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Abstract 

This paper presents the results of comparing three control 
strategies for expert systems: event driven, expectation driven, and 
goal driven. Three different versions of a pulmonary function 
analysis system (PUFF) were implemented, each with a different 
control strategy. The systems are described and compared for 
efficiency and naturalness. The advantages and disadvantages of 
each strategy are discussed. The reasons why one approach, the 
expectation-drive strategy, is best suited for the PUFF application 
are summarized. 

I. Intrsductiorl 
Three versions of the PUFF pulmonary function analysis system 

are compared here, each using the same domain knowledge 
(represented as production rules) but different control strategies. 
The purpose of this research is to analyze these control strategies 
and the resulting programs and to examine what knowledge the 
knowledge engineer has or needs when choosing a control strategy 
for a new expert system. 

The three different control strategies are described briefly as 
follows. Event driven (also called data driven) consists of input 
data or earlier events that lead to the invocation of rule sets that 
generate further events. With a Model driven strategy, the system 
matches the current “state of the world” against disease models to 
generate expectations. Further actions are taken based on 
expected symptoms. Backchaining is a goal-driven strategy in 
which a goal rule invokes all the rules whose conclusions are 
referenced by the conditions of that goal rule. These rules in turn 
invoke relevant rules in a chain until rules that reference only the 
input data are reached. The three PUFF systems were developed 
using the AGE system for building expert systems. A user of AGE 
can define production rules about a particular domain, set up a 
basic structure for a solution space, and then experiment with 
different control strategies to find one that best fits the problem. 

There are several dimensions along which the best fit can be 
determined, both subjective and objective. Subjective 
rn-asurements include an indication of how natural the knowledge 
represented and the output of the program seem to the expert. 
Objective measurements are speed and accuracy in terms of the 
total number of rules evaluated or comparisons with the physician’s 
diagnosis. 

1 .l. PUFF Tasks 
The basic task of PUFF is the interpretation of pulmonary fUrdOn 

tests. These standard tests include measuring lung volume, that is, 
the volume of air and the rate at which it can be forcibly exhaled and 
the capacity to inspire a !arge volume of air. These and other 
laboratory measurements, as well as data about the patient’s history 

and referral diagnoses are interpreted by production rules. The 
result is a set of interpretations and conclusions and a pulmonary 
function diagnosis, similar to those a doctor would produce, given 
the same initial data. The original PUFF system (Kunz et al., 1978) 
was a rule-based system that was designed with the EMYCIN system 
(van Melle, 1980) for building expert consultation systems. 
CENTAUR (Aikens, 1980) is yet another version of PUFF, using 
frames to represent prototypes of particular diseases and subtypes. 
The three versions of PUFF compared for this experiment use the 
same domain rules as the original PUFF system. 

1.2. AGE 
AGE (Nii et al., 1979), which stands for Attempt to GEneralize, is a 

collection of tools and partial frameworks for building expert 
systems. In the examples presented in this paper, we have exploited 
several AGE features. We were able to experiment with various 
designs and control strategies using the same domain knowledge. 
For the purposes of this experiment, we tried to use the same rules, 
data structures, and input data as far as possible for each system. 
Only the control strategies were varied. Initialiy, we implemented 
PUFF as a blackboard model (Erman et al., 1975) with a very simple, 
event-driven control strategy. It was made into an expec&il:n 
driven system by adding a few rules for the initial diagnosis model 
and converting other rules to generate expectations for pulmonary 
diseases and their typical symptoms. Finally, we added a goal rule 
and one new attribute in the data structure to allow for the bz;kwnrd 
chaining of the domain rules. 

2. Description of the Programs 

2.1. Event-driven 
The event-driven version of PUFF, AGEPUFF, has a simple 

blackboard data structure to store the intermediate and final results. 
There are two levels, the PATIENT level and the DISEASE level. with 
three instance nodes on the DISEASE level: OAD (Obstructive 
Airway Disease), RLD (Restrictive Lung Disease), and NORMAL. An 
initial set of rules (termed a knowledge source in AGE) looks at all 
the data (the test measurements) and records what tlrose 
measurements indicate on the blackboard. Each action of 
recording something on the blackboard is called an event. When all 
of the relevant rules in the initial knowledge source (KS) trave been 
evaluated, a user-specified selection method chooses one of those 
events to use as a focus. This focused event is then matched 
against the preconditions of all the knowledge sources, and the one 
whose precondition matches the focused event is invoked next. As 
an example (see Fig. 2-l), events that indicate some conclusion 
about the degree of OAD trigger a KS (OAD-SUBTYPERULES) that 
tries to determine the OAD subtype (Emphysema, Asthma, or 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



Bronchitis). In other words, the events are driving the order in which 
KSs are evaluated. This process is repeated until some termination 
condition is met. 
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Figure 2- 1: AGEPUFF knowledge sources 

(with circled nodes indicating knowledge sources). 

The following is an example of a rule from the event-driven PUFF 
system. 

if (UETWFEN* ($DATA SLOPE:F!jO/FVC) 22 32) 
then PROPOSE ev.type OAD-DEGREE ch.type 

MODIFY hypo-element 'OAD 
attr-value (DEGREE '(MODERATE .5)) 
(FINDINGS ‘((FE1025 *F5025* ) 1.01 

If the condition of this rule is true, the DEGREE and FINDINGS 
attributes of OAD will be updated on the blackboard, generating an 
event of type OAD-DEGREE. This event is added to a list of events 
and becomes the focus event on a last-in, first-out basis. A 
knowledge source with a precondition of OAD-DEGREE can then be 
invoked, and OAD would become the focus node. 

2.2. Model Driven 
AGEPUFFIMODEL is the name of the model-driven version of 

PUFF implemented in AGE. It uses the expectation control strategy 
available in AGE to set up models of the pulmonary diseases. The 
initial diagnosis rules check a limited number of crucial data items 
and make an initial, broad diagnosis. AGEPUFF/MODEL then 
attempts to substantiate the initial hypothesis with a few more data 
items of secondary importance. If the diagnosis is still credible, a 
set of further model-based expectations is generated for 
corroborating evidence. AGE compares the expectations with input 
data and partial hypotheses on the blackboard. Figure 2-2 shows 
the organization of the knowledge sources for the expectation- 
driven model. 

The models of OAD and RLD help to focus the interpretation of 
the input data. For example, if a patient has a total lung capacity 
greater than 120 percent of the normalized value for his size and 
age, it is very likely that he has OAD. So, instead of checking all the 
available test data, as in the event-driven example, 
AGEPUFF/MODEL looks first, and possibly only, at other indicators 
of OAD. If enough other indicators (test data, calculations, patient 
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Figure 2-2: Expectation driven organization of AGEPUFF/MODEL. 

history, and referral diagnosis) agree with the OAD diagnosis, then 
the actions that reinforce the initial conclusion are taken; which in 
turn generate events that trigger knowledge sources about OAD 
reversibility and OAD subtypes. 

The following is an example of a rule from the model-driven 
system. 

if (EQDEG* ($VALUE 'OAD DEGREE) MODERATE) 
then EXPECT expr (BETWEEN' ($DATA 

SLOPE:F50-F25/fVC) 22 32) 
actions (PROPOSE ev.type OAD-SUPPORT 

ch.type MODIFY hypo-element 'OAD 
attr-value ((DEGREE (MODERATE .5)) 
(FINDINGS '((F6025 *F5025*) 1.01 

EXPECT expr (GREATERP" ($DATA FVC/FVC-PRED) 
80) (BETWEEN* (DIFFERENCE ($DATA 
FEVl/FVC) ($DATA PRED:FEVl/FVC)) 
-25 -15) 

actions . . . 
EXPECT . . . 

When this rule is executed, several expectations are generated. 
The expectation expressions (expr) are evaluated in a last-in, first- 
out order and, if true, the actions are taken. These actions can 
generate events, just as in the event-driven system. 

As noted above, the expectation-driven approach is really a 
combination of an event and expectation strategy. No system can 
function on expectations alone. Events are used to generate 
information for the expectations and to act when an expectation is 
met. 

2.3. Backchaining 
The backchained version of PUFF, called PUFFIBC, has or,ly one 

knowledge source. All the PUFF rules are combined into one large 
knowledge source. The rules are chained by looking at the 
conditions of the goal rule and then searching for other rules whose 
actions might provide values for the goal rule’s conditions. This 
imposes a more restrictive syntax on the conditions of rules than in 
the event-driven or expectation-driven approaches. The backward 
chaining process requires that the conditions be written as 
predicates, with explicit object and attrlbute names. (In the other 
two systems, the predicates can be arbitrary LISP expressions.) 
AGE automatically chains the rules by searching for rules whose 
actions reference the same object-attribute pairs as the conditions 



of the goal rule. This chaining process is repeated, with the rule 
whose actions referred to the desired object and attribute becoming 
the next subgoal rule, until conditions are rxeached that only 
reference input data. 

Figure 2-3: Organization of knowledge sources for Backchaining. 

An example of a rule from the PUFF/% system follows. 

if (UErWEEN* DATA SLOPE:F50-F25/FVC 22 32) 
then object OAD attribute-value pairs (DEGREE 

('MODERATE .S))(FINDINGS ((F5025 *F5025* 1.01 

in this case, the value of the attribute SLOPE:F50-F25/FVC of the 
node DATA will be passed on as an argument to the predicate 
BETWEEN*. When this rule is evaluated, rules referring to DEGREE 
and FINDINGS of OAD in their predicates can be evaluated next. 

3. Results of Comparing the Three 
Strategies 

3.1. Speed 
The three control strategies were objectively compared for 

efficiency by measuring the number of rules tested, the number of 
rules executed, the number of input data items referenced, and the 
number of references to the blackboard or internal data 
representation in the backchained strategy. Table 3-l shows the 
average results for the three strategies for a small sample of actual 
cases with diagnoses that range from mild to severe cases of 
disease categories OAD, RLD, and NORMAL, and various 
combinations thereof. There was very little deviation from the 
average for each measurement. 

From this objective measurement it is clear that the model-driven 

strategy does less testing and refers less often to data than the other 
two strategies do. The ability to focus initially on the most likely 
diagnoses eliminates the need to test rules for other diagnoses. A 
few more rules are executed in the model-driven and goal-driven 
strategies to set up the expectations or goals. The goal-driven 
strategy has the most references to internal data because every 
predicate refers to an object-attribute pair, each rule may have 
several predicates, and all the rules are tested for each run. 

3.2. Accuracy 
Accuracy was measured as agreement with the doctor’s 

conclusions, based on the statements PUFF is capable of 
producing. When the strategies are compared by the number of 
correct interpretations and diagnoses, the event-driven and goal- 
driven strategies are slightly more accurate than the model-driven 
strategy. Given odd or marginal data, the model-driven StrateClY may 
produce incomplete interpretations. It will not produce incorrect 
statements, however. The event-driven strategy is initially data 
driven and therefore responds to each data item, odd Or normal. 
The goal-driven strategy evaluates all of its rules, independent Of the 
particular input data. In other words, the event-driven and goal- 
driven strategies will produce all conclusions derivable for a given 
set of input data. But the model-driven strategy will produce only 
conclusions compatible with its initial diagnoses and wil produce 
results derivable from the models for those diseases. 

3.3. Naturalness to the Expert 
Accuracy can also be evaluated subjectively in terms of the 

naturalness of the knowledge represented and the output. A 
knowledge representation that seems natural to the expert 
facilitates knowledge acquisition from the expert and 
comprehension of the system by the expert. A natural output 
includes the order in which interpretations are generated: They 
should be produced in an order similar to that produced by the 
expert. 

3.3.1. output 
The order of the output of interpretations in all three PUFF 

systems is determined by the order in which those interpretations 
are concluded. We compared these orders with the interpretations 
from the original physician’s reports. For each case, the number of 
items out of order was calculated by counting the minimum number 
of moves required to reproduce the doctor’s order. output 
generated by the model-driven system always had fewer findings out 
of order. The event-driven system had the next fewest out-of-order 
items, and the goal-driven system had the most. This result was not 
unexpected, since the model used by AGEPUFF/MODEL is based 
on the doctor’s order of reasoning from pulmonary test 
measurements to pulmonary disease diagnoses. The backchained 
system produced the most items out of order because the order of 
execution of the rules is determined by the chaining of attributes. A 
rule is executed because another higher goal rule needs the value 
of one of its concluding attributes, but all other conclusions of that 
rule will be made at the same time, even though those conclusions 
are not required until later in the processing. 

3-3-2. Knowledge Representation 

The domain knowledge used by each of the three control 
strategies is basically the same. All three use production rules to 
rePresent the domain knowledge. They differ in how those rules are 

Table 3- 1: Measured Comparison of Three Controi Strategies 

Strategy rules tested rules executed input data internal data 

event-driven 60.4 12.6 80.4 54.4 
model -driven 35.5 14.5 47 48.5 
goal -driven 68 14 76 128.8 



organized. In the event-driven approach, the rules are divided into 
sets called knowledge sources. A knowledge source is invoked 
when its precondition matches the event type of the focused event. 
The model-driven system also has sets of production rules, but 
some of those rules create expectations instead of generating 
events. The expectations (in this case, a set of ranges for data 
values to support the focused initial diagnosis) are matched against 
input data and the partial solution stored on the blackboard, before 
further KSs are invoked. If an expectation becomes true, it becomes 
the new focus. In the backward-chained system, the rules are not 
stored in any particular order or grouping. The order of evaluation 
and the focus are determined at run time by the backward chain 
from the goal rule. 
3.4. Advantages and Disadvantages of Each Strategy for 

implementing PUFF 
The event-driven control strategy is robust; it considers all of the 

inpuf data, and tries to follow through on every event generated. 
Because of this thoroughness, it worked correctly even in the 
presence of unusual and incomplete data. However, the event- 
driven approach can bc nonconvergent. Event-driven systems can 
only produce conclusions derivable directly or indirectly from the 
input data. They cannot focus on or direct the search toward a 
desired solution. 

The expectation-driven model is usually more efficient than either 
of the other two examples. It can focus on important factors and 
come immediately to the correct conclusions for most cases. 
However, odd or conflicting data, that do not fit the model will cause 
problems. Thus, a disadvantage of the model-driven paradigm is 
that the correct solution depends heavily on the correct model and 
initial focus. If the system begins by focusing on an incorrect 
diagnosis, it will check only the data that are relevant to ihat wrong 
diagnosis. Data indicative of another diagnosis would be ignored. 
The importance of the correct model was demonstrated during the 
implementation of AGEPUFFIMODEL. The first model implemented 
worked correctly for extreme indications of OAD and RLD but 
expected everything in between to be normal. The normal 
expectations were correctly unconfirmed, but the system could not 
go back and correctly diagnose mild or moderate OAD or RLD. 

The backchain example has several advantages. First of all, it is 
simple for the user to understand and it lends itself to easy 
explanation of its reasoning. At each step of the execution, the next 
step is predetermined. The rules will always be evaluated in the 
same order, regardless of the particular input data. However, this 
does make the backchaining approach inefficient. Many of the rules 
in the backward chain may be totally irrelevant for a particular set of 
input data values, especially normal, healthy values. It cannot focus 
on particular data items in different sets of input data because it has 
no mechanism for deciding what is important and what is not. The 
goal of diagnosing pulmonary diseases is the same for every case, 
for every set of test data. 

4. Conclusion 
All three approaches use a divic!e-and-conquer approach to 

solving the PUFF problem, but they differ in how the domain 
knowledge is divided. In the event-driven system, knowledge is 
divided by its association with the input data. A particular value of 
an input data item can cause a rule to conclude the presence or 
severity of a disease. That disease then becomes the focus for the 
next set of rules (KS) evaluated. Or several input data items can 
together cause a rule to conclude a new value for some item on the 
blackboard that then becomes the new focus. The focus of the 
system stays with a particular input data item, and all conclusions 
based on it, until there are no more KSs to draw further conclusions. 

The expectation-driven system organizes its knowledge around 
its disease models, the expected symptoms associated with each 
disease. The focus of the system varies with the initially 
hypothesized diagnosis. This focus is much stronger than that of 
the event-driven system. In most cases, the system considers only 
one or two diseases, making all possible conclusions about one 
disease before considering the alternatives. In the event-driven 
approach, each individual input data item could trigger a short 
focus on a particular diagnosis, with support building with each 
additional focus on the same diagnosis. 

The goal-driven strategy is focused by the backward chain 
connecting the production rules. It looks at data relevant to the goal 
rule’s conditions and thus focuses on each disease, present or not. 
In the event-driven and goal-driven approaches, all of the input data 
have the same importance. In the model-driven approach, some 
data items are more important than others. Input data used by the 
model to generate initial diagnoses are always referenced; data 
items referring to diagnoses not in the initial hypothesis may be 
ignored. 

The characteristics of the PUFF problem that make it a good 
application for an expectation-driven control strategy include: 

1. A large amount of input data. 

2. A small solution space (three possible diseases plus a small number of 

subtypes). 

3. A simple model for initial hypotheses. 

Applications with similar characteristics are signal processing and 
other diagnostic problems. Other systems written in AGE using the 
expectation-driven control strategy include AGE-WI, a ventilator 
management system (Fagan, 1980), and GEO, a geological data 
interpretation program. Each new application is likely to have 
slightly different characteristics from the last, so it is not reasonable 
to expect one control strategy to satisfy everyone’s needs. 
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