
DIAGNOSIS VIA CAUSAL REASONING: 
PATHS OF INTERACTION AND THE LOCALITY PRINCIPLE’ 

RANDALL DAVIS 

The Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

545 Technology Square 
Cambridge, MA 02139 

Abstract 
interest has grown recently in developing expert systems 

that reason “from first principles”, i.e., capable of the kind of 
problem solving exhibited by an engineer who can diagnose a 
malfunctioning device by reference to its schematics, even though 
he may never have seen that device before. In developing such a 
system for troubleshooting digital electronics, we have argued for 
the importance of pathways of causal interaction as a key 
concept. We have also suggested using a layered set of 
interaction paths as a way of constraining and guiding the 
diagnostic process. 

We report here on the implementation and use of these 
ideas. We show how they make it possible for our system to 
generate a few sharply constrained hypotheses in diagnosing a 
bridge fault. 

Abstracting from this example, we find a number of 
interesting general principles at work. We suggest that diagnosis 
can be viewed as the interaction of simulation and inference and 
we find that the concept of locality proves to be extremely useful 
in understanding why bridge faults are difficult to diagnose and 
why multiple representations are useful. 

1. ItJTRODUCTION 
Interest has grown recently in the development of expert 

systems that reason “from first principles”, i.e., from an 
understanding of the structure and function of the devices they 
are examining. This approach has been explored in a number of 
domains, with the “devices” ranging from the gastro-intestinal 
tract [6], to transistors [l] and digital logic components like adders 
or multiplexors [3,5]. Our work has focused on the last of these, 
attempting to build a troubleshooter for digital electronic 
hardware. 

By reasoning from first principles, we mean the kind of 
skill exhibited by an engineer who can troubleshoot a device by 
reference to its schematics, even though he may never have seen 
that particular device before. To do this we require something 
more than a collection of empirical associations specific to a given 
machine. We will see that the alternative mechanism has a degree 
of machine independence and is revealing for what it indicates 
about the nature of the diagnostic process. 

We have previously proposed the use of a layered set of 
models as a mechanism for guiding diagnosis [2,3]. Here we 
describe the implementation of that idea and demonstrate its utility 
in diagnosing a bridge fault. We then abstract from this example 
to consider why bridge faults are difficult to diagnose and why 
multiple representations are useful. This results in a number of 

* This report describes research done at the Artificial intelligence Laboratory of 
the Massachusetts Institute of Technology. Support for the laboratory’s Artificial 
intelligence research on electronic troubleshooting is provided in part by a grant 
from the Digital Equipment Corporation. 

observations about the nature of diagnostic reasoning and the 
selection and design of representations. 

2. CENTRAL CONCERNS 
Four issues are of central concern in this paper. We 

describe them here briefly, enlarging on them in the remainder of 
the paper. 

j- Diagnosis can be accomplished via the interaction of 
simulation and inference. 

Given knowledge of the inputs to a device and an understanding 
of how it is supposed to work, we can generate expectations 
about its intended behavior. Given observations about its outputs, 
we can generate conclusions about its actual behavior. 
Comparison of these two, in particular differences between them, 
provides the foundation for our troubleshooting. 

t Paths of causal interaction play a central role in 
diagnosis. 

An important part of the knowledge about a domain is 
understanding the mechanisms and pathways by which one 
component can affect another. We argue that such models of 
interaction are more fundamental than traditional fault models. 

t One technique for dealing with the complexity of 
diagnosis is layering the paths of interaction. 

To be good at hardware diagnosis, we need to handle many 
different kinds of paths of interaction. But this presents a 

problem: includinq all of them destroys our ability to discriminate 
among potential candidates, yet omitting any one of them makes it 
impossible to diagnose an entire class of faults. In response, we 
suggest the simple expedient of layering the models, using the 
most restrictive first and falling back on less restrictive models 
only in the face of contradictions. 

7 The concept of locality proves to be a useful principle 
in both diagnosis and the selection of representations. 

We find that the concept of locality, or adjacency, helps to explain 
why bridge faults are difficult to diagnose: changes small and local 
in one representation are not necessarily small and local in 
another. We discover that locality can be defined by reference to 
the paths of interaction and find that the utility of multiple 
representations arises in part from the different definitions of 
locality they offer. 

3. BACKGROUND 
If we wish to reason from knowledge of structure and 

behavior, we need a way of describing both. We have developed 
representations for each of these, described in more detail 
elsewhere [3,4]. We limit our description here to reviewing only 
those characteristics of our representations important for 
understanding the example in Section 4. 

The basic unit of description is a module, similar in spirit 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



to the notion of a black box. Modules have ports, the places 
through which information enters and leaves the module. 

3.1 Functional Organization, Physical Organization 
By structure we mean information about the 

interconnection of modules. Roughly speaking, it is the 
information that would remain after removing all the textual 
annotation from a schematic. 

Two different ways of organizing this information are 
particularly relevant to machine diagnosis: the functional view 
gives us the machine organized according to how the modules 
interact; the physical view tells us how it is packaged. We thus 
prefer to replace the somewhat vague term “structure” by the 
more precise terms functional organization and physical 
organization. In our system every device is described from both 
perspectives, producing two distinct (but interconnected) 
descriptions. 

Both descriptions are hierarchical in the usual sense: 
modules at any level may have substructure. An adder, for 
example, can be described by a functional hierarchy (adder, 
individual bit slices, half-adders, primitive gates) and a physical 
hierarchy (cabinet, board, chip). The two hierarchies are 
interconnected, since every primitive module appears in both: a 
single xor-gate for example, might be both functionally part of a 
half-adder, which is functionally part of a single bitslice of an 

adder, etc., and physically part of chip E67, which is physically 
part of board 5, etc. Cross-link information for primitive modules 
is supplied by the schematic; additional cross-links can be inferred 
by intersection (e.g., the adder can be said to be on board 3 
because all of its primitive components are in chips on board 3). 

3.2 Describing Behavior 
We define behavior in terms of the relationship between 

the information entering and leaving a module, and describe it by 
writing a set of rules. A complete specification of a module, then, 
includes its structural description as outlined above and a 
behavior description in the form of rules interrelating the 
information at its ports. 

As we have noted elsewhere [3,4], we use rules that 
capture two distinctly different forms of knowledge: simulation 
rules model the electrical behavior of a device, while inference 
rules capture the reasoning we can do about it. 

As a simple example, consider the behavior of an OR 
gate. The device simulation rule is’ 

If either input is a 1, then the output is 1, else 
the output is 0 

One of the device inference rules is 
Iftheoutputis 0,thenboth inputsmusthavebeen 
0. 

Since the device is electrically unidirectional, it is clear that only 
the first rule can be modeling physical causality. The second rule, 
and the inference rules in general, capture conclusions we can 
make about the inputs of the device given its output. 

This approach to describing behavior is very simple, but 
has nevertheless provided a good starting point for our work. 

3.3 Troubleshooting 
In previous papers [2,3] we outlined a progression of 

1. This has &en rendered in English to make it clear; for an example of the 

internal syntax see 13). 

techniques that have been used in automated reasoning about 
circuits. We discussed test generation and argued that it handles 
only part of the problem, because it requires that we choose a part 
to test and specify how it might be failing. We then described 
discrepancy detection, showing how it offered important 
advantages. 

But in examining cases involving a bridge fault or power 
failure, we discovered that straightforward use of discrepancy 
detection seemed unable to generate the appropriate candidates. 
We argued that the problem lay in distinguishing carefully 
between the machinery we use for solving problems and the 
knowledge that we give that machinery to work with. 

3.3.1 Discrepancy Detection and Candidate Generation 
Since understanding both the strengths and limitations of 

discrepancy detection is important in the remainder of this paper, 
we review the technique briefly. Consider the simple example 
shown in Figure 1. 

Figure 1 - Simple troubleshooting example 

Assume that the actual device yields a 0, producing a 
discrepancy between what our simulation rules predicted and 
what the device produced. 

We begin the process of generating plausible candidates 
--- devices whose misbehavior can explain the symptoms --- by 
asking why we expected a 1 at the output. There are three 
reasons: we expected that the OR gate was working, we expected 
INPUT-A to be 0, and INPUT-B to be 1. Assuming that there is a 
single point of failure, one of these expectations must be 
incorrect. 

If the first expectation is incorrect, then the OR gate is 
failing, hence we can add that to our candidate list. 

If one of the other expectations is incorrect, the OR gate 
is working and the problem lies further back. But if the OR gate is 
working, the inference rules about it are valid. In this case the 
inference rule shown earlier would indicate that both inputs must 
have been 0. 

This matches our second expectation (INPUT-A = 0), so 
there is no discrepancy and thus no need to explore this 
expectation further. That is, the devices “upstream” of INPUT-A 
may or may not be completely free of faults, but under the current 
set of assumptions (made explicit below), none of them can be 
responsible for the observed misbehavior. 

There is a discrepancy between our inference and the 
third expectation, since we expected a 1 from the AND gate. We 
proceed now with the AND gate just as we did with the OR gate, 
asking why we expected a 1, adding the gate to our list of 
candidates and pushing the inferred values yet further back in the 
circuit. 

We describe this style of diagnostic reasoning as the 
interaction of simulation and inference. Simulation generates 
expectations about correct behavior based on inputs and knowing 
how devices work (the device simulation rules). Inference 

89 



generates conclusions about actual behavior based on observed 
outputs and device inference rules. The comparison of these two, 
in particular differences between them, provides the foundation 
for our troubleshooting and has produced a system with a number 
of advantages. 

It is, first of all, fundamentally a diagnostic technique, 
since it allows systematic isolation of possibly faulty devices. 
Second, since it defines failure functionally, i.e., as anything that 
doesn’t match the expected behavior, it can deal with a wide 
range of faults, including any systematic misbehavior. Third, while 
we have illustrated it here at the gate level, the approach also 
allows natural use of hierarchical descriptions, a marked 
advantage for dealing with complex structures (see, e.g., [3]). 
Finally, the technique also yields symptom information about the 
malfunction. For example, if the OR gate is indeed the culprit, 
then we know a little about how it is misbehaving: it is receiving 0 
and 1 and producing 0. This utility of this information is 
demonstrated below. 

3.3.2 Mechanism and Knowledge 
While this mechanism --- the interaction of simulation and 

inference --- is very useful, it is only as powerful as the knowledge 
we supply. Recall that in the example above, when exploring the 
cause of the discrepancy on IN PUT-B, we looked only at the AND 
gate. Why didn’t we think that some other module, like the 
inverter, could have produced the problem there? The answer of 
course is that there is no apparent connection between them, 
hence no reason to believe one might affect the other. 

Note carefully the character of this assumption: it 
concerns the existence of causal pathways, the applicability of a 
particular model of interaction. We saw no way in which the 
inverter could affect INPUT-B, yet a pathway is clearly plausible 1-1 
a bridge fault, for example. We were implicitly assuming that there 
was no such pathway. 

We believe that the important focus in this work is 
understanding such assumptions and the nature and character of 
the pathways. This understanding is crucial to candidate 
generation: given a discrepancy noticed at some point in the 
device, candidate generation attempts to determine which 
modules could have caused the problem. To answer the question 
we must know by what mechanisms and pathways modules can 
interact. Without some notion of how modules can affect one 
another, we can make no choice, we have no basis for selecting 
any one module over another. 

In this domain the obvious answer is “wires”: modules 
interact because they’re explicitly wired together. But that’s not 
the only possibility. As we saw, bridges are one exception; they 
are “wires” that aren’t supposed to be there. But we also might 
consider thermal interactions, capacitive coupling, transmission 
line effects. etc. 

Generating candidates, then, is not done by tracing wires, 
it is done by tracing paths of causality. Wires are only the most 
obvious pathway. In fact, given the wide variety of faults want to 
deal with, we need to consider many different pathways of 
interaction. 

And that leaves us on the horns of a classic dilemma. If 
we include every interaction path, candidate generation becomes 
indiscriminate --- there will be some (possibly convoluted) 
pathway by which every module could conceivably be to blame. 
Yet if we omit any pathway, there will be whole classes of faults we 
will never be able to diagnose. 

The key appears to lie in the models of interaction: we 

suggest that the difficult and important work is thetr enumeratron 
and careful organization. We get a hint about organization from 
what a good engineer might do when faced with the dilemma 
above: make a number assumptions to simplify the problem, 
making it tractable, but be prepared to discover that some of those 
assumptions are incorrect. In that case, surrender them and solve 
the problem again with fewer simplifications. 

This leads to the suggestion of layering the models. We 
start the diagnosis with the most restrictive model, the one that 
considers the fewest paths of interaction, and only use less 
restrictive models if this one fails. By “fail” we mean that we reach 
an intractable contradiction: given the current model and set of 
assumptions, there is no way to account for the observed 
behavior. This approach permits us to simplify the problem in 
order to get started, but does not prevent us from exploring more 
complex hypotheses. 

A plausible guess at an ordering for the models might be* 
* localized failure of function (e.g., stuck-at on a wire, 
failure of a RAM cell) 
* bridges 
* unexpected direction (inputs acting as outputs and driving 
lines) 
* multiple point of failure 
* timing errors 
* assembly error 
+ design error 

In terms of the dilemma noted above, the models serve as 
a set of filters. They restrict the categories of paths of interaction 
we are willing to consider, thereby preventing the candidate 
generation from becoming indiscriminate. But they are filters that 
we have carefully ordered and consciously put in place. If we 
cannot account for the observed behavior with the current filter in 
place, we remove it and replace it with one that is less restrictive, 

allowing us to consider additional categories of interaction paths. 

4. LAYERS OF INTERACTION EXAMPLE: DIAGNOSING A 
BRIDGE FAULT 

In this section we show how our system diagnoses a 
bridge fault, illustrating the utility of layering the interaction 
models. 

There is, alas, a large amount of detail involved in 
working through this example. Where possible we have 
abstracted out much of it, but patience and a willingness to read 
closely will still be useful. A simple roadmap of the example will 
help make clear where we’re going. 

The device is a 6-bit adder that displays an incorrect result 
in Test Tl. The candidate generation mechanism outlined 
earlier produces a set Sl of three sub-components of the 
adder that can account for the misbehavior. 

A second test T2 is run to distinguish among the three 
possibilities in Sl. Candidate generation produces a set S2 
of two candidates capable of explaining the results of T2. 

Surprisingly, the intersection of Sl and S2 is null. We have 
reached a contradiction: no single component is capable of 
explaining all the data. 

2. For the rationale behind this ordering see [2]. 

90 



Put slightly differently, we have a contradiction under the 
current set of assumptions and interaction models. We 
therefore have to surrender one of our assumptions and use 
a less restrictive model. 

The next model in the list --- bridge faults --- surrenders the 
assumption that the structure is as shown in the schematic 
and considers one additional interaction path: wires 
between adjacent pins. 

Surrendering the assumption that the schematic is correct 
only indicates that we know what the structure is not; the 
difficult problem is generating plausible hypotheses about 
what it is. 

Knowledge of electronics offers insight into how the 
physical modification --- adding a wire --- manifests itself 
functionally. This provides us with a behavior pattern 
characteristic of bridges that can be used to hypothesize 
their location. 

Physical adjacency then provides a strong additional 
constraint on the set of connections which might be 
plausible bridges. The combined requirement of functional 
and physical plausibility results in the generation of only a 
very few carefully chosen bridge hypotheses. 

The first attempt to apply these ideas produces two 
hypotheses that are plausible functionally, but prove to be 
implausible physically. 

Dropping down a level of detail in our description reveals 
additional bridge candidates, two of which prove to be 
physically plausible as well. Further tests determine that 
one of them is in fact the error. 

4.1 The Example 
Consider the six bit adder shown in Fig. 2. Assume that 

the attempt to add 21 and 19 produces 36 rather than the 
expected value of 40. Invoking the candidate generation process 
described above, we would find that there are three devices 
whose individual malfunction can explain the behavior (SLICE-l, 
A2 and SLICE-2).3 

Figure 2 - Six bit adder constructed from single bit slices. Heavy linea 
indicate components implicated as possibly faulty. 

3. The example hag been simplified slightly for prt?ShatiOn. 

A good strategy when faced with several candidates is to 
devise a test that can cut the space of possibilities in half. In this 
case changing the first input (21) to 1 will be informative: if the 
output of SLICE-2 does not change (to a 0) when we add 1 and 19, 
then the error must be in either A2 or SLICE-2.4 

As it turns out, the result of adding 1 and 19 is 4 rather 
than 20. Since the output of SLICE-2 has not changed, it appears 
that the error must be in either A2 or SLICE-2. 

But if we invoke the candidate generator, we discover an 
oddity: the only way to account for the behavior in which adding 1 
and 19 produces a 4 is if one of the two candidates highlighted in 
Fig. 3 (84 and SLICE-4) is at fault. 

Figure 3 - Components indicated as possibly faulty by the second test. 

Therein lies our contradiction. The only candidates that 
account for the behavior of the first test are those in Fig. 2; the 
only candidates that account for the second test are those in Fig. 
3. There is no overlap, so there is no single candidate that 
accounts for all the observed behavior. 

Our current model --- the localized failure of function --- 
has thus led us to a contradiction.5 We therefore surrender it and 
consider the next model, one that allows us to consider an 
additional kind of interaction path --- bridging faults. The problem 
now is to see if there is some way to unify the test results, some 
way to generate a single bridge fault candidate that accounts for 
all the observations. 

Much of the difficulty in dealing with bridges arises 
because they violate the rather basic assumption that the 
structure of the device is in fact as shown in the schematic. But 
admitting that the structure may not be as pictured says only that 
we know what the structure isn’t. Saying that we may have a 
bridge fault narrows it to a particular class of modifications to 
consider, but the real problem here remains one of making a few 
plausible conjectures about modifications to the structure. 
Between which two points can we insert a wire and produce the 
behavior observed? 

4. The generation of tests in this paper is currently done by hand; everything else 

is implemented. Work on automating test generation IS in progress [A. 

The logic behind this test is as follows: if the malfunctioning component 
really were SLICE-i, then the both A2 and SLICE-2 would be fault.free (the single 

fault assumption). Hence the output of SLICE-2 would have to change when we 

changed one of its inputs. (Notice, however, if the output actually does change, 
we don’t have any clear indication about the error location: SLICE-P, for example, 

might still be faulty.) 
5. Note that dropping down another level of detail in the functional description 

cannot help resolve the contradictron, because our functional description is a tree 

rather than a graph: in our work to date, at least, no component is used in more 

than one way. 

91 



To understand how we answer that question, consider 
what we have and what we need. We have test results, i.e., 
behavior, and we want conjectures about modification to 
structure. The link from behavior to structure is provided by 
knowledge of electronics: in TTL, a bridge fault acts like an 
and-gate, with ground dominating.s 

From this fact we can derive a simple pattern of behavior 
indicative of bridges. Consider the simple example of Fig. 4 and 
assume that we ran two tests. Test 1 produced one candidate, 
module A, which should have produced a 1 but yielded a 0 (the 
zero is underlined to show that it is an incorrect output). Module B 
was working correctly and produced a 0 as expected. In Test 2 
this situation is exactly reversed, A was performing as expected 
and B failed. 

The pattern displayed in these two tests makes it 
plausible that there is a bridge linking the outputs of A and B: in 
the first test the output of A was dragged low by B, in the second 
test the output of B was dragged low by A. 

TEST1 TEST 2 

El-O 

0 - 

Figure 4 - Pattern of values indicative of a bridge. Heavy lines indicate 
candidates. 

We have thus turned the insight from electronics into a 
pattern of values on the candidates. It is plausible to hypothesize 
a bridge fault between two modules A and B from two different 
tests if: in test 1, A produced an erroneous 0 and B produced a 
valid 0, and in test 2, A produced a valid 0 while B produced an 
erroneous 0. Note that this can resolve the contradiction of 
non-overlapping candidate sets: it hypothesizes one fault that 
involves a member of each set and accounts for all the test data. 

Thus, if we want to account for all of the test data in the 
original problem with a single bridge fault, we need a bridge that 
links one of the candidates from the first test (SLICE-l, A2, 
SLICE-2) with one of the candidates from the second test (84, 
SLICE-4) and that mimics the pattern shown in Fig. 4. 

Fig. 5 shows the candidate generation results from both 
tests in somewhat more detail.7 In that data there are two pairs of 
devices that match the desired pattern, yielding two functionally 
plausible bridge hypotheses: 

Dotted line X, bridging wire A2 to the sum output of 
SLICE-4; 
Dotted line Y, bridging the carry output of SLICE-2 to the 
sum output of SLICE-4. 

5. This is in fact an oversimplification, but accurate enough to be useful. In any 
case, the point here is how the information is used; a more complex model could 
be substituted and carried through the rest of the problem. 

7. As indicated earlier, the candidate generation procedure can indicate for each 

candidate the values that would have to exist at its ports for that candidate to be 

the broken one. For example, for SLICE-1 to be at fault in test 1, it would have to 
have the three inputs shown, with its sum output a zero (as expected) and its carry 
output also a zero (the manifestation of the error, underlined). 

TEST1 

0 
1 

h i 
1 1 

A2 
1-o 0 

fl 

A2 
o-o 0 

\O 

Figure 5 - Candidates and values at their ports. 

But the faults have to be physically plausible as well. For 
the sake of simplicity, we assume that bridge faults result only 
from solder splashes at the pins of chips.e To check physical 
plausibility, we switch to our physical representation, Fig. 6. Wire 
A2 is connected to chip El at pin 4 and chip E3 at pin 4; the sum 
output of SLICE-4 emerges at chip E2, pin 13. Since they are not 
adjacent, the first hypothesis is not physically reasonable. Similar 

reasoning rules out Y, the hypothesized bridge between the 
carry-out of SLICE-2 and the sum output of SLICE-4. 

I - endofA2 
II - sum output of 

SLICE-4 
III- carry out of 

SLla-2 

Figure 6 - Physical layout of the board with first bridge hypotheses 
indicated. (Slices 0, 2, and 4 are in the upper 5 chips, slices 1, 3, and 5 
are in the lower 5.) 

So far we have considered only the top level of functional 
organization. We can run the candidate generator at the next 
lower level of detail in each of the non-primitive components in 
Fig. 5. (Dropping down a level of detail proves useful here 
because additional substructure becomes visible, effectively 
revealing new places that might be bridged.) 

We obtain the components and values shown in Fig. 7. 
Checking here for the desired pattern, we find that either of the 
two wires labeled A2 and S2 could be bridged to either of the two 
wires labeled S4 and C4, generating four functionally plausible 
bridge faults. 

8. Again this is correct but oversimplified (e.g., backplane pins can be bent or 

bridged), but as above we can introduce a more complex model if necessary. 

92 



Figure 7 - Candidates at the next level of functional description. Each 
single bit adder is built from two “half-adders” and an OR gate. (To 
simplify the figure, only the relevant values are shown.) 

Once again we check physical plausibility by examining 
the actual locations of A2, S2, S4, and C4, Fig. 8. g As illustrated 
there, two of the possibilities are physically plausible as well: 
A2S4 on chip El and S2S4 on chip E2. 

Figure 8 - Second set of bridge hypotheses located on physical layout. 

Switching back to our functional organization once more, 
Fig. 9, we see that the two possibilities correspond to (X) an 
output-to-input bridge between the xor gates in the rear 
half-adders of SLICE-2 and SLICE-4, and (Y) a bridge between two 
inputs of the xor in the forward half-adders of slices 2 and 4. 

I 
IX 
I 

Figure g - Functional representation with bridge fault hypotheses 
illustrated. 

It is easy to find a test that distinguishes between these 
two possibilities” : adding 0 and 4 means that the inputs of 
SLICE-2 will be 1 and 0, with a carry-in of 0, while the inputs of 
SLICE-4 will both be 0, with a carry-in of 0. This set of values will 
show the effects of bridge Y, if it in fact exists: the sum output of 
SLICE-2 will be 0 if it does exist and a 1 otherwise. When we 
perform this test the result is 1, hence bridge Y is not in fact the 
problem. 

Bridge X becomes the likely answer, but we should still 
test for it directly. Adding 4 and 0 (i.e., just switching the order of 
the inputs), is informative: if bridge X exists the result will be 0 and 
1 otherwise. In this case the result is 0, hence the bridge labeled X 
is in fact the problem.” 

5. PATHS OF INTERACTION; THE LOCALITY PRINCIPLE 
Two interesting questions are raised by the problem 

solving used just above. 
Why are bridge faults difficult to diagnose? 
Why does the physical representation prove to be so useful? 

To see the answer, we start with the trivial observation that all 
faults are the result of some difference between the device as it is 
and as it should be. With bridge faults the difference is the 
addition of a wire between two physically adjacent points. 

Now recall the nature of our task: we are presented with a 
device that misbehaves, not one with obvious structural damage. 
Hence we reason from behavior, i.e., from the functional 
representation. And the important point is that for a bridge fault, 
the difference in question --- the addition of a single wire --- is not 
local in that representation. As the comparison of Figs. 8 and 9 
makes clear, the new wire connects two points that are adjacent in 
the physical representation but widely separated in the functional 
representation. 

The difference is also not as simple in that representation: 
if we include in our functional diagram the AND gate implicitly 
produced by bridge X, we see that a single added wire in the 
physical representation maps into an AND gate and a fanout in the 
functional representation (Fig. 10). 

Figure 10 - Full functional representation of bridge fault X. 

9. Note that the erroneous 0 on wire S2 can be in any Of three physical location% 

because S2 tans out (inside the module it enters on its right). 

10. As above, tests are generated by hand. 

11. Had both been ruled out by direct test, then we would once again have had a 
contradictron on our hands and would have had to drop back to consider yet a 

more elaborate model with additional paths of interaction. 

93 



This view helps to explain why bridge faults produce 
behavior that is difficult to envision and diagnose. Bridge faults 
are modifications that are simple and local in the physical 
description, but our diagnosis is done using the functional 
description. Hence the dilemma: The desire to reason from 
behavior requires us to use a representation that does not 
necessarily provide a compact description of the fault. 

This non-locality and complexity should not be surprising, 
since devices physically adjacent are not necessarily functionally 
related. Hence there is no guarantee that a change that is small 
and local in one will produce a change that is small and local in 
the other. More generally, changes local in one representation 
are not necessarily local in another. 

We can turn this around to put it to work for us: 
Part of fhe art of choosing the right representationfs) for 
diagnostic reasoning is finding one in which the change in 
question & local. 

This explains the utility of the physical representation: it’s the 
“right” one because it’s the one in which the change is local. 

But why is locality the relevant organizing principle? We 
believe the answer follows from two facts: (a) devices interact 

through physical processes (voltage on a wire, thermal radiation, 
etc.) and (b) physical processes occur locally, or more generally, 
causality proceeds locally: there is no action at a distance. To 
make this useful, we turn it around: 

The mechanisms (paths) of interaction define locality for us. 
That is, each kind of interaction path can define a 
representation. 

Bridge faults arise from physical adjacency and hence are local in 
the physical representation. The notion of fhermal adjacency 
would be useful in dealing with faults resulting from heat 
conduction or radiation, electromagnetic adjacency would help 
with faults dealing with transmission line effects, etc. 

Each of these produces a different representafion, different 
in its definition of locality. And each will be useful for 
understanding and diagnosing a category of fault. 

There is still substantial work to do in enumerating the 
pathways of interaction, but we seem at least to be asking the right 
question. It seems to make sense for a wide range of faults and 
appears to be applicable to other domains as well. When 
debugging software, for example, the pathways of interaction 
differ (e.g., procedure call, mutation of data structures), but the 
resulting perspectives appear to make sense and there are some 
interesting analogies (e.g., unintended side effects in software are 
in some ways like bridge faults; there are even faults where the 
notion of “physical adjacency” is useful in understanding the bug, 
as in out of bounds array addressing). 

6. SUMMARY 
We seek to build a system. that reasons from first 

principles in diagnosing hardware failures. We view diagnosis as 
the interaction of simulation and inference, with discrepancies 
between them driving the generation of candidates. In exploring 
this interaction, we find that the concept of paths of causal 
interaction plays a key role, supplying the knowledge that makes 
the diagnostic machinery work. But the desire to deal with a wide 
range of faults seems to force us to choose between an inability to 
discriminate among candidates and the inability to deal with some 
classes of faults. 

In response, we suggest layering the interaction models, 
using the most restrictive first and hence considering the fewest 
paths of interaction initially. If this fails to generate a consistent 

hypothesis, we use the next model in the sequence, one which 
allows consideration of an additional pathway. 

We illustrated this approach by diagnosing a bridge fault, 
sharply constraining the generation of hypotheses by using the 
PhYSical representation as well as the functional. Finally, we 
found this to be one example of an important general principle .._ 
locality --- and discovered that one useful definition of locality is 
given by the pathways of interaction. 

Acknowledgments 
Contributions to this work we made by all of the members of the 
Hardware Troubleshooting project at MIT, including: Howie 
Shrobe, Walter Hamscher, Karen Wieckert, Mark Shirley, Harold 
Haig, Art Mellor, John Pitrelli, and Steve Polit. 
Bruce Buchanan and Patrick Winston offered a number of very 
useful comments on earlier drafts. 

REFERENCES 

[I] Brown J S, Burton R, deKleer J, Pedagogical and knowledge 
engineering techniques in the SOPHIE systems, Xerox Report 
CIS-14, 1981. 
[2] Davis R, Reasoning from first principles n hardware 
troubleshooting, /nt/ Journal of Man-machine Studies, to appeW, 
1983. 
[3] Davis R, et al., Diagnosis based on structure and function. Proc 
AAA/ 1982, pp 137-142, August 1982. 
[4] Davis R, Shrobe H E, Representing structure and function, 
/EEE Computer, to appear Sept 1983. 
[5] Genesereth M, The use of hierarchical models in the 
automated diagnosis of computer systems, Stanford HPP memo 
81-20, December 1981. 
[6] Patil R, Szolovits P, Schwartz W, Causal understanding Of 
patient illness in medical diagnosis, Proc WA/-87, August 1981, 
pp 893-899. 
[7] Shirley W, Davis R, Digital test generation from symptom 
information, /EEE 7983 VLS/ Workshop, to appear. 


