
model. 

Secondly, most species in a consistent 
environment evolve toward "specialization", in 
which they occupy a very narrow niche. Catastro- 
phic perturbations (as in the fluctuating environ- 
ments of Part I in which components are often 
inversed) doom the most highly specialized. In 
the above genetic model, information processing 
and integration into the population base was too 
slow to track such an environment above mediocre 
performance. In a consistent environment, how- 
ever, the genetic model evolved toward and main- 
tained a set of highly similar, suitably matching 
structures. Random point mutation proved fruit- 
less in all instances. This model may thus provide 
the basis for a suitable abstraction of population 
evolution and niche occupation. 

In his book, Holland lists numerous other 
areas of possible application, as well as specific, 
concrete models that have been developed based on 
genetic operators. It is the authors' hope that 
the presentation of software and empirical data 
supporting Holland's model may motivate further 
interest in this area. 
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