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Abstract 

We wish to design a diagnostic for a device from 
knowledge of its structure and function. The diagnostic should 
achieve both coverage of the faults that can occur in the device, 
and should strive to achieve specificify in its diagnosis when it 
detects a fault. 

A system is described that uses a simple model of hardware 
structure and function, representing the device in terms of its 
internal primitive functions and connections. The system 
designs a diagnostic in three steps. First, an extension of path 
sensitization is used to design a test for each of the connections 
in the device. Next, the resulting tests are improved by 
increasing their specificity. Finally the tests are ordered so that 
each relies on the fewest possible connections. 

We describe an implementation of the first of these steps 
and show an example of the results for a simple device. 

Introduction 

Figure 1 -- 4x2 Multiplexer 

This report describes research done at the Artificial Intelligence Laboratory 
of the Massachusetts Institute of rechnology. Support for the Laboratory’s 
artificial intelligence research on hardware troubleshooting is provided in part 
by the Digital Equipment Corporation. 

He can plan a diagnostic for this device by knowing only 
that the address lines select one of the data inputs and routes 
its data to the output. That much knowledge tells him that he 
should not test the data inputs until verifying the addressing 
lines, and that he can test the output independently of any 
single input by iterating over several values of the address. He 
would organize the diagnostic into phases: 

(1) Test whether the output of the multiplexer can transmit data 
correctly. 

(2) Test each whether each data input can be addressed. 
(3) Test whether data can be correctly transmitted by each 

data input. 

The plan shows attention to both coverage and resolution. 
It achieves coverage of faults by testing the address, data 
inputs, and data output. It achieves resolution by testing one 
function at a time and by having each test rely only on functions 
that have been previously tested. 

This is the competence that our system tries to capture. To 
accomplish this it relies on a simple model of hardware 
structure and function to represent the device and uses some 
general assumptions and principles of diagnostic design. With 
this foundation it is able to design a series of tests with 
coverage under the given fault model, and achieves resolution 
with tests that are specific, robust, and ordered so as to rely on 
previously tested components. 

We describe this simple model of hardware along with a 
general fault model. The information path model is intended to 
capture the ability of humans to plan diagnostics without 
knowing very much about the hardware implementation. The 
representation should be adequate to let us determine what 
tests need to be run and what dependencies exist among those 
tests. Using this model we develop a vocabulary of diagnosis 
that rests on the notion that every test has a set of conditions 
which should be minimized in order to achieve resolution. 

We then describe a system that uses these principles. The 
system designs a diagnostic in three steps. First, it designs 
many small tests, one to detect each fault that might occur. 
Second, it tries to improve these small tests so that each relies 
on fewer parts. Third, it aggregates the tests and orders them. 
We describe a program that implements the first phase in this 
system. The program treats inquiry design as a search problem 
in the space of possible inquiries for a given device. We 
describe some of the knowledge that the program uses to 
reduce the size of the search space. 
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Previous Work in Test Generation 
Gate 

Until recently, most efforts in automated test generation 
have focused on gate-level representations of combinatorial 
circuits, and have concentrated on achieving coverage of faults 
rather than resolution. The methodology typically employed is 
path sensifization. Path sensitization relies on two basic 
concepts: a fault must be sensitized and the result must be 
propagated to an output. A fault is sensitized when the effect of 
the fault is visible. In the digital domain, if a signal is stuck at 
zero (sa-0) and we try to force it to 1, then the fault is sensitized. 
A result is propagated to an output of a device by choosing 
inputs of the device so that the presence of the fault can be 
determined by looking at the output. The best-known algorithm 
for path sensitization is the D-algorithm ([l] and [2]). 

Experience with path sensitization indicates that (a) it is 
most successful when gate-level descriptions are used, 
although this is computationally expensive; (b) when more 
abstract functional descriptions are used, as in [3], a lack of 
correspondence between those functional descriptions and 
their hardware implementations has a negative effect on both 
the coverage and resolution of the resulting test sequences. 

Achieving coverage and resolution depends on choosing 
an appropriate level of abstraction and viewing the diagnostic 
as a collection of primitive tests that can be ordered in such a 
way as to increase their resolution. The key points in our 
selection of a level of abstraction are the notions that 
information paths connect functional devices, and that 
information flows between these devices along the paths. We 
use this model to abstract away from the digital irnplementation 
details as much as possible, and yet retain the ability to map the 
designed test sequence back onto the real device when the time 
comes. 

Figure 3 -- Multiplexer 

An explanation of how the 4x2 multiplexer works shows 
how it can be described in terms of a functional devices: “the 
address lines select a data input, that data input goes to the 
output; the unselected inputs have no effect on the output.” To 
represent these functions, we have chosen three primitive 
functional devices: the Gate, the Junction, and the Selector.* 

These are shown in figure 2. The paths that connect these 
functional primitives transmit sets of values. Examples of value 
Sets are the two-element sets {h i ,l o}, and the set D = 
{dO,dl...dn-I}, where n = 2rk, and k is the width of the path in 
bits. 

Paths are annotated with several forms of information. The 
most important is design information about the intended 
interaction of the devices. These intentions are represented by 
matching path input values to path output values. For example, 
the multiplexe: is designed so that when a gate’s control is 1 o 
its data input will not affect the multiplexer output. We use the 
value X-g to represent the value transmitted by the output of a 
gate when its control is 1 o. and the value X-j on an input of a 
junction to represent that the output is insensitive to that input. 
The design inforrnation is that X-g and X-j are equivalent. 
Henceforth we simply use the value X to represent that value. 

The Gate has a control input with the values nl ana I o. 
When the control input is hi, the data input is transmitted to its 
output. When the control input is 1 o, the output is insensitive to 
the data input. 

Our fault model refers only to path behavior: a fault is 
always a fault in the transmission of values from one end of a 
path to the other. Restricting faults to appear only on paths 
maintains a useful level of generality that encompasses a wide 
range of physical faults, including stuck-at and bridging faults. 
Our model assumes nonintermittency and unidirectional 
information ftow on paths3 Faults in devices are not yet 

The Junction has several inputs and a single output; it considered; the addition of such failIts will increase the size of 
merges several information paths. the problem. but we anticipate that it will not significantly 

A Selector has an address input that determines which of change the design process. At this stage we feel that the path 
its outputs will have the value hi, while the other outputs will fault approximation is good enough and general enough that it 
have the value 1 o. is still useful. 

The multiplexer that we build from these primitives is 
shown in figure 3. 

2. This set of primitives is a preliminary guess at the set of primitives needed. 
No claim to completeness is intended, and it is expected that the set will need to 

be expanded. 

We can now interpret the coverage and resolution criteria 
described earlier in the light of the intormation path model. A 
fundamental concept is that of the inquiry. An inquiry is a 

3. These are common assumptions to 

sometimes vlolaled in the real world [4]. 
make when doing dtagnosls, although 
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Figure 2 -- Primitives 



question of the form, “Does path X transmit the value Y 
correctly?“ The pair (X,Y) is the foclfs of the inquiry. Each 
inquiry relies on some subset of paths within the device. Its 
reliance on those paths is expressed as a set of conditions on 
those paths. if the inquiry fails, we can conclude that one of the 
conditions was violated, but we won’t know which one. Thus, 
the larger the set of conditions, the less specific the inquiry. 
Each inquiry has a single focus, and consists of a set of input 
values to the device, a comparison to be performed on an 

output, and some conditions. One of the conditions that the 
inquiry is obviously testing-- because it was originally postulated 
that way-- is that the focus is OK. Other conditions that an 
inquiry might include are that all the irnmediate predecessor 
paths must be OK. 

For example, an inquiry about whether the output of a gate 
can transmit the value d2 consists of the input value r!2 on the 
data input and h i on the control input, a test to see whcthcr the 
output is d2, and the conditions that the data inpM, control 
input, and output must all be OK. This simple inquiry is shown 
below. 

Inquiry I-l : [ Out ? d2 ] 
Values: (DataIn = d2) (Ctl = hi) (Out ‘i‘ 42) 
Conditions: (ok DataIn) (ok Ctl) (ok OH!.) 

When an inquiry gets a bad result, we sa:; that the inquiry 
implicates the paths mentioned in the conditicns. k fest is 
series of inquiries, one for every value of a particular path.4 If 
none of the inquiries implicates, then we conclude that the 
focus path transmitted all its values correctl;/. In this case we 
say that the test exonerates the path. 

A diagnostic may be viewed as an attempt ia exonerate all 
the parts in the device under test. Hence a c>r?,gno;iic consists 
of an inquiry for every value on every path to see that the path 
can transmit the value faithfully; this is hc:;r coverage is 
achieved. To provide resolution, each inquiry shou!d implicate 
as few paths as possible when it fails. 

Overview of the Diagnostic Generation Pxxedure 

Designing a diagnostic is done irl three s::c?ps. First we 
create inquiries for every value on every path in the device. 
From this step we get a set of inquiries, cash with its own set of 
conditions. Second, we analyze and combine the inquiries to 
reduce their conditions. This is done using the single point of 

failure assumption, hereafter SPFA. In our case, the SPFA is an 
assumption that only a single path is faulty. Third, we collect 
the reduced inquiries into tests and order ihe tests in such a 
way as to take advantage of prior test results. The resulting 
ordered inquiries can then be transMed into the actual test 
patterns using implementation information. 

During the Inquiry Design Phase we use an approach 
similar to path sensitization, but apply it to our information-path 
model of the device. There are currently 39 rules that 
propagate values and conditions throughout a device. This 
phase will be treated in more depth momentarily. 

4. 7 here are 2tk inquiries per path in the 
restrictive fault model there are only O(k). 

the general case, but under a more 

The Inquiry Improvement Phase transforms each 
inquiry to reduce its conditions. The SPFA can be used to do 
this in several ways. One of the techniques used to reduce 
conditions is collaboration: two inquiries about the same focus 
can be combined into a compound inquiry having a reduced set 
of conditions. We can do this under the SPFA because only 
conditions that appear in both could be responsible for both 
inquiries failing. For example, if we have two inquiries for A, 
one with the conditions (ok A) and (ok B), the other with the 
conditions (ok A) and (ok C ), we can make another inquiry 
with only the condition ( ok A). 

This phase also collects all the inquiries sharing a focus 
path to create a test for that path. For example, the inquiry that 
asks whether a gate control input can transmit hi and the 
inquiry that asks whether it can transmit 1 o comprise a test for 
that path. A test consists of the set of inquiries and a set of 
conditions that is the union of the inquiries’ conditions; this 
union represents all the paths on which the test relies. 

The Test Ordering Phase further improves resolution by 
ordering the tests so that each has the minimal set of 
conditions. Tests’ conditions can be reduced by ordering 
because any paths that have already been tested need not 
appear in later tests’ conditions. Ordering of tests in this phase 
is done pairwise, making use of the principle that “tests that 
could implicate fewer paths should be tested first.” For 
example, if test T-l has the conditions (ok A) and (ok B) and 
test T-2 has the condition (ok A), test T-2 should be done first. 

The Inquiry Design Phase 

Recall that path sensitization works by sensitizing a fault 
and propagating the result. Henceforth, we will say that 
backward propagation of values sensitizes a fault, and forward 

propagation makes a result visible. To design inquiries, we 
propagate path values and path conditions. The local 
propagations are described by rules. 

There are four kinds of rules, capturing four different kinds 
of knowledge. Behavior rules describe the input/output 
behavior of devices. Sensitization rules assign values to the 
inputs of a device in two situations: (a) when an output of the 
device must be forced to some value; (b) when an output of the 
device must be made sensitive to one input. Goal rules guide 
the direction that the sensitization rules propagate. Condifion 

rules add paths to the conditions of the inquiry wherever a fault 
might cause the same effect as violating an existing condition. 
The rules are associated with devices and propagate across 
single devices. 

To design an inquiry for a given focus path and value, we 
assign the path to have the goal of being sensitized and its 
result propagated, its value to be the focus value, and its 
condition to be OK. The rules then propagate goals, values, and 
conditions outward to the edges of the device. For some rules 

choices are available, and we iterate through these. If at any 
point we reach a contradictory assignment of values, we 
conclude that the choices we made were incompatible and that 
we should go on to the next alternative. 

Goal rules tell which direction the sensitization rules will 
propagate, but do not assign values to the paths. Each path 
value must be either accomplished, meaning that backward 
propagation must occur from it, or observed, meaning that 



forward propagation must occur. Backward propagation is 
guided by rules that can be expressed as, “if we wish to 
accomplish any value on the output, we need to accomplish 
some values on the inputs.“ Forward propagation is guided by 
rules that are expressed as, “if we wish to observe some input 
of a device, then we need to accomplish some values on its 
other inputs and observe an output. 

Sensitization rules assign values to inputs of a device in 
both forward and backward propagations. GS-1, shown in 
figure 4, is an example of a forward propagation. To observe 
any value on the data input of a Gate, we must assign hi to the 
control input, because if we assigned a lo, the output would 
always be insensitive to the data input. GS-3, shown in figure 5, 
is an example of backward propagation. If we want to 
accomplish some value di, we need to accomplish that same 
value on the data input, and accomplish hi on the control input. 

obs 

Figure 4 -- Sensitization Rule GS- 1 

Figure 5 -- Sensitization Rule GS-2 

Behavior rules describe the behavior of the device by 
propagating values. For example, a behavior rule for the gate is 
that when the control input is hi, the output gets assigned the 
value of the data input. 

Condition rules propagate conditions after the goals and 
values have been assigned. GC-1, in figure 6, is an example of a 
backward condition propagation. To test the data output of a 

gate to see whether it transmits any value di that is not X, the 
control input would be hi and data input di. Since faults on 
either the control or data inputs would violate OK on !he output, 
OK propagates to both the input paths. Condition rules add to 

the conditions of the inquiry wherever a fault might cause the 
same effect as violating an already existing condition. 

act 

hi 

Figure 6 -- Condition Rule GC-1 

Inquiries are designed using these rules. Consider 
designing an inquiry to see whether the output of gate Gl of the 
multiplexer transmits the value d2. We start by assigning to the 
path the goals act (accomplish) and obs (observe), the value 
d2, and the condition OK. Rules fire to propagate goals, 
conditions, and values throughout the device; the final 
assignments are shown in figure 7.5 The resulting inquiry is 
shown below. 

Inquiry I-25 : [ DO-l ? d2 ] 
Values: (A = dl) (DI-1 = d2) (DI-2 = X) 

(DI-3 = X) (DO ? d2) 
Conditions: 
(ok A) (ok E-l) (ok DI-1) (ok DO-l) (ok DO-2) 
(ok DO-3) (ok DO) (or (ok DI-2) (ok E-2)) 
(or (ok DI-3) (ok E-3)) 

This inquiry means: To test whether DO-1 transmits d2, 
assign A to be d I, Dl-1 to be d2, and let the other Dl’s be X. The 
test will be whether DO has the value d2. If the test succeeds, 
conclude that DO-l can transmit d2. If the test fails, conclude 
that one of the paths A, E-l, DI-1, DO-l, DO-2, DO-3, or DO was 
bad, that E-2 and DI-2 were bad, or that E-3 and DI-3 were bad. 

act act + obs 
ok ok 

E-3 

Figure 7 -- Inquiry for DO-1 
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Implementation of the Inquiry Design Phase 

An implementation of the inquiry design phase has been 
written in Franz Lisp on a VAX-l l/780 running Unix. Devices 
built from the primitives of the information path model are 
represented in a language described in [4]. The rules described 
above are used to derive the consequences of goal, value, and 
condition assignments to paths. Because some rules require 
choices to be made, the program designs all the inquiries for a 
focus using exhaustive search. This search can be limited by 
taking advantage of nonexclusive sets of choices, and by 
making choices that result in locally minimal conditions. 

Because of the small size of the multiplexer problem, all the 
search trees are of depth 1, there is never more than a single 
choice point active at one time, and the greatest number of 
inquiries for a single focus is three.6 In general the size of the 
search tree has an upper bound of Of(n*m)?hl, where h is the 
length of the longest sequence of paths from an input to an 

output, n is the number devices in each stage, and m is the 
number of possible choices for each device. 

When the choices to be made are exclusive, the program 
iterates through the possible assignments. This results in a 
depth first search. 

In cases where the choices are not exclusive, the program 
avoids the iteration-- and thereby some search-- by using a 
more efficient mechanism that initially chooses a// the 
alternatives at the choice point. Later assignments may then 
simply rule out some of those alternatives without requiring 
backing up to the choice point. 

Search may also be avoided by making choices that are 
likely to yield better inquiries. Since we prefer inquiries with 
fewer conditions, we may search the tree in such a way that only 
those assignments are tried that keep local conditions to a 
minimum. 

Future Directions 

All the phases of the diagnostic design procedure have 
been implemented and tested on a number of examples. But 
there much more to the problem of designing diagnostics, as 
suggested both by the limitations of the inquiry design 
methodology and by the multiplexer problem described earlier. 

There are several irnportant limitations to the methodology 
of our current system. The rules can only propagate specific 
values, when at times sets of values would be more appropriate. 
The system also needs nonlocal information about relationships 
between values on related paths. In a junction, for example, we 
may need to know that to obtain a di at the output, exactly one 
of the inputs must be di while the other inputs have X. 
Unfortunately such assertions about the behavior of the 
junction cannot be represented by local assignments to 
individual paths. 

One answer to the latter problem is to redefine what things 
are local; related paths can be grouped as a collection of paths. 
Now any rules that propagate assertions about collections of 
paths are in fact local. If the device is described in a structural 

5. Around gates G2 and G3, the conditions on the control and data inputs have 
been or’d by a rule that checks whether X and 1 o are present and if so “or’s” 
the conditions. 

6. The outpui path can be tested with the address input assigned dl, d2, or d3. 

hierarchy, we might use this hierarchy as the basis of these 
collections; unfortunately these might not be the appropriate 
groupings for solving the problem. The test designer should 
derive the same conclusions as if it had an appropriate 
hierarchy available, thereby “discovering” the appropriate 
global information. Building the global information into the 
structure description seems like the wrong approach. 

However, more important than these shortcomings in the 
propagation machinery, the system must also be broadened. 
First, it is clear that the vocabulary of devices is extremely 
limited. It must be extended to include computational devices 
such as adders and shifters, as well as devices with state. 
Second, while path faults is a good place to start on the 
problem, the possibility of faults in devices must clearly be 

considered. We anticipate that we will deal with this by the 
standard approach of using hierarchic descriptions, and by a 
less traditional approach involving the use of a gradation of 
condition strengths that will allow us to express minimal device 
functionalities. 
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