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ABSTRACT 

This paper introduces a new frame-based model 
of diagnostic reasoning which is based on a 
generalization of the classic set covering problem 
in mathematics. The model directly handles 
multiple simultaneous disorders, it can be 
formalized, it is intuitively plausible, it 
provides an approach to partial matching, and it 
is justifiable in terms of past empirical studies 
of human diagnostic reasoning. We are using this 
model as an inference method in diagnostic expert 
systems, and contrast it with the inference 
methods used in previous similar systems. 

DIAGNOSTIC PROBLEM SOLVING 

A diagnostic problem is a problem where one 
iS given a set of abnormal findings 
(manifestations) for some system, and must explain 
why those findings are present. Diagnostic 
problems are common, occurring in medicine, 
software debugging, automotive repair, electronic 
circuit fault localization, etc. Search methods, 
statistical pattern classification, and rule-based 
deduction face significant limitations when 
applied to such problems [Reggia, 19821. 

Recently a variety of inference methods which 
model the hypothesize-and-test process involved in 
human diagnostic reasoning have been proposed, 
especially in medicine (e.g.) [Aikins, 1980; 
Mittal et al, 1979; Pauker, 1976; Miller et al, 
1982; Pople, 1977; Patil et al, 19811). While 
these models have produced impressive performance 
at times, they currently face a number of 
limitations when applied to real-world problems 
[Reggia, 19821. For example, problems where 
multiple disorders are present simultaneously have 
proven very difficult to handle [Pople, 19771. In 
addition, AI models of diagnostic reasoning are 
often criticized as being "ad hoc" by individuals 
outside of AI because of the absence of a formal, 
domain-independent theoretical foundation (e-g., 
[Ben-Bassat et al, 19801). 
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This paper introduces a new description-based 
(frame-based) model of diagnostic reasoning which 
is founded on a generalization of the set covering 
problem. This model, which we call the 
"generalized set covering" or GSC model, is of 
interest for several reasons. It directly 
addresses the problem of multiple simultaneous 
disorders, it provides a basis for a formal theory 
of diagnostic inference, and it provides an 
approach to such issues as partial match and 
inference in the context of incomplete problem 
data. The GSC model is summarized here 
informally, and further details and example 
applications are available in [Reggia, 1981; 
Reggia et al, 19831. We have already used this 
model to implement both medical and non-medical 
expert systems. We view our work as an effort to 
bring mathematical rigor to an area of AI where it 
has previously been relatively lacking, and as an 
attempt to create an abstraction of expert system 
implementations in the sense that Nilsson has 
recommended [Nilsson, 19801. 

___________--------------------------------------- 
BASILAR MIGRAINE 

[DESCRIPTION: 
AGE = FROM 20 THRU 30 <H>, 30 THRU 50 <L>, 

50 THRU 110 <N>; 
DIZZINESS 

[TYPE = VERTIGO <H>, REST <L>; 
COURSE = EPISODIC 

[EPISODE DURATION = MINUTES <L>, 
HOURS <H>, DAYS <L>], 

ACUTE AND PERSISTENT]; 
HEAD PAIN <A> 

[LOCATION = 0ccwITAL <H>, REST <L>]; 
NEUROLOGICAL SYMPTOMS = 

TINNITUS <M>, 
DIPLOPIA [DURATION = 

TRANSIENT DURING DIZZINESS <A>], 

;YN;OP;; 
NEUROLOGICAL EXAM FINDINGS = 

HOMONYMOUS FIELD CUT 
[DURATION = TRANSIENT DURING 
DIZZINESS], 

&S'FI;DINGS 
[TYPE = NON-SPECIFIC <H>, REST <L>; 
DURATION = TRANSIENT DURING 
DIZZINESS] 1 

____________________------------------------------ 
Figure 1: A DESCRIPTION for BASILAR MIGRAINE. 

____________________------------------------------ 
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KNOWLEDGE REPRESENTATION 

The basic unit of associative knowledge used 
by the GSC model is the frame-like DESCRIPTION. 
For each possible causative disorder in the domain 
of a knowledge base there is a corresponding 
DESCRIPTION. Figure 1 illustrates a DESCRIPTION 
for the disorder BASILAR MIGRAINE from the 
knowledge base of a diagnostic expert system 
dealing with the problem of dizziness [War+, 
19821 e Letters in angular brackets represent 
subjective indications of frequency (A = always, H 
= high, M = medium, L = low, N = never). 

Figure 1 means: 
"Basilar migraine usually occurs in individuals 
from 20 to 30 years old, but many occur up to age 
50. If a person is over 50, basilar migraine can 
be categorically discarded as a possible 
etiological factor. Basilar migraine causes 
dizziness which is usually of a vertiginous nature 
and occurs either in an episodic or an acute and 
persistent fashion. When episodic, the dizziness 
usually lasts for hours but may last for minutes 
or days. Headache, usually in an occipital 
location, Is always present. Neurological 
symptoms caused by basilar migraine are . . .". 

In the current dizziness knowledge base there are 
50 disorders like basilar migraine. The key point 
is that each disorder has an associated 
DESCRIPTION that specifies, among other things, 
all manifestations caused by the disorder. 

GENERALIZED SET COVERING AS A MODEL 
OF DIAGNOSTIC INFERFiNCE 

The GSC model provides a useful method for 
making diagnostic inferences from DESCRIPTIONS 
without the use of production rules. In the GSC 
model the underlying knowledge for a diagnostic 
problem is viewed as pictured in Figure 2a. There 
are two disjoint finite sets which define the 
scope of diagnostic problems: D, representing all 
possible disorders di that can occur, and M, 
representing all possible manifestations rn. that 
may occur when one or more disorder: are 
present. For example, in medicine, D might 
represent all known diseases (or some relevant 
subset of all diseases), and M would then 
represent all possible symptoms, examination 
findings, and abnormal laboratory results that can 
be caused by diseases in D. 

To capture the intuitive notion of causation, 
we assume knowledge of a relation C 2 D x M, where 
<di, mj> E C represents "di can cause mj." Note 

that <di, mj> E. C does not imply that mj 
necessarily occurs when di is present, but only 
that m. 

I! 
may be caused by di. Given D, M, and C, 

the fo lowing sets can be defined: 

man(di) = {mjl<di, mj> E Cl $rdi E D, and 

causes(mj) = {dil<di, mj> E Cl fTmj E M. 

a> 

b) 

--------------------__I_________________---------- 

Figure 2: Organization of diagnostic knowledge 
(a) and problems (b). 
------_------------_------------------------------ 

These sets are depicted in Figure 2a, and 
represent all possible manifestations caused by 

di, and all possible disorders that cause ma, 
respectively. These concepts are intuitive y i! 
familiar to the human diagnostician. For example, 
medical textbooks frequently have descriptions of 
diseases which include, among other facts, the set 
man(di) for each disease di. As noted earlier, 
the DESCRIPTION of BASILAR MIGRAINE in Figure 1 
explicitly defined man(BASILAR MIGRAINE). In 
addition, physicians often refer to the 
"differential diagnosis" of a symptom, which 
corresponds to the set causes(mj). Clearly, if 
man(di) is known for every disorder di, then the 
causal relation C is completely determined. We 
will use man(D) = u man(di) to indicate all 

JieD 
possible manifestations of a set of disorders D, 
and causes(M) = V causes(mj) to indicate all 

mitM 
possible causes of any manifestation in M. 

Finally, there is a distinguished set M+ c M 
which represents those manifestations which are 
known to be present (see Figure 2b). Whereas D, 
M, and C are general knowledge about a class of 
diagnostic problems, M+ represents the 
manifestations occurring in a specific case. 

Using this terminology, we define a 
diagnostic problem P to be a 4-tuple <D,M,C,M+> 
where these comDonents are as described above. We 
assume that man(di) and causes(m.) are always non- 
empty sets. We now turn to defiling a solution to 
a diagnostic problem by first introducing the 
concept of explanation. 

Definition: For any diagnostic problem P, E 2 D 
is an explanation for M+ if 

(i> M+ 2 man(E), or in words: E covers +; 
and 

(ii) [El 5 IDI for any other cover D of M', 
i.e., E is minimal. 

This definition captures what one intuitively 
means by "explaining" the presence of ‘a set of 
manifestations, Part (i) specifies the reasonable 
constraint that a set of disorders E must be able 
to cause all known manifestations M+ in order to 
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be considered 
manifestations. 

an explanation for those 
Part (ii) specifies that E must 

generators are sufficient to represent the 
solution to that problem: {dl d2) X Ed7 
d8 d9] and id3 d4] x @,I. The second 
generator represents two explanations {d3 d8] and 

{d4 d8], while the first generator represents the 
other six explanations in the solution. 
Cenerators are usually a more compact form of the 
explanations present in the solution, they are a 
convenient representation for developing 
algorithms to process explanations sequentially 
(see below), and they are closer to the way the 
human diagnostician organizes the possibilities 
during problem solving (i.e., the "differential 
diagnosis"). 

also be one of the small est sets to do so, 
reflecting the Principle of Parsimony or Ockham's 
Razor: the simplest explanation is the preferable 
one. This principle is generally accepted as 
valid by human diagnosticians. Here, we have 
equated "simplicity" with minimal cardinality, 
reflecting an underlying assumption that the 
occurrence of one disorder di is independent of 
the occurrence of another. 

An explanation is a generalization of the 
concept of a minimal set cover [Edwards, 19621. 
One difference from the traditional set cover 
problem in mathematics is that when Mf # M, man(E) 
may be a superset of M+. This difference, 
reflects the fact that sometimes when a disorder 

In adapting the GSC model for use in a real- 
world expert system several issues were addressed 
and resolved. One of these issues is the fact 
that diagnostic problem solving is inherently 
sequential in nature. The human diagnostician 
usually begins knowing only that one or a few 
manifestations are present, and must actively seek 
further information about others. 

is present not all of its manifestations occur. 

With these concepts in mind, we can now 
define the solution to a diagnostic problem P, 
designated Sol(P) to be 
explanations for M'. 

the set of all 
Thus, solving a diagnostic 

problem in the GSC model involves a second 
generalization of the traditional set covering 
problem: we are interested in finding all 
explanations rather than a single minimal cover. 

This sequential diagnostic process can be 
captured in terms of the GSC model, and represents 
a third generalization of the traditional set 
covering problem. The tentative hypothesis at any 
point during problem solving is defined to be the 
solution for those manifestations already known to 
be present, assuming, perhaps falsely, that no 
additional manifestations will be subsequently 
discovered. To construct and maintain a tentative 
hypothesis like this, three data structures prove 
useful: 

Example: Let P = <D,W,C,M+> where D = 
m...,dg), M = {ml,...mg], and man(d$) are as 
specified in Table 1. Note that Table 1 
implicitly defines the relation C, because C = { 
<di,mj> 1 mj E man(di) for some di). Let M+ 
= {ml,w+,q~~ No single disorder can cover 
(account for) all of 
disorders do cover M+. 

M+, but some pairs of 

{dl,d7) then M+ c man(D). 
For instance, if D = 

Since there are no 
covers for M+ of-smaller cardinality than D, it 
follows that D is an explanation for M+. Careful 

MANIFS: the set of manifestations 
present so far; 

to be 

SCOPE: causes(MANIFS), the set of all diseases 
di for which at least one manifestation 
is already known to be present; and 

examination 
that 

of Table should convince the reader 

Sol(P) = { {dl d7) id1 d8) {dl dg) {d2 d7) 
{d2 d$ id2 dgl {d3 d8) td4 d8) } 

FOCUS: the tenta tive solution for just 
mani festat ions already in MANIFS; 

those 
FOCUS 

is 
gene 

represen 
rators. 

as a collection of 
is the set of all explanations for M+. 

These data structures are manipulated as follows: 5!i man(d;) ii man(d+) 

dl ml m4 d6 m2 m3 
d2 ml “3 m4 d7 
d3 

m2 m5 
ml m3 d8 m4 “5 m6 

d4 ml m6 d9 m2 m5 
d5 “2 m3 m4 ---------------------------------------------- - 

Table 1: Knowledge about a class of diagnostic 
problems (C is implicitly defined by this table). 
------------------^------------------------------- 

(1) 
(2) 

Get the next manifes tation ma. 
Retr ieve causes(m;) from theJknowledge base. 

(3) MANIFS 4- MANIFS U (m.}. 
(4) SCOPE c- SCOPE 
(5) Adjust FOCUS to accomoda: m.. 

Ca?seS(Illj). 

(6) Repeat this process untJi1 no further 
manifestations remain. 

Rather than representing the solution to a Thus, as each manifestation rn. that is 
present is discovered, MANIFS is update?! simply by 
adding m. to it. 
any poss ii 

SCOPE is augmented to include 
le causes di of mj which are not already 

contained in it. Finally, FOCUS is adjusted to 
accomodate m. based partially on intersecting 
CaUSeS(Illj) w th 2 the sets of disorders in the 
existing generators [Reggia et al, 19831. These 
latter operations are done such that any 

diagnostic problem as an 
possible explanations for 

explicit 
M+ , it is 

list of all 
advantageous 

to represent it as a collection of explanation 
generators. A generator is analogous to a 
Cartesian set product, the difference being that 
the generator produces unordered sets rather than 
ordered tuples. 
the example diagnostic 

To illustrate this idea, consider 
problem above. Two 



explanation which can no longer account for the 
augmented MANIFS (which now includes mj) are 
eliminated. Figure 3 illustrates this algorithm 
with a "trace" based on the earlier example. 

DISCUSSION 

This paper has proposed the construction and 
maintenance of generalized minimal set covers 
("explanations") as a model of diagnostic 
reasoning and as a method for diagnostic expert 
systems. The GSC model is attractive for several 
reasons: it directly handles multiple 
simultaneous disorders, it can be formalized, it 
is intuitively plausible, it provides an approach 
to partial matching, and it is justifiable in 
terms of past empirical studies of diagnostic 
reasoning (e.g., [Elstein et al, 1978; Kassiner et 
al, 19781). To our knowledge the analogy between 
the classic set covering problem and general 
diagnostic reasoning has not previously been 
examined in detail, although some related work has 
been done (e*g., assignment of I-LA specificities 
to antisera, see Nau et al, 1978; Woodbury et al, 
19791). As noted earlier, other aspects of the 
GSC model relevant to expert systems, such as 
question generation, termination criteria, ranking 
of competing disorders, and problem decomposition 
are discussed elsewhere [Reggia et al, 1983 and 
19841. 

The GSC model provides a useful context in 
which to view past work on diagnostic expert 
systems. In contrast to the GSC model, most 
diagnostic expert systems that use hypothesize- 
and-test inference mechanisms or which might 
reasonably be considered as models of diagnostic 
reasoning depend heavily upon the use of 
production rules (e.g., [Aikins, 1980; Mittal et 
al, 1979; Pauker et al, 19761). These systems use 
a hypothesis-driven approach to guide the 
invocation of rules which in turn modify the 
hypothesis. Rules have long been criticized as a 
representation of diagnostic knowledge [Reggia, 
19821, and their invocation to make deductions or 
perform actions does not capture in a general 
sense such intuitively attractive concepts as 
coverage, minimality, or explanation. 

Perhaps the previous diagnostic expert system 
whose inference method is closest to the GSC model 
is INTERNIST [Miller et al, 19821. INTERNIST 
represents diagnostic knowledge in a DESCRIPTION- 
like fashion and does not rely on production rules 
to guide its hypothesize-and-test process. In 
contrast to the GSC model, however, it uses a 
heuristic scoring procedure to guide the 
construction and modification of its hypothesis. 
This process is essentially "depth first," unlike 
the "breadth first" approach implied in the GSC 
model. INTERNIST first tries to establish one 
disorder and then proceeds to establish others. 
This roughly corresponds to constructing and 
completing a single set in a generator in the GSC 
model, and then later returning to construct the 
additional sets for the generator. INTERNIST 
groups together competing disorders (i.e., a set 
of disorders in a generator) based on a simple but 
clever heuristic: 'Two diseases are competitors 
if the items not explained by one disease are a 
subset of the items not explained by the other; 
otherwise, they are alternatives (and may possibly 
coexist in the patient)." [Miller et al, 19821. 
In the terms of the GSC model, this corresponds to 
stating that dl and d2 are competitors if M+- 
man(dl) contains 
While this 

or is contained in M+-man(d2). 
simple heuristic often works in 

constructing a differential diagnosis, we can 
produce examples in the context of the GSC model 
for which it will fail 20 correctly group 
competing disorders together. It is also unclear 
that the INTERNIST inference mechanism is 

*For example, suppose M+ = {m 

d2r 
l.- .rnq} and only dl, 

and d3 have been evoked where M A 

{m2 m4 m5 m6 m7 m& 
man(d1) = 

{m3 "4 "5 m6 m7 mfj), and 
M+ fi man(d2) = 

{ml m2 m 1. 
M+ fl man(d3) = 

In the GSC model, Sol(P) = 
{ {dl d3? (d2 d3] ] which can be represented 
by the single generator {dl d21 x {d3] where dl 
and d2 are grouped together as competitors. 
Suppose that dl was ranked highest by the 
INTERNIST heuristic scoring procedure. Then M'- 
man(d1) = {ml m3) and M+-man(d2) = {ml m2], so 
INTERNIST would apparently fail to group dl and d2 
together as competitors. 

________________________________________------------------------------------------------------------------- 

Events in order 
of their discovery MANIFS SCOPE FOCUS 
Initially P, 0 B 
ml present {ml] Id, d2 d3 dql id1 d2 d3 dq) 
m2 absent II I, (1 

m3 absent II ,I ,I 

m4 present {ml m4) {dl d2 d3 d4 d5 d8) {dl d2] 
m5 present (ml m4 m5) {dl d2 d3 d4 d5 d7 d8 dg) {dl d2) x id7 d8 dg) 

and 

id81 x Id3 d4) 
m6 absent 11 ,t II 
_______-___________-____________________------------------------------------------------------------------- 

Figure 3: Sequential problem solving using the set covering model. 
______________-_________________________------------------------------------------------------------------- 
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guaranteed to always find all possible 
explanations for a set of manifestations. 
Reportedly, the "depth first" approach used in 
INTERNIST resulted . less than optimal 
performance [Miller ,:" al, 19821. Recent 
enhancements in INTERNIST's successor CADUCEUS 
attempt to overcome some of these limitations 
through the use of "constrictors" to delineate the 
top-level structure of a problem [Pople, 19771. 
These changes are quite distinct from the approach 
taken in the GSC model, but they do add a "breadth 
first" component to hypothesis construction. 

We are currently developing the GSC model in 
two ways: by studying its application in medical 
expert systems and by formally developing the 
mathematical theory. Currently, we have 
implemented two medical diagnostic expert systems 
based on the GSC model, one for dizziness (a 
difficult medical problem because of the many 
possible causes) and one for peroneal muscular 
atrophy [Reggia, 1981; Reggia et al, 19831. While 
the GSC model forms the central mechanism of these 
expert systems, the basic model was augmented in a 
number of ways to make it more useful for real- 
world problem solving. For example, the "symbolic 
probabilities" illustrated in Figure 1 were 
introduced and are used to rank competing 
explanations after the final FOCUS is 
constructed. A heuristic approach to question 
generation and termination was adopted. When 
tested on prototype cases these expert systems 
functioned well, but modifications to the content 
of the knowledge bases (not the GSC model) would 
be necessary before more extensive evaluation in 
practice using a series of real patients could be 
done. 

In parallel, we are developing the 
mathematical basis of the GSC model [Reggia et al, 
19841. This has involved defining a variety of 
operations on generators and expressing formal 
algorithms in terms of those operations. We are 
proving the correctness of the these algorithms 
and have established criteria for decomposing 
diagnostic problems into independent subproblems 
that are easier to solve. While the GSC model as 
it currently exists does not address all aspects 
of diagnostic problem solv-lng, it does appear to 
provide a reasonable starting point from which to 
formalize the underlying abductive inference 
process that is involved. 
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