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Abstract 

User interfaces to expert systems represent a 
bottleneck since consultation time is proportional to the 
amount of information the system asks the user to sup- 
ply. An efficient, rather than exhaustive, strategy to 
direct user questioning will reduce consultation time and 
effort. An intelligent strategy to minimize questioning, 
the merit system, has been successfully implemented in 
Battle, an expert consultant system developed for the 
Marine Corps. The merit strategy enables Battle to focus 
the consultation process on the most meritorious ques- 
tions allowing the military commander to respond 
quickly awith the most pertinent information The merit 
system, originally defined for logical functions in the 
iVultiple program, has been extended to the Mycin style 
of propagation and to the method of subjective Bayesian 
assignments used by Prospector. A procedure for merit 
calculations with any differentiable, real-valued ass;gn- 
ment function is presented. Our experience has shown 
that merit values provide an efficient flow of control for 
expert consultation, 

I Introduction 
This paper reports on the consultation control stra- 

tegy of a computer based intelligent decision aid system 
called Battle [lo], developed for the United States 
Marine Corps. The objective of Battle is to improve the 
Marine Integrated Fire and Air Support System (MIF’ASS) 
by providing timely recommendations for the allocation 
of a set of weapons to a set of targets. 

In a time -critical expert consultant system, the 
consultation must be quick yet relevant to the decision 
being made. Many military expert consultant systems 
are time-critical, for example, systems such as Battle 
that allocate weapons to targets. Other time-critical mil- 
itary systems would include systems for classifying 
images, submarine combat systems, multisensor infor- 
mation integration systems, and operational planning 
systems. An expert system in mineral exploration, for 
example Prospector [2], is not time-critical since the 
mineral being sought has been in the ground millions of 
years and will not go away soon. Some expert systems in 
medicine are not time-critical, !!ycin [4] for example, 
but an emergency system would be. 

When a system such as Mycin or Prospector ques- 
tions the user, it uses a depth-first (local) search stra- 
tegy. It will persist with a line of questioning that has 
become seemingly irrelevant. However, when a time 
critical expert consultant system is questioning a user it 
is essential that it asks questions that are highly 
relevant and quickly answered. Ideally it would use a 
best-first (global) strategy. The user of a time-critical 
system may know he has only five minues to make a 
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aecision. He would become highly frustrated with a sys- 
tem asking seemingly irrelevant or time consuming 
questions when he knows there are better questions to 
be asked. When expert consultant systems have 
thousands rather than hundreds of rules even non-time- 
critical systems will need some means of asking relevant 
and quickly answered questions, The merit system 
presented in this paper allows an expert consultant sys- 
tem of the Battle, iVytin, or Prospector type to ask ques- 
tions in a best-first manner. 

User interfaces present a bottleneck for most 
expert systems; consultation time is roughly propor- 
tional to the number of questions directed to the user. 
Older consultant systems generally follow an exhaustive 
depth-first network traversal to direct the consultation 
process that could ask hundreds of questions of which a 
handful would be really pertinent. A system that asks 
only pertinent questions, however, allows substantial sav- 
ings of time by avoiding unnecessary questioning. The 
Battle decision aid [5] uses the merit system, a best-first 
strategy, to direct its consultation sessions efficiently. 
This is quite important for time critical applications such 
as the U.S.Marine Corps commander using the Battle 
weapon assignment program in combat. 

II Other Expert System Consultation Strategies 
Expert systems such as Battle, Mycin, and Prospec- 

tor represent knowledge as a set of propositions. Each 
proposition has a value representing its likelihood. A 
proposition may have antecedent propositions from 
which its value may be inferred, and may itself be an 
antecedent of consequent propositions. We call the 
numerical dependence of the value of a consequent pro- 
position on the values of its antecedents the assignment 
&n&ion of the consequent. A proposition with no conse- 
quents, called a top proposition, represents the result of 
the inferencing process. The data from which the result 
is calculated are represented by u&able propositions in 
the network, whose values may be supplied by the user. 
Other propositions in the network, whose values the user 
is unlikely to know, are unaskable. Typically top propo- 
sitions are unaskable. 

The distinction between askable and unaskable pro- 
positions is not always clear, since users differ in exper- 
tise and different information is available in different 
instances. An askable proposition may have antecedents 
and an assignment function for those cases when the 
user cannot supply its value. 

Several techniques have been adopted to try to 
optimize the expert consultation process within the 
framework of a depth-first traversal. The simpler of 
these methods generally eliminate questioning about any 
node whose final value is established. The MARK IV 
control strategy of Prospect07 [2] first chooses a prop* 
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sition for consideration whose antecedents are then 
evaluated by a function The MARK IV control strate,v 
apparently works well for the Prospectrn- system. It 
suffers from several shortcomings : 

1. Optimization is within the framework of a depth-first 
traversal. A node, once traversed by the depth-first 
mechanism, will never be reconsidered. 

2. The node selected may not be the optimal proposi- 
tion for consideration within the entire network. 

3. The four criteria evaluated by the function do not 
identify the antecedent with the largest potential to 
produce changes in the consequent probability. 
The Casnet (causal-associational network) system 

[14] provides a more extensive search of the inference 
network than does the Prospector MARK IV strategy and 
considers costs as well. The two control strategies used 
by Cm-net are : 
1. Selection of the node with the maximum weight-to- 

cost ratio, and 
2. Selection of the node with the maximum weight 

subject to certain constraints on cost. 
Cusnet concentrates on nodes that seem to be most 

consistent with the remaining nodes in the network. 
Since the objective of expert consultation is to infer the 
value of a top proposition or propositions, a more 
appropriate estimate of the weight of a node can be 
determined by its potential infiuence on a top proposi- 
tion. The merit control strategy of the Battle system 
assigns a weight to each node corresponding to its ability 
to alter the value of a top proposition. 
III. The Multiple Contrd Strategy 

Multiple (MULTIpurpose Program that LEarns) has 
been implemented for the game of K&ah and for 
theorem proving [7]. With a two step algorithm, Mu.MpLe 
uses merit values to select the next proposition using 
merit values : 
1. The system s5[rrous from an untried proposition with 

the largest merit value on its proposition tree and 
calculates merit values for all its children. 

2. At each level only the best merit value is buck& up 
to the top proposition. At the top level, the untried 
proposition with the highest merit value is 
identified. 
Assume that there exists a proposition tree with a 

top proposition G, and antecedents Gi. Each Gi may 
have antecedents designated Gu. Each subscript indi- 
cates an additional level down the tree. The values 
stored at G, Gi, and G, are named P, Pi, and P,. 
Each value P is given by the assignment function 
f(PlJ% * * ’ Pn) applied to its antecedent values Pi. 
The merit of an untried proposition Gij,..et is defined as : 

Merit Viue of G G...st E ap 
I I a(Cij...d> 

3.1 

where ZIP is the change in the value (generally, but not 
restricted to, a probability) of the top proposition G, 
and a(Cij...st) is the cost of expanding the untried 
proposition Gij...d. Both positive and negative values are 
equally significant. The merit of proposition H is the 
expected ratio of two terms if H is expanded: 
1. The absolute value if the change in value of the top 

proposition. 
2. The cost of expanding H. 
Thus expanding a proposition with maximum merit 
should lead to good results. 

A more useful form of the 
application of the chain rule 

merit formula is 

/a(cyJ / =I*%$~ *. 

a(Pij...st) 

a(cij.. st> / . 3.2 

The last factor, called self-merit, introduces cost con- 
siderations. The self-merit of proposition Gii,, st is a 
measure of the expected change in the proposition’s 
value P,.,s, with respect to the cost of considering that 
proposition, CV...~~. Each of the remaining factors in 
the chain rule expansion is called an edge-merit. It 
measures the change in the value of a consequent propo- 
sition due to the change in the value of an antecedent 
proposition. An edge-merit value for a specific 
antecedent/consequent pair may be calculated by 
evaluating the derivative of the assignment function 
associated with the edge linking that pair. 

Multiple algorithm merit calculations require time 
proportional to tree-depth since the merits of only the 
newly sprouted propositions need to be computed and 
backed up. Merit calculation is completely analogous to 
moving up a tree of winners. 

IV Merit In Au Inference Network 
The most meritorious propositions in a network are 

those propositions that are likely to have the most cost- 
effective influence on a top proposition. Using the I&.-Jti- 
pie algorithm, Battle explores the most meritorious pro- 
positions until it encounters an askable one. The user is 
prompted for a value for this proposition. After receiv- 
ing this information or discovering the user cannot pro- 
vide the information, the system proceeds to discover 
the next unasked, askable proposition of highest merit. 
Such a process is iterated until no more propositions 
remain with a merit greater than some cutoff value. 

The cutoff merit value is a user-defined parameter 
used to limit the number of questions asked. A cutoff 
value does not alter the order of questioning. The user 
may vary this value during the consultation process. 
Consultation continues only while a proposition whose 
merit value exceeds the cutoff can be found. 

Merit values are calculated for a small set of nodes 
with a common parent in each sprouting operation. 
These values are maintained in a tree of winners, and 
each newly calculated value is compared to the best 
values from all previously traversed nodes. The merit 
system thus allows an unconstrained network traversal 
that moves to a most meritorious node wherever it may 
be in the network. 

We recognize this traversal may be disconcerting to 
a naive user, but then exhaustive questioning may be 
tedious or even dangerous to a military commander with 
a time-critical task to execute. It is a tradeoff between 
time to question and the apparent completeness of the 
questioning. When it is more desirable to question the 
user thoroughly on a specific topic before moving on to 
the next issue the user should order a depth-first traver- 
sal. V Self-Merits 

How is a merit value determined? Two processes 
are involved: assignment of a self-merit value and calcu- 
lation of the edge-merits, The product of the edge- 
merits and the fInal self-merit along a path from the top 
proposition to a node provide the merit value of the node 
(see equation 3.2). 

Assignment of self-merit values to nodes is initially 
the responsibility of the network designer (domain 
expert). Large self-merit values should be assigned to 
nodes whose parameters are easily specified by a user 
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(low cost), and whose value is likely to change a great 
deal. Self-merits of unaskable nodes should reflect the 
expected change in the node’s associated value with 
respect to the cost of calculating that node’s value or 
expanding the traversal to its antecedents. 

Several sets of self-merits to describe accurately 
the benefit/cost ratio for examining various nodes by 
different subsets of users may be needed. It is irnpor- 
tant that self-merits be assigned reasonable values 
relative to each other in the initial implementation. 
After a consultant system has been running for a reason- 
able period of time, empirical data may yield self-merit 
values. Although the self-merits are generally assigned 
in an ad-hoc fashion, our experience has shown that it is 
beneficial to use precise mathematical formulas to com- 
plete the merit value calculation. Some edge-merit for- 
mulas are derived in the following sections. VI Logical 
Flmction Edge-Merits 

A consequent whose truth is contingent on 
verification of all its antecedents is the logical AND of 
those antecedents. In a general probabilistic approach, 
assuming all antecedents are independent, the AND 
function may be described as : 

P(H) = P(EJ P(E2) . * * P(E,) 6.1 

The probability assigned to a consequent, H, given the 
current probabilities for each of its antecedents, Gj 
fa;.&- ’ ’ n), is the product of those antecedent pro- 

. Differentiating the consequent probability 
with respect to a single antecedent and substituting 
back from equation 6.1, the formula for AND-edge-merit 
is derived as : 

ma - Pm) 
aP(Ej) P(Ej) 

6.2 

Equation 6.2 depends on the values of only the 
antecedent/consequent pair of the edge in considera- 
tion. This is a most convenient form to express edge- 
merit calculations. 

An OR function is logically true when any of its 
antecedents are true. Again assuming the independence 
of antecedent values, the probabilistic OR function may 
be written as : 

P(H) = 1 -[1 -P(E,)] . . . [l -P(E,)] 6.3 

The consequent probability is the complement of the 
product of the complements of all current antecedent 
probabilities. Differentiating with respect to an individual 
antecedent, and substituting back from equation 6.3, the 
OR-edge-merit is found to be : 

iii?gy=is& j i 6.4 

It may be shown that both the AND-edge-merit and the 
OR-edge-merit approach finite limits as P(Ej) 
approaches 0 or 1. 

In a probabilistic scheme, the logical NOT may be 
defined as : 

P(H) = 1 - P(E) 6.5 

Although not required for choosing among antecedents 
(since such an edge has but one antecedent), the NOT- 
edge-merit becomes important in networks with multiple 
conseouents of cropositions (see section 8). 
VII Subjective ayesian Edge-Merits 

Prmpector uses a subjective Bayesian method of 
assignment [l], relating each antecedent to its conse- 
quent as an independent piece of evidence. When the set 
of top propositions is mutually exclusive and exhaustive, 
the subjective Bayesian method is not practical [3]. In 

general, however, subjective Bayesian assignments pro- 
vide a useful method for the evaluation of evidence by an 
expert consultant system. A brief review of the subjec- 

tive Bayesian method as well as a derivation of the eee- 
merit for that assignment procedure is now presented. 

Assume that there exists a hypothesis, H, and n 
independent sources of evidence Ej (for i = 1, . . . , n) 
that may either support or deny the hypothesis. The 
hypothesis H is called the consequent of each E jv and 
each Ej is an antecedent of H. We suppose that for 
each antecedent Ej the current (probability) value 
P(Ej), the prior probability Po(Ej), and prior probabili- 
ties P(H 1 E j) and P(H ] Ej) of the consequent given the 
antecedent and its negation are known, and that the 
prior probability PO(H) of the consequent is known We 
summarize the procedure derived in [I] for calculating 
the current probability P(H) of the consequent. 

The probability estimator P j (H) of the consequent 
given the current value of Ej is calculated by linear 
interpolation between the known values. 

Pj(H) = PO(H) + Mj(P(Ej) - Po(Ej)), where 7.1 
, 

PO(H) -PtHIEj) 

PdEj) 
if P(Ej)sPo(Ej)n 

Mj = ’ 
PO(H) -P(HIEj) 

7.la 

P dEj)-1 
if P(Ej)>Po(Ej). 

‘ 

The probability estimators are combined more con- 
veniently by transforming them to odds estimators. The 
combined odds G(H) of the consequent is transformed 
to an expression of P(H) in terms of Pj (H) and P c(H). 

may 
The edge-merit for subjective Bayesian 
be expanded with the chain rule as 

assignment 

aP(H)= d P(H) aO(H) Ot Oj(H) aPj(H> 
aP(Ej) 

7e2 
d O(H) aOj(H) d Pj(H) aP(Ej) ’ 

The first and third factors of Equation 7.2 may be 
simplified by differentiating the odds equation (see [ ;1] 
for details). The second factor in the edge-merit expan- 
sion mav be found bv differentiation of the combined 
odds eq;ation [ 111. since all factors except Oj(H) are 
constant with respect to Gj(H). The final factor of the 
edge-merit expansion corresponds to the slope M j of the 
linear interpolation in Equation 7.1. Substituta these 
yields the edge-merit for subjective Bayesian assign- 
ment, 

7.3 
= (1 -P(H)) J'(H) 4 

(1 - Pj (HII P j(H) 

Some boundary conditions in this formulation are 
notable. If Pi(H) approaches zero or one, the value of 
the edge-merit will approach a finite limit, although it is 
undefined at the limit points. In practice, a small offset 
of Pj(H) will simplify the calculation. Also, the slope -Vj 
is discontinuous at P(Ej)=Po(Ej). Currently, a value 
intermediate between the interpoiant slopes is used. 

VIII Multiple Consequents 
In an inference network individual nodes may have 

any number of consequents. Suppose that a top proposi- 
tion G has two antecedents, G i and Gz, and that both G i 
and Gz share a common antecedent, G’. as illustrated in 
figure 2. Assume that G’ is independently chosen as the 
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most meritorious antecedent of each of G 1 and Gs. The 
mtiple algorithm backs up merit values in a tree of 
winners, always selecting the maximum value. When the 
merit value backed up at GI is compared to the value 
backed up at G s, both nodes will possess the backed up 
merit of G’. 

It would be inaccurate to simply back up to G the 
maximum of the merit values backed up at G 1 and Gs 
since either choice represents the selection of proposi- 
tion G’. The value backed up to G should represent the 
combined itiuence of G’ on G. Since the effects of G’ 
through its parents might be synergistic or antagonistic, 
the sum of the signed merit values for G’ calculated 
independently through each of Gi and Gs should be 
backed up to G. When these values are of opposite signs, 
the antecedents of both G, and Gs must be reexamined. 
A sibling of G’ initially thought to have a lower merit 
value than G’ might back up a larger merit value to G. 

To see that adding the signed merit values is 
correct mathematically as well as intuitively, we may 
apply the chain rule for functions of several variables to 
see that the merit of node G’ is 

while the signed merit values of G’ as calculated through 
G1 and Gsare 

BP(G) aP(Gd aP(G’) md BP(G) BP@21 i?P(G’) 
BP(GJ aP(G’) K(G’) BP(G2) aP(G’) X(G’) * 

Thus to select a most meritorious node below G we form 
the set of most meritorious nodes below the antecedents 
Gj of G, and sum the merits of nodes that appear more 
than once. As before, we select the merit that is largest 
in absolute value to get a most meritorious node below 
G. 

Whenever a summation of signed merit values 
occurs, the merit values backed up the tree before the 
point of summation might not represent the most meri- 
torious propositions. One possible solution is to back up 
the K-best merit values at each level, in the hope that 
the most meritorious value is included among them. In 
our experience this has not been necessary. Even 
though-&& backs up only the single best merit value 
at each level, the merit calculation guides it to appropri- 
ate questions. 

IX Concluding Remarks 
Merit calculations may be performed for an infer- 

ence network whose assignment functions are of many 
different types. We have extended merit to handle both 
MjJcin and Praspector inference mechanisms, as 
described in reference [ll]. A node whose value is 
assigned by a simple logical function, probabalistic AND 
for example, might assign a value to its consequent 
through the subjective Bayesian method. At each edge 
the edge-merit function appropriate to that edge is 
applied. The units of the various edge-merit values all 
cancel, leaving a 6nal merit value expressed in the units 
used by the top proposition over cost. Differentiable, 
real-valued expert-defined assignment functions are 
easily incorporated into the inference network with the 
merit control strategy. 

We have compared merit with the J* algorithm used 
by Prospector by generating the values of two 
antecedents on a single node over a range of 26 probabil- 
ities. In no case did J* choose the most meritorious 
antecedent, see [6] for more detail. 

In a future consultant system, propositions and 
assignment functions supplied by an expert will be linked 
into an inference network. Commonly used assignment 
methods will be available as system defined functions. 
The expert, however, will be able to introduce new 
assignment functions wherever necessary. The system 
will derive the form of the edge-merit function for these 
expert-defined assignment functions. 

Merit values may be employed to order antecedents 
within a depth-first traversal of an inference network, or 
to guide a best-first strategy. The two-step 1$u..&pk 
algorithm for locating a most meritorious node was 
designed for implementation with large trees where an 
exhaustive search is not practical. In an inference net- 
work, however, an expert system might do an exhaustive 
merit analysis, examining each askable proposition on 
the network in search of the most appropriate one for 
investigation. Such a searching procedure requires 
more time to find a most meritorious proposition on the 
network, but it guarantees that consultation will focus on 
a most meritorious node. 

A reduction of inconsequential propositional values 
requested from the user will increase the effectiveness cf 
the consultation process, especially in time-critical 
applications such as the tasks faced by military com- 
manders. The Battle system uses merit values to direct 
such an intelligent consultation session. Since merit, a 
function of both the cost and potential benefits of 
considering a proposition, is easily calculated by a com- 
puter, introduction of the merit value heauristic should 
result in reduction of consultation time and effort 
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