
AN INTELLIGENT AID FOR CIRCUIT REDESIGN

Tom M. Mitchell, Louis I. Steinberg, Smadar Kedar-Cabelli
Van E. Kelly, Jeffrey Shulman, Timothy Weinrich

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903

Abstract

Digital circuit redesign is a task that requires knowledge
of CirCUit structure, function, and purpose, and of the
interrelationships among these We describe a
knowledge-based system, REDESIGN, which assists In the
redesign of digital circuits to meet altered functlonal
specifications. REDESIGN assists the user in focusing on an
appropriate portion of the circuit, generating possible local
changes within the circuit, ranking these possible changes,
and detecting undesirable side-effects of redesigns. lt
provides this assistance by combining two modes of
reasoning about circuits: (I) causal reasoning involving
analysis of circuit operation, and (2) reasoning about the
purposes, or roles, of various circuit modules within the
larger circuit. We describe these two modes of reasoning,
and the way in which they are combined by REDESIGN to
provide aid In circuit redesign.

I Introduction

The AI/VLSI group at Rutgers is exploring Artificial
Intelligence approaches to a new generation of design and
debugging alds for digital circuits. This work has led to a
general exploration of methods for representing and
reasoning about complex artifacts, and about the
interrelationships among their purpose, function, and
structure. Over the past few years we have developed a
prototype intelligent assistant (called REDESIGN) for the
functional redesign of digital TTL circuits This paper
reports on the REDESIGN system, its capabillties for
representing and reasoning about digital circuits, and its use
of these capabilities to assist in circuit redesign.

A. The Problem

In the functional redesign problem the system is given
the schematic of a working digital circuit (e.g., a computer
terminal), and its functional specifications (e.g, the fact that
it displays 80 characters per line, 25 lines per screen,
displays the cursor at a programmable address, etc.). The
system is also given a data structure called a design plan,
which relates the circuit schematic to its specifications.
Given a desired change to the functional specifications (e.g.,
require that the terminal display 72 characters per line), the
task is then to redesign the circuit so that it will meet
these altered specifications.

*This material is based on work supported by the
Defense Advanced Research Projects Agency under
Research Contract NO00 14-8 1 -K-0394. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed or
implied of the Defense Advanced Research Projects
Agency or the U.S. Government

The formulation of the design problem presented here
is very similar to planning problems in the Al literature, and
the issues addressed in this work are related to those
addressed by others working in the areas of planning and
design, such as C2, 4, 6, 7, 8, 9, 101 Our work IS also
related to that of [I], which deals with recognlzlng circuits
rather than designing them, and which addresses the
relations among circuit function, structure, and purpose

Design and redesign are closely related problems In
addressing redesign rather than design, we have focused
more on how to describe usefully the interconnected
subgoals and constraints which characterize the solution to
a design problem, and less on control of search In design
One view of functional redesign IS that it is a form of
analogical problem solving. In particular, the original circuit
provides a solution to the problem of implementing the
original specifications. Given a new set of speciflcatlons
which is nearly identical, the hope is to implement these
specifications in a closely analogous fashion (i.e, by making
only minor changes to the original circuit schematlc) The
key to using the analogy effectively lies largely in havtng
recorded the essentials of the original solution In a fashion
that will allow determtning which portlons can be reused,
and which changes will lead to undesirable InteractIons
among subgoal solutions

The next section discusses the representation of
circuits, and the notions of circuit behavior and
specifications The subsequent section describes the two
modes of reasoning about circuits employed by REDESIGN
causal reasoning and reasoning about purpose We then
illustrate the use of these modes of reasoning by
REDESIGN, by tracing its use for a specific redesign
problem

II Representing Circuits, Behaviors and Specifications

The structure of a circuit is represented by a network
of modules and data-paths A module represents either a
Single Component or a cluster of components being viewed
as a single functional block. Similarly, a data-path
represents either a wire or a group of wires. The data
flowing on a data-path is represented by a data-stream,
and the operation performed by a module is represented by
a module function.

c3, 51
These representations are described in

One aspect of this circuit representation that has
been important in REDESIGN IS that data-streams represent
the entire time history of data values on a data-path, rather
than a single value at a single time, as in many circuit
simulators. This has proven to allow considerable flexibility
in reasoning about circuit behavior over time.

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

In reasoning about redesign, REDESIGN must distinguish
between what happens to be true of the circuit (we refer
to this as the circuit behavior), and what must be true for
that circuit to work correctiy (we refer to this as the
circuit specifications) Therefore, for each module function
and datastream, both behavior and specifications are
recorded. For example, the behavior of a particular module
may state that its output will be the sum of its inputs,
delayed by 100 nanoseconds, while the specifications for
that module may simply require that the output be delayed
by less that 500 nanoseconds

While these definitions look straightforward, the notion

operation based on a causal model of the circuit, and one
to reason about the purposes of circuit submodules (i.e
their roles in implementing the global circuit specifications)
These two modes of reasoning are combined to provide
assistance at various stages of the redesign process.

A. Causal Reasoning

Causal reasoning answers questions such as “If input X
is supplied to the circuit module, what will the output be?”
and “If output Y is desired, what must be provided as
inputs to the module>“, where X and Y are complete

of a specification must be defined more precisely. It is
useful to think of the specification of a module as giving
the range within which the behavior of that module can be
altered without making the circuit as a whole malfunction.
However, the range of acceptable behaviors depends upon
what else in the circuit is allowed to change One could
define a module’s specifications as the range of acceptable
behaviors, assuming the specifications of all other modules
remain unchanged, but allowing other modules to have any
behavior within their own specifications We term this kind
of specification an s-specification. Or, one could define a
module’s specification as the range of acceptable behaviors.
assuming every other behavior In the circuit remains fixed.
We term this kind of specification a b-specification.

Notice that the s-specifications of a module will always malntalns a Dependency Network that records, for each

be at least as restrictive as its b-specifications (since s- specification, both its source and the path in the circuit
specifications are based on weaker assumptions regarding through which It was propagated See C3, 51 for more
the surrounding circuitry). Thus, it is possible for a information on CRITTER.

component to -violate Its s-specifications ibut not its b-
specifications), and for the clrcult as a whoie to still
operate correctly. While top down design systems typically
must deal with s-specif Ications (since b-specifications are
not defined untii the final circuit implementation IS known),
in REDESIGN we have found it most useful to record b-
specifications. This is because in considering possible
changes to an individual module within a completed design
we make the default assumption that the rest of the circuit,
and hence the rest of the behaviors, will remain unchanged.
Of course, if changes are made in two modules then one
must keep track of how changes in each one affect the b-
specifications of the other

B. Reasoning about Purpose

A second kind of reasoning important in redesign
concerns the roles, or purposes, of various circuit modules
in implementing the overall circuit specif lcations Questions
of this sort that arise during redesign include “What IS the
purpose of circuit module MT” and “How are the circuit
specifications decomposed into subspecifications to be
implemented by separate sections of the hardware?”
Questions of this sort can be answered by REDESIGN, by
examining the Design Plan of the circuit

The Design Plan is a data structure that shows how
circuit specifications are decomposed and implemented in
the circuit, as well as the conflicts and subgoals that arise
during design. It contains enough informatton to allow
“replaying” the original design, and is characterized in terms
of a set of imp/ementation rules that embody In
executable form general knowledge about circuit design
tactics This Design Plan must be provided to REDESIGN,
as part of the characterizatron of the circuit which is to be
redesigned

Ill Two Modes of Reasoning about Circuits

A variety of types of questions arise when redesigning
a circuit REDESIGN uses two separate modes of reasoning
to answer these questions -- one to analyze circuit

1 In order to illustrate the form of the Design Plan,
Slice
Indicss

consider the simple Character Generator Module (CGM)
circuit shown in figure 3- I, This circuit is similar to a

/II\ standard circuit used In most videc computer terminals
I

LATCH - ROM - SHIFT -- It is the part of the terminal that translates the ASCII

- 74175 - 6574 - REGISTER character codes into the corresponding dot matrix to be
- 74166 displayed on the screen.

Characters
This circuit accepts as input (1) a

stream of ASCII encoded Characters, (2) a stream of binary
encoded integers, called Slice- Indices that specify which
horizontal slice of the character dot matrix is to be

I

displayed, and

I

(3) several clock signals used for
synchronization The circuit must produce a stream of

Timing 2
Signals

Character-Slices, each of which is a bit str:ng
corresponding to the dots to be displayed on the terminal
screen for the selected horizontal slice of the input
Character.

Figure III -1: The Character Generator Module

275

The heart of the CGM design is a read-only memory,
the ROM6574. This ROM6574 stores the definition of the
character font (the dot matrix to be displayed for each
character), one Character-Slice per byte of memory. To
retrieve the Character-Slice corresponding to a given
Character and Slice-index, the ASCII code for the character
is concatenated with the binary representation of the Slice-
Index, and used to address the ROM6574. The other
components in this circuit are used to interface the
ROM6574 to the desired input and output formats. For
example, the CGM specifications require serial output while
ROMs produce parallel output. Therefore, a shift register
(SHIFT-REGISTER-74 166) is used to convert the output
data to serial. Also, because the address inputs to the
ROM6475 must be stable for at least 500 nsec. while the
input Characters are stable for only 300 nsec., a latch
(LATCH741 75) is used to capture the input Characters, and
hold these data values stable for an acceptable duration.

The above paragraph summarizes the purpose of each
circuit component and the conflicts and subgoals that
appear during design. This is precisely the kind of
summary that must be captured in the Design Plan, in
order to allow the REDESIGN program to reason
effectively about the design and about the purposes of
individual circuit components.

Figure Ill-2 illustrates the Design Plan used to describe
the CGM circuit to REDESIGN. Each node in the Design
Plan corresponds to some abstracted circuit module whose
implementation is described by the hierarchy below it. The
topmost node in this Design Plan represents the entire
CGM, and its functional specifications. The bottom most
nodes in the Design Plan represent individual components in
the circuit. Each solid vertical link between modules in the
Design Plan corresponds to some implementation choice in
the design, and is associated with some general
Implementation rule which, when executed, could recreate
this rmplementation step. For example, the vertical link
ieadlng down from the topmost module in the figure
represents the decision to use a Read-Only Memory (ROM)
to implement the CGM. This Implementation choice is
associated with the implementation rule which states “IF the
goal is to implement some finite mapping between input and
output data values, then use a ROM whose contents store
the desired mapping” (note this leaves open the choice of
the exact type of ROM.)

Each dashed link in the Design Plan represents a
conflict arising from some implementation choice or
choices, and leads to a design subgoal, represented by a
new circuit module with appropriate specifications. For
example, a conflict follows from the implement&on choice
to use a ROM, and leads to the subgoal module labelled
“Parallel-to-Serial-Subgoal”. The conflict in this case is the
discrepancy between the known output signal format of
ROMs (i.e., parallel) and the required output signal format of
the CGM (i.e., serial). The specifications of the new subgoal
module are therefore to convert the parallel signal to serial.
In a similar fashion, the implementation choice to use the
specific ROM6574 leads to another conflict, and to the
resulting subgoal to extend the duration of the input data
elements.

By examining the Design Plan of a circuit, REDESIGN is
able to reason about purposes of various circuit modules,
and about the way in which the circuit specifications are
implemented. The general implementation rules used to
summarize the design choices can be used to “replay” the
Design Plan for the similar circuit specifications, and thus
allow for a straiahtforward kind of desian bv analoav.

IV Redesigning a Circuit

This section illustrates the use of both causal reasoning
and reasoning about purpose In redesigning a circuit. It
traces the actions of the REDESIGN program as it took part
in a particular redesign of the Video Output Clrcutt WOC)
of a computer terminal The Video Output Circuit (whlch
contains the Character Generator Module discussed earlier)
is shown In figure 4- 1. It is the part of the computer
terminal that produces the composite video informatton to
be displayed on the terminal screen. It produces this
output from its combined inputs, which include the
characters to be displayed, the cursor position,
synchronization information for blanking the perimeter of
the terminal screen, and special display commands (e.g., to
blink a particular character).

In this example, we consider redesigning the VOC to
display characters in an italics font rather than Its current
font. Given a redesign problem, REDESIGN guides the user
through the following sequence of five subtasks (1 J focus
on an appropriate portion of the circuit, (2) generate
redesign options to the levei of proposed specifications
for individual modules, (3) rank the generated options, (4)
implement the selected redesign option, and (5) detect and
repair side effects resulting from the redesign. A more
complete trace and discussion of this example IS given In

[51.

Focus attention on appropriate section(s) of the
circuit. In many cases, the most difficult step in functional
redesign is determining which portions of the circuit should
be ignored. Focusing on relevant details In one locality of
the circuit while ignoring irrelevant details In other localltles
can greatly simplify the complexity of redesign. In order
to determine an appropriate focus, REDESIGN “replays” the
Design Plan by reinvoking the recorded implementation rules
with the changed circuit specif Ications. During this replay
process, whenever an abstract circuit module is produced
by some implementation step, its purpose is compared with
the purpose of the corresponding module in the original
Design Plan. If the purpose is unchanged, then the original
implementation of this module will be reused without

Characters
Slice-Indices

Timing Signals

USE USE
6574 SHIFT

REGISTER
74166

$ + f
Characters LATCH ROM SHIFT Character

74175 - 6574 - REGISTER - Slices
74166

Slice Indices A

Figure 111-2: Design Plan for the CGM

276

Figure IV-l:

change in the new design**. If the new module has a
different purpose than the corresponding module in the old
Design Plan, (e.g., the new CGM must implement a different
character font), an attempt is still made to apply the same
implementation rule as in the original design (e.g., still try to
use a ROM). If this tmplementation rule IS not useful in the
new design (as with the rule that suggests using the
specific ROM6574). then REDESIGN stops expanding this
portion of the Design Plan, and marks the corresponding
portion of the circuit as a portion to be focused on for
further redesign The use of the Design Plan as sketched
above leads in the current example to a focus on
redesigning the abstract ROM module within the CGM within
the VOC circuit. This abstract ROM module is implemented
in the current circuit by two components as shown in
figure Ill-2 (the ROM6574 and LATCH741 75). A second
method of focusing is possible, by using the Dependency
Network produced by CRITTER. This method involves
isolating those points in the circuit that possess
specifications derived from the changed specification on
the cutput datastream The resulting focus is generally
broader than that determined from the Design Plan, because
out of the many places in the circuit that can impact any
given output specification, only a small proportion of these
involve circuitry whose main purpose is to implement that
specification.

Generate redesign options to the level of proposed
specifications for individual circuit modules. Once an
initial focus for the redesign has been determlned, redesign
options are generated which recommend either altering the
specifications of individual modules, or adding new modules
with stated specifications. In both cases, only the new
functional specificattons are determined at this point -- the
circuitry to implement these specifications IS determined
later The constraint propagation capabilities of CRITTER
provide the basis for generating these redesign options In
the current example, once REDESIGN has focused on the
section of the voc including the ROM6574 and
LATCH74175, it considers the new output specification for
this circuit segment, and propagates it back through this
segment. Before each propagation step, REDESIGN
considers the option of breaking the wire at that point and
inserting a module to transform the values on that Jvlre to
values satisfying the required specif icatlon. In addition, it

Bv
I CBIxNK

Video Output Circuit

considers the option of altering the module lmmedlately
upstream, so that it will provide the required signal at that
point For each of the generated optlons, the new
functtonal specifications are defined In terms of (1) the new
specification to be achieved. and (21 a ilst of unchanged
specifications found In the origlnal Dependency Network,
which are to be maintained In the current example, the
option generation process produces a list of five candidate
redesign options This list includes redesign options such
as “replace the ROM6574 by a module which stores the

new character font”, and “introduce a new mcdule at the
output of the ROM6574, which will transform the output
values into the desired font” (these options are described
by the program in a formal notation, and the above are
only English summaries).

Rank the generated redesign options. Heuristics for
ranking redesign options can be based on a variety of
concerns: (1) the estimated difficulty of implementing the
redesign option (e.g., components with zero delay cannot be
built), (2) the likely Impact of the implemented redesign on
global criteria such as power consumption and layout area,
and (3) the likelihood and severity of side effects that
might be associated with the redesign*%. In the current
example, the heuristic that selects the appropriate redesign
option suggests “Favor those redesign options that replace
existing modules whose purpose has changed.” In this
case, since the purpose of the ROM6574 has changed, the
option of replacing this component is recommended. The
recorded Dependency Network and Design Plan also
provide very useful informatron for estimating the relative

**One must still make certain that changes elsewhere in
the design do not Interact dangerously with the
implementation of this module In REDESIGN, this is
accompllshed without having to directly examlnlng the
implementation of the module. Instead. design changes
elsewhere In the circuit are checked for consistency with
the constraints recorded in the Dependency Network
produced by CRITTER.

***The current REDESIGN system has only a prlmltive set
of heurlstlcs for ranking redesign optlons

277

severity of various changes to the circuit. Because the
Design Plan shows the dependencies among implementation
decisions (e.g., the purpose for the LATCH74 175 is derived
from the decision to use the specific ROM74 175) it
provides a basis for ordering the importance of
components and associated constraints in the overall design
(e.g., if the ROM6574 is removed, the LATCH75 174 may no
longer have a purpose for existing). This ordering of
circuit modules, and of the datastream constraints that they
impose, provides an important basis for estimating the
relative extent of side effects associated with their change.

Implement the selected redesign option. The above
steps translate the original redesign request into some set
of more local (and hopefully simpler) specification changes.
While the implementation rules that REDESIGN possesses
can be used for design****, we have not focused on
automating this step. Thus, the user is left to implement
the redesign option.

Detect and Repair Side Effects Arising from the
Redesign Once the redesigned circuit is produced,
REDESIGN checks the new circuit segment to try to
determine (a) that it does achieve the desired new purpose,
and (b) that it does not lead to undesirable side effects
Undesirable side effects are detected as violations of the
Dependency Network specifications at the inputs and
outputs of the altered circuit segment. If a specification is
violated, the new circuitry might be redesigned, or the
specification might itself be modified or removed by
redesigning a different portion of the circuit. The
Dependency Network can be examined to determine the
source of the violated specification, and to determine the
locus of circuit points at which the specification could be
altered.

V Summary

REDESIGN is a research prototype system that
demonstrates the feasibility of providing intelligent aids for
redesign and design of digital circuits. It provides aid in
focusing attention on an appropriate portion of the crrcuit,
in generating and ranking redesign options, and in
monitoring and manipulating the many constraints involved in
making a design work. While the current REDESIGN system
has many limitations (e.g., in the size of circuits it can
handle, its Inability to help with certatn classes of redesigns,
shortcomings of its causal reasoning methods,
incompleteness of its knowledge base of implementation
rules, etc.) the basic representations and approaches to
reasoning appear useful.

Several aspects of our approach have contributed to
the success of REDESIGN. The most apparent of these is
the combined use of reasoning about causality in the
circurt, and reasoning about the purposes of parts of the
circuit. There are also some important aspects to how
REDESIGN reasons about causality and purpose. ln
reasoning about causality, REDESIGN describes both the
behavior and the specifications for a data stream, in a way
that allows it to describe entire histories, not just data
stream values at particular time instants. REDESIGN can

****We have recently begun an effort to build a VLSI
Design Consultant system which uses similar rules for
automated design.

propagate these descriptions through the circuit, to build a
Dependency Network showing how the specifications for
each data stream are derived from the behaviors of the
modules and the specifrcatlons for the circuit as a whole
In reasoning about purposes, we have viewed the original
design process essentially as a planning problem, with
subgoals derived both from the decomposition of parent
goals and from conflicts between other subgoals The
Design Plan provides REDESIGN with an explicit summary of
this planning process, with detail enough to replay the
process, and to examine the particular relationships among
design goals and subgoals.

Cl1

I21

II31

c41

II51

II61

171

C81

CSI

Cl01

References

de Kleer, Johan. Casual And Teleological Reasoning
in Circuit Recognition, Ph.D. dissertation,
Massachusetts Institute Technology, January 1979.

Green, C., et al., “Research on Knowledge-Based
Programming and Algorithm Design”, Research
Report KES.U.8 1.2, Kestrel Institute, September
1982.

Kelly, V., Steinberg, L., “The CRITTER System:
Analyzing Digital Circuits by Propagating Behaviors
and Specifications,” Proceedings of the National
Conference on Artificial / ntel / igence, August
1982, pp 284-289, Also Rutgers Computer
Science Department Technical Report LCSR-TR-30,
and Re-Design Project Working Paper #6

J. McDermott, “Domain Knowledge and the Design
Process,” Proceedings of the 78th Design
Automation Conference, IEEE, Nashville, 198 1.

Mitchell, T., Steinberg, L., Kedar-Cabelli, S., Kelly, V.,
Shulman, J., and Weinrich, T., “REDESIGN. A
Knowledge-Based System for Circuit Redesign”,
Technical Report DCS-TR, Rutgers Univ., April 1983

Mostow, D.J., and Lam, M., “Transformational VLSI
Design. A Progress Report”, Technical Report, USC-
ISI, November 1982.

Rich, Charles; Shrobe, Howard E.; Waters, Richard
C., “Computer Aided Evolutionary Destgn For
Software Engineering”, Al Memo 506,
Massachusetts Institute Technology, January 1979

Stef ik, Mark Jeffrey, Planning With Constraints,
Ph.D dissertation, Stanford University, January 1980

Sussman, Gerald Jay, Holloway, Jack, Knight, Jr,
Thomas F., “Computer Aided Evolutionary Design For
Digital Integrated Systems”, Al Memo 526,
Massachusetts Institute Technology, May 1979

Wile, David S., “Program Developments as Formal
Objects”, Technical Reoort, Inf ormatlon Sciences
Institute, July 198 1

