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ABSTRACT 

The Consistent Labeling Problem is of considerable 
importance in Artificial Intelligence, Operations Research and 
Symbolic Logic. It has received much attention, but most 
work has addressed the specialized binary form of the 
problem. Furthermore, none of the relatively few papers 
that treat the general problem have dealt analytically with 
the issue of complexity. In this paper we present two 
algorithms for solving the general Consistent Labeling 
Problem and for each of these the expected complexity is 
given under a simple statistical model for the distribution of 
problems. This model is sufficient to expose certain 
interesting aspects of complexity for the two algorithms. 
Work currently in progress will address more subtle 
aspects by extension to more refined satistical models. 

I INTRODUCTION 

The problem we consider here has received much 
attention under various names such as the Constraint 

Satisfaction Problem [ 11, the Consistent Labeling Problem 

121, the Satisf icing Assignment Problem [ 31, the 
Discrtete Relaxation Problem [4] and the Relation 
Synthesis Problem [S]. We will use the term Consistent 

Labeling Problem or CLP.* Relatively little appears treating 
the general form of the Problem - some exceptions are 

[5, 7, 2, 81. The specialized binary form is treated in 
[3, 9, 10, 1 1, 123 and notably in C 13, 141 where analytic 

expected complexities are derived. A summary of I: 141 
appears in [15]. 

The general Consistent Labeling Problem CLP is 
characterized by a finite list Z of n variables. Each variable 
z, has an associated finite domain D,, from which it can 
take any of M,, values or labels. Constraints exist on 
which values are mutually compatible for various subsets of 
the n variables. A solution-tuple or consistent-labeling 
assigns to each of the n variables a value in its 
corresponding domain such that all problem constraints are 
simultaneously satisfied. The goal is to find one or more 
solution-tuples. We analyze algorithms that find all 

solution-tuples for a problem. A constraint involving 
exactly r variables is said to be of arity r or to be r-ary. 
The sub-Problem of CLP containing all, and only, problem 
instances with at least one r-ary constraint, and no 

++“CLP” denotes a family of problem instances C61. A 
specific instance of CLP will be denoted by the lower-case 
“clp”. Analogously, we write “Problem” (with an upper-case 
P) for a set of Instances and “problem” for a single 
instance. 

constratnts of arity greater than r we call the r-ary 
Consistent Labeling Problem rCLP. Note that an r-ary 
problem may or may not have constraints of arity less than 
r. For ease of presentation, the results here are for the 
pure r-ary Problem arCLP on n variables each of equal 
domain size M. Instances of this Problem have exactly one 
r-ary constraint for each of the ( y ) possible r-subsets of 
the n problem variables, and have no constraints of arity 

less than r. In [ 161 we generalize to instances whose 
variables may have different size domains and whose 
constraints may have different arities, with possibly zero, 
one or even several constraints, independently for any 
subset of variables. The theory there also distinguishes 
between otherwise identical problems whose constraints 
differ in their degree of constraint or compatibility of 
their argument variables. This makes possible relatively 
problem-specific prediction of complexity for any 
conceivable clp. It also allows capturing of the important 
search-order effects on complexity that one finds for clps. 

II STATISTICAL MODELS FOR PROBLEMS 

In [ 131 Haralick carries out an expected complexity 
analysis for two pure binary CLP algorithms (BT and FC 
below) under a simple statistical model for problem 
generation. We call this model 0. This model simply 
considers that for any pair of values asslgned to any pair 
of variables, the probability is p that they are compatibile 
with respect to the corresponding binary constraint. In 

[ 141 we extend Haralick’s work by carrying out expected 
complexity analyses under more complex models 1 and 2, 
which have the important advantage of capturing the effect 
on complexity of changes in search orders used by an 
algorithm Such analyses were thus useable to give 
theoretical insight into how to intelligently order the seach 
for solutions - often at significant savings in search effort 
All analyses to date however treat only the pure binary 
Problem n2CLP. 

In this first analytic work beyond the binary CLP case 
we will stay with the analogue of the binary statlstical 
model 0. Again this will capture no order dependence 
effects - but we nevertheless will obtain useful insight into 
the main features of algorithm complexity for solving the 
more general clps For the general CLP the analogue of the 
above statistical model 0 is simply this: for each possible 
tuple of values assigned to the argument variables of a 
constraint, the probability is p that the value-tuple belongs 
to (i.e. is compatibile with respect to) the constraint. We 
use this model for the pure r-ary CLP here. We expect 
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shortly to complete the analysis for the fully general CLP, 
under this and the more refined statistical models 1 and 2 
Results under the model 2 will provide theoretical insight 
into order effects in the general case analogous to those 
made available in [ 141 for the pure binary case, as well as 
providing the analogous precision in predictrng a problem’s 
complexity. 

III ALGORITHMS 

In [ 131 Haralick empirically compares seven different 
algorithms for solving pure binary clps. For the 
experiments he conducted the ranking of algorithms 
obtained was essentially: 

best = wFC > FC > BM > PL > FL > BC > BT = worst 

where the abbreviations denoting algorithms are as used in 

c141. In particular, BT denotes the Backtracking algorithm 

[ 17, 181, FC denotes the Forward Checking algorithm and 
wFC is a variant of FC we call word-wise Forward 
Checking that exploits the bit-parallelism available in 
present machines. FC and wFC seem to have been 
independently discovered by Haralick [ 131 and McGregor 

[ 121, but in fact FC also appears in the earlier paper of 
Golomb and Baumert [ 171 where it is referred to as 
Backtracking with preclusion. In figures Ill- 1 and Ill-2 

respectively we present recursive versions of our general 
Backtracking (gBT) and general Forward Checking (gFC.1 
algorithms for solving arbitrary clps. These are quite 

natural generalizations of the corresponding pure binary 
algorithms BT and FC, which we now rename to be n2BT 
and n2FC. 

Common to both algorithms is the notion of an 
instantiation order** X = I: x1 x2 xn ] being some 
permutation of the conventionally ordered problem variables 
z = [ Zl 22 z, 1. By definition, a k-th level node of 
the gBT or gFC search tree is formed when variable xk is 
instantiated to (assigned) some value j7k from its 

corresponding domain DXk - this happens at lines 2 of gBT 

and gFC. At all k-th level nodes in either algorithm, 
instantiations or value assignments have been made for the 
same ordered sequence Ak = [ x1 x2 . xk ] Of the first 
k variables of (globally available) list X. Nodes at level k are 
distinct only in that they correspond to different 

instantiations made to the variables of A,. An instantiation 

sequence for the variables of A, is a list Ak = [X&. 
. ,, 1 of values x, E D, for the variables of A,. lt is 

built up in these algorithms’ using 1 1 the list concatenation 
operator. Such an instantiation sequence xk corresponds 
to a path through the search tree. Note that the node for 
a given instantiation sequence A,+, may not actually be 

generated due to the discovery of a violation of problem 
constraints at an earlier node Ak c Kk+, on that path. This 

is in fact where the usefulness of such algorithms arises 
since attempts to generate any candidate solution-tuples 
containing xk are then avoided. Initially for both alorithms k 

= 1, A,-, = 0. 

and are global 

In gBT all domains D, remain unchanged 

In gFC domains of some variables are In 

**We use square 
lrst or vector. 

brackets c . 1 throughout to denote a 

1 gBT( k xk-, ) 

2 Do for all xk e DXk 

3 & -&-, 11 &I 

4 lf gCheck( k A, ) + “xk Wipe-Out” 

5 then if k < n then gBT( k+l Ak 1 

6 eke print & 

7 end 

8 end gBT 

1 gCheck( k Ak ) 

2 Do for i = 1 to mk 

3 If v,,( A, ) c T,, 

4 then return “j& wipe-out” 

5 end 

6 Return “No xk wipe-out” 

7 end gCheck 

Figure Ill-l gBT and its subroutine gCheck 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

gFCI k -ij;,-, D ) 

Do for all x, e D,, 

&-Ak-, 11 &,I 

If k < n then Do 

D’ - gfilterl k D Ak 1 

If D’ + “D, wipe-out” 

then gFC( k+ 1 Ak D’ ) 

end 

eke print & 

end 

end gFC 

1 gFilter( k D Ak ) 

2 Do for all f e F, 

3 Do for i = 1 to mkf 

4 Do for all f e Df 
- -- 

5 If v,,,( A, f ) e T,,, 

6 then D, - Df - [?I 

7 end 

8 If D, = 0 then return “D, wipe-out” 

9 end 

10 end 

1 1 D’ - [ DXk+, DXk+2 . . D,” ] 

12 Return D’ 

13 end gFilter 

Figure Ill-2 gFC and its subroutrne gFilter 
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general updated at each node and are passed as an 
argument in the vector of domains 
D = [D,,DY2. .D, r! 1. Testing tuples of instantiations 

for compatibility with respect to constralntscrs denoted as a 
test of membership of the tuple in the set of compatible 
tuples for the corresponding constraint (line 3 of gCheck 
and line 5 of gfilter1. In practice these tests will usually be 
carried out on a constraint defined intensive/y via a 
procedure rather than defined extensive/y as a set. The 
algorithm and our analysis below are compatible with both 
representations. 

Algorithm QBT: At a level k node the current 

instantiation xk is tested for compatibility with respect to 
all mk constraints that involve xk and some of the k- 1 
earlier variables of A,. For a pure r-ary clp mk = (!I: ) 
since this is the number of possible r-ary constraints over 
xk and r-l other variables to be chosen from the k-l 
variables of A, besides xk. Note that Clck<n ( !I,’ 1 = ( : 1 
as required. The i-th constraint tested- cf no wipe-out 
prevents it) at each level k node we denote T,,. Its list of 
argument variables we denote by vki. The corresponding list 
Of Values for these variables, given the assignments Of A,,, 
is denoted vki( z;k I. This is simply the projection of xk 
onto vk,. For example if A, = [ z3 z6 z2 zg z4 1, A, = 

[ e a e g b 1 and the argument-list for constraint vki is 
Cz~z4Zgl,then&i(&J = [eba]. Given the - 
instantiations of A k-1, the current instantiation izk violates 
constraint T,, if vk;i ‘;li;, ) B T,, and this is tested at line 3 
of gCheck. 

Algorithm gFC: In addition to A,, gFC also uses F, = 

c xk+l xk+2 x, 1 the list of future variables, or not 
yet instantiated variables, at level k. At a level k node, each 
future variable f e F, has each of its potential future 
instantiations ? e D, (as contained in D, the list of updated 
domains for future variables) tested for compatibility with 
respect to ali mkf constraints that involve xk, f and some 
of the k- 1 earlier variables of A,. For pure r-ary clps, 
mkf = ( :Zi 1 since this is the number of possible r-ary 
constraints over variables xk, f and r-2 other variables to 
be chosen from the k-l variables of A, besides xk. Note 
that since there are n-k future variables f at level k, there 
is for the pure r-ary CLP ( n-k )( !I: ) new constraints to 
check at level k and c tskln ( n-k I( 112 ) = ( : ) as 
required. The i-th such constraint involving f, tested at each 
level k node (if no wipe-out prevents it) we denote T,,,. Its 
list of argument variables iS vkf, and the list of values 
assigned respectively to these variables given the 
instantiations of Nk and the value 7 being tested for f, we 
denOteIkfi( ii, f 1. Given zk, value i violates constraint - - 
T kf, if vk,,( A, f 1 B T,,, and this is tested at line 5 of 
gfilter. Lack of compatibility leads to ? being removed or 
filtered from its domain D,. The sample trace for 2FC 
appearing in fig 4 of [ 141 may be helpful. 

Note that the selection order for f E F, at line 2 of 
gFilter may be a function of level, or even a function of 
the node. In fact one could generalize the algorithm by 
merging the loops at lines 2 and 3 of gFilter to give 

returning “D, wipe-out” as soon as one occurs However 
for the pure binary clp, mkf = (:I: 1 = 1 and only the order 
of selection of f from F, is an Issue. This is the case 
studied in c 141 where we use the theory to suggest global 
and local Consistency-check Ordering (CO) heuristics for 
ranking the f of F,. However when mkf f 1 the question 
becomes how to rank the pairs (f il. If the statistical model 
were refined enough one might even study the advantages 

of merging the loop at line 4 as well with those at lines 2 
and 3. However under the present simple statistical model 
0, the nesting of loops shown is optimal, and any residual 
indeterminism is irrelevant (with respect to average 
complexity) in either algorithm. In particular, the instantiation 
ordering X is irrelevant on average under model 0. For 
individual problems though a good ordering can lead to 
significant savings, and our more refined model 1 and 2 
analyses of [ 141 capture this effect for the pure binary 
case. These theories are then used there to suggest 
theory-based global and local Instantiation Order (IO) 
heuristics that are found to be quite effective in reducing 
the complexity of problem solving. 

IV ANALYTIC RESULTS 

Under statistical model 0 it is easy to determine the 
probability P(clp) of a given problem clp - analogously to 
the model 1 result for the r = 2 case given in [ 14). In 
terms of P(clp) we can define the expected total number 
of nodes in a search tree (for a given algorithm) as N = 
&, N(clp) P(clp) where N(clp) is the actual total number of 
nodes generated for problem clp. Similarly, the expected 
total number of consistency-checks performed in the 
search tree (for a given algorithm) is by definition c 
&, C(clp) P(clp) where C(clp) is the actual total number 0: 
checks for problem clp. These expressions are not useful 
as they stand since N(clp) and C(clp) are not known 
analytically. However they can be tranformed into useable 
expressions. We can use 

Nklp) = &#n N(k clp) and Ciclp) = c Isksn C(k clp) 

where N(k clp) and C(k clp) are respectively the actual 
number of nodes generated and checks preformed at the 
k-th level in problem clp. In terms of these we can define 
the expected number of nodes and checks at the k-th level 
of the search tree, given by 

N(k) = cclp Nlk clp) Plclp) and c(k) = c,,, C(k clp) P(clp) 

The expected totals are 
at a level summed over 

Fi =c 1 Sk% m(k) and c = c Isksn c(k) 

By successive transformations of this kind, the following 
expected-value expressions are obtained in [ 161. As 
mentioned, for notational simplicity we present results for 
the pure r-ary CLP on n variables each variable having 
equal domain size M. We expect to present in [ 161 the 
fully general result under more refined statistical models 1 
and 2. 

then expressible 
all levels 

as the expectation 

Do for (f i) E F, X i 1 to mkf ) in some order 
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Algorithm gBT 

k-l ) 
N(k) = Mk p’ r (1) 

c(k) = N(k) c(k) (2) 

,Z(k) = [ 1 - p’ 1:: ) l/Cl-PI (3) 

Algorithm gFC: 

m(k) = Mk p( r k ) [ 1 - ( 1 _ p( Fz: 1 )M In-k 

c’(k) = m(k) E(k) (5) 

For either algorithm, c(k) is the expected number of checks 
performed at a node generated at leve! k. An expression 
for E(k) of gFC still remains to be determined. We can use 
the above results to compare gBT with gFC in terms of the 
relative number of nodes the algorithms generate. Figure 

- - 
IV- 1 shows the ratio N,,c / N,,, of the expected totai 
number of nodes generated by the two algorithms. The 
problems solved are characterized by parameters p, n, M 
and r. We consider the case that M = n at two 
“reasonable” values of p: 0.5 and 0.75. In both cases three 

I 
2/ 4 8 

n=r+30 

p = 0.5 M = n 

families of curves are shown, corresponding to three ways 
In which n varies with the independent variable r. 

The n = c family: Curves for n = 5 and n = 10 are 
shown. As expected these curves generally increase with r 
since when r > n no constraint can be tested before 
termination of either algorithm Both gBT and gFC then 
generate the same full search tree of all II&S” Mk nodes - 
so that Narc / Iv,,, = 1. 

The n = cr family: Curves for n = lr, 3r/2, 3r and 5r 
are shown In contrast to the n = c family, these curves 
generally decrease with r - in other words the relative 
advantage of gFC compared to gBT becomes even greater 
as r grows. 

The n = r + c family: Curves for n = r+O, r+ 1, r+3, 
r+ 10, r+ 15 and r+30 are shown. This family shows the 
behavrours of both the above two families of curves. For 
the smaller c values these curves decrease with r. At larger 
c values the curves first increase with r but level off at 
larger r In any case, the ratio m,,c / mgBT stays small and 
hence the relative advantage of gFC compared to gBT 
remains large. 

r 

p = 0.75 M = n 

Figure IV-1 Analytic comparison of gFC and gBT for solving pure r-ary clps 
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Note that as P goes to 1, both algorithms will be 
increasingly unable to find inconsistent search paths and, as 
above, both wil! generate full search trees with the 
maximum number of nodes at each level. In this limit - 
therefore, N arc = $3T and ail curves collapse to be - 
horizontal at value N,,c / NgBT = 1. This ef feet however 
requires p very close to 1. Even at p = 0.99 we have 
found that the advantage of gFC over gBT is often still 
signif icant. 

It was however pointed out in [ 131 that c, not N, is 
the appropriate measure of complexity for these algorithms. 
For the pure binary case we have in [ 141 used c under 
model 0 to analytically compare algorithm a2FC against 
x2BT and n2FC against n2wFC. We expect that the 
corresponding comparison for the pure r-ary case will 
soon be possible, once we obtain an expression for the 
still outstanding c(k) of gFC. 
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