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ABSTRACT 

A theory of heuristic game tree search and evalua- 
tion functions for estimating minimax values is 
developed. The result is quite different from the tradi- 
tional minimsx approach to game playing, and it leads 
to product-propagation rules for backing up values 
when subpositions in the game are independent. In this 
theory Nau’s paradox is avoided and deeper searching 
leads to better moves if one has reasonable evaluation 
functions. 

I INTRODUCTION 

For game-searching methodology, Nau (Nau, 1980) 
recently showed that the minimax algorithm can 
degrade the information provided by a static evaluation 
function. For the games developed by Pearl, this 
pathology also arises (Nau, 1981; and Pearl, 1982). 
Pearl (Pearl, 1982) suggested why it happens. The 
minimax algorithm finds the minimaz of e&n&es 
instead of estimating a minimas value. He also sug- 
gested one should consider product-propagation rules in 
order to estimate a minimax value. Nau fNau. 1983) 
investiga.ted this method experimentally and fo&d that 
for Pearl’s game it made correct moves more often than 
minimaxing did. For a different class of games (Nau’s 
games), however, each method made approximately the 
same number of correct moves. 

This paper introduces a mathematical theory of a 
heuristic game tree search. For this purpose a game 
model and a search model are constructed. We assume 
that the result from the game is win or loss and that 
draws are not permitted. The values (1 for a win of 
MAX and 0 for a win of MN) at the leaves of the 
corresponding game tree are assigned probabilistically. 
Improved visibility of the search can be achieved by 
assuring that the information given by the search of a 
level can be retrieved from the information obtained by 
the search of a deeper level. This theory applies to 
Pearl’s game and Nau’s game, but it does not strictly 
apply to most games. 

Three particular results are derived in this theory. 
First, the exact way to estimate a minimax value is to 
find the conditional probability of a forced win, given 
the information from t,he search. Second, if this condi- 
tional probability is used to evaluate moves then the 
result from a deeper search is on the average more 
accurate. Third, if the positions on the search frontier 
are independent (as in Pearl’s game), then this estimate 
is obtained by using the product-propagation rules sug- 
gested by Pearl (Pearl, 1981 and 1982). 

In using minimax values as criteria of decision 
making, if we assume that after the next move both 
players make perfect plays according to the minimax 
values, then our estimate becomes the conditional pro- 
bability of winning the whole game, and the theory leads 
to the best move in the situation where limited depth 
search is used to select the first move but perfect infor- 
mation is used for the remaining moves. Thus this 
theory is more realistic than the minimax theory, which 
should assume that perfect information is used at every 
move, but less realistic than a theory that recognizes 
that both sides mostly make their moves with imperfect 
information. 

For more realistic game playing, the evaluation 
function should estimate a win of the whole game at a 
node instead of the minimax value (i.e., a forced win). 
The minimax theory is based on the assumption that 
the value of any position at each move is always the 
minimax value of the position. Therefore, the evalua- 
tion at a node doesn’t change for each move. The func- 
tion in this paper assumes that there will be a major 
change after the first step. On the first move, the value 
is estimated from a limited depth search. On all later 
moves, the value becomes the minimax value. In realis- 
tic game playing, the estimate (of winning the whole 
game) at a position should change less drastically on 
most moves. The value at each node is to be estimated 
from a search, but the search usually goes deeper at 
each step. In terms of how much the value of a position 
changes from one move to the next, the realistic situa- 
tion should be intermediate between the assumptions 
that are implicit in the minimax theory and the 
assumptions in this paper. 
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II AN EXAMPLE III PROBABILISTIC MODELS 

1980) considered a special kind of games. A L 
Pearl, 
earl’s 

For purposes of theoretical study, Pearl 

game is represented by a complete uniform game tree 
with a branching factor d (2 2 , where the terminal 
nodes may assume I. ja win for LAX ) or 0 (a win for 
MIN) with a probablhty of p and 1 - p, respectively. 
Nau (Nau, 1983) considered a different kind of games. 
A Nau’s game also has a complete uniform game tree. 
To assign LOSS or WIN at terminals, each arc of the 
game tree is independently given the value 1 or -1 with 
a probability of p and 1 - p, respectively. Then the 
strength of a terminal is defined as the sum of the arc 
values on the path from the terminal to the root. The 
terminal is given WIN if its strength is positive, and 
LOSS otherwise. 

To illustrate the idea of the new search model, let 
us consider an uniform binary game tree of four levels, 
where the terminal nodes may have independently the 
value 1 (win for MAX) 
bability of p (0 < 

or 0 (loss for MAX) with a pro- 

The space 0 = (0, 1 P 
< 1) and 1 - p, respectively. 

8 of all leaf-patterns thus becomes 
a probability space. Assume that the heuristic search 
finds the number of winning leaves under the searched 
node. We associate each value k (k = 0, . . . ,8) at the 
root with the event 
Ek = {(Xl, * * . ,x8) E n 1 C;8,r X~ = k}. R is divided 
into 9 different such events, which form a partition of 
R. Similarly, the searched values i and 
j (0 5 i, j < 4) at the nodes of level 2 are associated 
with the eves 

All these sets form a finer partition of 0: 
EI, = Ui+j=k E;’ . The events given by the search of 
level 3 are of the form 

E.... = 
t 1121314 

Xl + 52 = 2.1, x3 + x4 = i,, 

x5 + x6 = i3, x7 + x8 = i4} 

g L i,, i,, is, i4 < 2) and form the finest partition of 
. Eij = (Ji,+ i2=i, i3+ i4=jEi,i2i3i4- 

Eili2i3i4 C Eij C Eh 
The relation 

(i, + i, = i, i3 + i, = j, and 

i+ j =k) means that the information from a deeper 
level is more accurate? and the improved visibility is 
thus formalized in this simple way. This formulation 
also holds for the general Pearl’s games and Nau’s 
games. 

Consider a game tree T with lz leaves and h levels. 
Without loss of generality, we assume that all game 
trees discussed in this paper have their leaves on the 
same level. All leaf-patterns CJ = (xi, . . . , x~), 
xi = 0 or I, form the space 0 = (0, I}“. If the values 
on the leaves are assigned according to a probability 
measure P on 0 w.r.t. the total Bore1 field (Chung, 
1974) F (i.e., 
say that 

the collection of all subsets of St), then we 
these games are in a probabilistic model: 

Definition I. A probabilistic game model for a game 
tree T with h levels and k leaves is a pair (0, P), where 
fl = (0, I}” and P is a probability measure on R w.r. t. 
the total Bore1 field. 

Definition 2. Let ($2, P) be a probabilistic game model 
for a game tree with h levels and k leaves. Then a search 
5’ on this model is probabilistic if S consists of an 
increasing sequence of Bore1 fields 

where F, = (4, fl} 

I 
1 

is the trivial Bore1 field and each Fi 
2 i < h) is generated by a partition of fl. For each 

euj-pattern w E St, the search S at level i determines 
the event E of the partition generating Fi such that 
UEEEFi,i=l,..., h. 

The increasing sequence (3.1) is the improved visi- 
bility of the search. In our example, F, is generated by 
all events Eh, F, by all E;~‘s, and all Ei,i2i3i4’s generate 
F,. For a general Pearl’s game or a Nau’s game (Nau, 
1983), the heuristic search that finds the number of l’s 
on the leaves under the searched node is similarly pro- 
babilistic. 

In a probabilistic game model (St, P) with a proba- 
bilistic search (3.1), we define the estimation of the 
minimax value IV (a random variable on fl) at any 
fixed node of the game tree as follows. 

Definition 3. For each i, 0 5 i 5 h, the conditional 
the minimux value A4 w.r.t. Fi, 

is called the i-th evaluation function 

Given an event E of level i, the value of pi is 
IMi(W) = P(M=l 1 E) for all w E E, which is just the 
conditional probability of a forced win, given E. 

From the increasing sequence (3.1), we know that 
the sequence Ch~i, F.} forms a martingale (Chung, 
1974): A~i = E(~j 1 Fi) for 0 -2 i < j < il. In 
words, nli IS an average of A4i if i < j. From this pro- 
perty the following theorem IS derived (Tzeng and Pur- 
dom, 1982): 
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This theorem shows that given the estimations of 
two levels, the deeper one has all the information and, 
therefore, the other estimation can be dispensed with. 

IV DECISION MAKING 

Let MAX move from a node A with n different 
children B,, . . . , B,. Let T be the current game tree 
with A as the root. pose that the game is in a pro- 

P) with a search (3.1). Let 
minimax value at the node 
of level j (1 < j 2 h ), con- 

side the est’mation of M(‘) for each i-(1 < i < n): 
Mlif = E(Mb) 1 F). If a move is said to becorrect if 
and only if a node &ith minimax value 1 is chosen, then 
we have the following main result: 

Theorem 2. A decision making method that depends 
on the search. of a fixed level j, .which chooses the node 
with the largest estimation M/‘) (1 5 i 5 n), will be 
improved, if j is increased. 

Proof. Given the information of levels jr and j, 
(1 2 j, < j, 5 h), suppose that for an arbitrary fixed 
game in this model the node Bx-, is chosen relative to 
level j, and Bk, is chosen relative to level j,. Further- 

more, for this fixed game let ~j, 
Mb+,) = y1 M.@“) = y2* 

(%) = x1, My‘) = x 
21 

Fi!dm 
, 

T%eorem 
Then x1 2 y1 and’L2 < y2. 

1 we have 

level j, is a forced win is always greater than or equal 
to the conditional probability that the chosen node rela- 
tive to level j, is a forced win. Since it is a sum of all 
such conditional probabilities, the probability that the 
chosen node relative to the level i, is a forced win is 
therefore greater than or equal to*t%e probability that 
the chosen node relative to the level j, is a forced win. 
If x2 < y2 for at least one game in this model, then the 
decision making of the deeper level is strictly improved. 
QED. 

Note that the estimation Afji) (1 < j < h) 
depends on the search of the whole tree T &stead of 
the subtree Ti under the node Bi. But if the searched 
moves are independent as in Pearl’s games, then each 
estimation depends on the corresponding subtree only 
(Tzeng and Purdom, 1982). 

V PRODUCT-PROPAGATION RULES 

Consider the backing up process on our example. 
Let A4 be the minimax value at the root, M, and M, 
the minimax values at the left son and the right son of 
the root, respectively. Given the searched event Eij of 
level 2, the estimation of M is 

P(M = 1 I E;j) = 

P(M = 1 1 CiEIXk = i, C:,5xk = j). 

If the root is a MIN node, then it can be proved that 

P(M = 1 I C&xk = i, Ctz5xk = j) = 

PWI = 1 1 c/f=19 = i)P(M, = 1 I J5iz5xk = j). 

(5.1) 

If the root is a MAX node, then the corresponding 
equation becomes 

P(M = 1 1 Ck4& = i, CfE5xk = j) = 1 - (5.2) 

(1 - P(M, = 1 1 C&Zk = i))(l - P(M, = 1 1 C&Q = j)). 

The values P(M, = 1 1 c;& = i) and 
Ppf, = 1 C&k 

I 
= j) are the estimates at the two chil- 

dren of t le root. The rules (5.1) and (5.2), called the 
product-propagation rules, hold because of the indepen- 
dence of the values at the leaves. This process also 
applies to general Pearl’s games for the search of each 
level. For more general independent cases, this result 
can be formalized and proved (Tzeng and Purdom, 
1982). 

In Nau’s games, nodes on the same level are gen- 
erally dependent and thus these rules are not applica- 
ble. For the general dependent case, the evaluation 
function exists so far only theoretically. Practical 
methods of finding its values should depend on the 
dependence of the searched nodes and should be studied 
for each individual case. The product-propagation 
method is only for the independent case, and if it is 
applied to general games, some unexpected features like 
Nau’s pathology are also possible. 

CONCLUSIONS 

The research reported here illustrates the impor- 
tance of search uncertainty and search visibility in 
developing a realistic mathematical model of heuristic 
search in game trees. In the presence of uncertainty, 
minimaxing is not the optimum method to combine the 
values obtained from the search. 
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