
SOLVING the GENERAL CONSISTENT LABELING (or CONSTRAINT SATISFACTION) PROBLEM:

TWO ALGORITHMS and their EXPECTED COMPLEXlTlES

Bernard Nude1

Dept Computer Science, Rutgers University, New Brunswick, N.J. 08903

ABSTRACT

The Consistent Labeling Problem is of considerable
importance in Artificial Intelligence, Operations Research and
Symbolic Logic. It has received much attention, but most
work has addressed the specialized binary form of the
problem. Furthermore, none of the relatively few papers
that treat the general problem have dealt analytically with
the issue of complexity. In this paper we present two
algorithms for solving the general Consistent Labeling
Problem and for each of these the expected complexity is
given under a simple statistical model for the distribution of
problems. This model is sufficient to expose certain
interesting aspects of complexity for the two algorithms.
Work currently in progress will address more subtle
aspects by extension to more refined satistical models.

I INTRODUCTION

The problem we consider here has received much
attention under various names such as the Constraint

Satisfaction Problem [11, the Consistent Labeling Problem

121, the Satisf icing Assignment Problem [31, the
Discrtete Relaxation Problem [4] and the Relation
Synthesis Problem [S]. We will use the term Consistent

Labeling Problem or CLP.* Relatively little appears treating
the general form of the Problem - some exceptions are

[5, 7, 2, 81. The specialized binary form is treated in
[3, 9, 10, 1 1, 123 and notably in C 13, 141 where analytic

expected complexities are derived. A summary of I: 141
appears in [15].

The general Consistent Labeling Problem CLP is
characterized by a finite list Z of n variables. Each variable
z, has an associated finite domain D,, from which it can
take any of M,, values or labels. Constraints exist on
which values are mutually compatible for various subsets of
the n variables. A solution-tuple or consistent-labeling
assigns to each of the n variables a value in its
corresponding domain such that all problem constraints are
simultaneously satisfied. The goal is to find one or more
solution-tuples. We analyze algorithms that find all

solution-tuples for a problem. A constraint involving
exactly r variables is said to be of arity r or to be r-ary.
The sub-Problem of CLP containing all, and only, problem
instances with at least one r-ary constraint, and no

++“CLP” denotes a family of problem instances C61. A
specific instance of CLP will be denoted by the lower-case
“clp”. Analogously, we write “Problem” (with an upper-case
P) for a set of Instances and “problem” for a single
instance.

constratnts of arity greater than r we call the r-ary
Consistent Labeling Problem rCLP. Note that an r-ary
problem may or may not have constraints of arity less than
r. For ease of presentation, the results here are for the
pure r-ary Problem arCLP on n variables each of equal
domain size M. Instances of this Problem have exactly one
r-ary constraint for each of the (y) possible r-subsets of
the n problem variables, and have no constraints of arity

less than r. In [161 we generalize to instances whose
variables may have different size domains and whose
constraints may have different arities, with possibly zero,
one or even several constraints, independently for any
subset of variables. The theory there also distinguishes
between otherwise identical problems whose constraints
differ in their degree of constraint or compatibility of
their argument variables. This makes possible relatively
problem-specific prediction of complexity for any
conceivable clp. It also allows capturing of the important
search-order effects on complexity that one finds for clps.

II STATISTICAL MODELS FOR PROBLEMS

In [131 Haralick carries out an expected complexity
analysis for two pure binary CLP algorithms (BT and FC
below) under a simple statistical model for problem
generation. We call this model 0. This model simply
considers that for any pair of values asslgned to any pair
of variables, the probability is p that they are compatibile
with respect to the corresponding binary constraint. In

[141 we extend Haralick’s work by carrying out expected
complexity analyses under more complex models 1 and 2,
which have the important advantage of capturing the effect
on complexity of changes in search orders used by an
algorithm Such analyses were thus useable to give
theoretical insight into how to intelligently order the seach
for solutions - often at significant savings in search effort
All analyses to date however treat only the pure binary
Problem n2CLP.

In this first analytic work beyond the binary CLP case
we will stay with the analogue of the binary statlstical
model 0. Again this will capture no order dependence
effects - but we nevertheless will obtain useful insight into
the main features of algorithm complexity for solving the
more general clps For the general CLP the analogue of the
above statistical model 0 is simply this: for each possible
tuple of values assigned to the argument variables of a
constraint, the probability is p that the value-tuple belongs
to (i.e. is compatibile with respect to) the constraint. We
use this model for the pure r-ary CLP here. We expect

292

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

shortly to complete the analysis for the fully general CLP,
under this and the more refined statistical models 1 and 2
Results under the model 2 will provide theoretical insight
into order effects in the general case analogous to those
made available in [141 for the pure binary case, as well as
providing the analogous precision in predictrng a problem’s
complexity.

III ALGORITHMS

In [131 Haralick empirically compares seven different
algorithms for solving pure binary clps. For the
experiments he conducted the ranking of algorithms
obtained was essentially:

best = wFC > FC > BM > PL > FL > BC > BT = worst

where the abbreviations denoting algorithms are as used in

c141. In particular, BT denotes the Backtracking algorithm

[17, 181, FC denotes the Forward Checking algorithm and
wFC is a variant of FC we call word-wise Forward
Checking that exploits the bit-parallelism available in
present machines. FC and wFC seem to have been
independently discovered by Haralick [131 and McGregor

[121, but in fact FC also appears in the earlier paper of
Golomb and Baumert [171 where it is referred to as
Backtracking with preclusion. In figures Ill- 1 and Ill-2

respectively we present recursive versions of our general
Backtracking (gBT) and general Forward Checking (gFC.1
algorithms for solving arbitrary clps. These are quite

natural generalizations of the corresponding pure binary
algorithms BT and FC, which we now rename to be n2BT
and n2FC.

Common to both algorithms is the notion of an
instantiation order** X = I: x1 x2 xn] being some
permutation of the conventionally ordered problem variables
z = [Zl 22 z, 1. By definition, a k-th level node of
the gBT or gFC search tree is formed when variable xk is
instantiated to (assigned) some value j7k from its

corresponding domain DXk - this happens at lines 2 of gBT

and gFC. At all k-th level nodes in either algorithm,
instantiations or value assignments have been made for the
same ordered sequence Ak = [x1 x2 . xk] Of the first
k variables of (globally available) list X. Nodes at level k are
distinct only in that they correspond to different

instantiations made to the variables of A,. An instantiation

sequence for the variables of A, is a list Ak = [X&.
. ,, 1 of values x, E D, for the variables of A,. lt is

built up in these algorithms’ using 1 1 the list concatenation
operator. Such an instantiation sequence xk corresponds
to a path through the search tree. Note that the node for
a given instantiation sequence A,+, may not actually be

generated due to the discovery of a violation of problem
constraints at an earlier node Ak c Kk+, on that path. This

is in fact where the usefulness of such algorithms arises
since attempts to generate any candidate solution-tuples
containing xk are then avoided. Initially for both alorithms k

= 1, A,-, = 0.

and are global

In gBT all domains D, remain unchanged

In gFC domains of some variables are In

**We use square
lrst or vector.

brackets c . 1 throughout to denote a

1 gBT(k xk-,)

2 Do for all xk e DXk

3 & -&-, 11 &I

4 lf gCheck(k A,) + “xk Wipe-Out”

5 then if k < n then gBT(k+l Ak 1

6 eke print &

7 end

8 end gBT

1 gCheck(k Ak)

2 Do for i = 1 to mk

3 If v,,(A,) c T,,

4 then return “j& wipe-out”

5 end

6 Return “No xk wipe-out”

7 end gCheck

Figure Ill-l gBT and its subroutine gCheck

2

3

4

5

6

7

8

9

10

11

gFCI k -ij;,-, D)

Do for all x, e D,,

&-Ak-, 11 &,I

If k < n then Do

D’ - gfilterl k D Ak 1

If D’ + “D, wipe-out”

then gFC(k+ 1 Ak D’)

end

eke print &

end

end gFC

1 gFilter(k D Ak)

2 Do for all f e F,

3 Do for i = 1 to mkf

4 Do for all f e Df
- --

5 If v,,,(A, f) e T,,,

6 then D, - Df - [?I

7 end

8 If D, = 0 then return “D, wipe-out”

9 end

10 end

1 1 D’ - [DXk+, DXk+2 . . D,”]

12 Return D’

13 end gFilter

Figure Ill-2 gFC and its subroutrne gFilter

293

general updated at each node and are passed as an
argument in the vector of domains
D = [D,,DY2. .D, r! 1. Testing tuples of instantiations

for compatibility with respect to constralntscrs denoted as a
test of membership of the tuple in the set of compatible
tuples for the corresponding constraint (line 3 of gCheck
and line 5 of gfilter1. In practice these tests will usually be
carried out on a constraint defined intensive/y via a
procedure rather than defined extensive/y as a set. The
algorithm and our analysis below are compatible with both
representations.

Algorithm QBT: At a level k node the current

instantiation xk is tested for compatibility with respect to
all mk constraints that involve xk and some of the k- 1
earlier variables of A,. For a pure r-ary clp mk = (!I:)
since this is the number of possible r-ary constraints over
xk and r-l other variables to be chosen from the k-l
variables of A, besides xk. Note that Clck<n (!I,’ 1 = (: 1
as required. The i-th constraint tested- cf no wipe-out
prevents it) at each level k node we denote T,,. Its list of
argument variables we denote by vki. The corresponding list
Of Values for these variables, given the assignments Of A,,,
is denoted vki(z;k I. This is simply the projection of xk
onto vk,. For example if A, = [z3 z6 z2 zg z4 1, A, =

[e a e g b 1 and the argument-list for constraint vki is
Cz~z4Zgl,then&i(&J = [eba]. Given the -
instantiations of A k-1, the current instantiation izk violates
constraint T,, if vk;i ‘;li;,) B T,, and this is tested at line 3
of gCheck.

Algorithm gFC: In addition to A,, gFC also uses F, =

c xk+l xk+2 x, 1 the list of future variables, or not
yet instantiated variables, at level k. At a level k node, each
future variable f e F, has each of its potential future
instantiations ? e D, (as contained in D, the list of updated
domains for future variables) tested for compatibility with
respect to ali mkf constraints that involve xk, f and some
of the k- 1 earlier variables of A,. For pure r-ary clps,
mkf = (:Zi 1 since this is the number of possible r-ary
constraints over variables xk, f and r-2 other variables to
be chosen from the k-l variables of A, besides xk. Note
that since there are n-k future variables f at level k, there
is for the pure r-ary CLP (n-k)(!I:) new constraints to
check at level k and c tskln (n-k I(112) = (:) as
required. The i-th such constraint involving f, tested at each
level k node (if no wipe-out prevents it) we denote T,,,. Its
list of argument variables iS vkf, and the list of values
assigned respectively to these variables given the
instantiations of Nk and the value 7 being tested for f, we
denOteIkfi(ii, f 1. Given zk, value i violates constraint - -
T kf, if vk,,(A, f 1 B T,,, and this is tested at line 5 of
gfilter. Lack of compatibility leads to ? being removed or
filtered from its domain D,. The sample trace for 2FC
appearing in fig 4 of [141 may be helpful.

Note that the selection order for f E F, at line 2 of
gFilter may be a function of level, or even a function of
the node. In fact one could generalize the algorithm by
merging the loops at lines 2 and 3 of gFilter to give

returning “D, wipe-out” as soon as one occurs However
for the pure binary clp, mkf = (:I: 1 = 1 and only the order
of selection of f from F, is an Issue. This is the case
studied in c 141 where we use the theory to suggest global
and local Consistency-check Ordering (CO) heuristics for
ranking the f of F,. However when mkf f 1 the question
becomes how to rank the pairs (f il. If the statistical model
were refined enough one might even study the advantages

of merging the loop at line 4 as well with those at lines 2
and 3. However under the present simple statistical model
0, the nesting of loops shown is optimal, and any residual
indeterminism is irrelevant (with respect to average
complexity) in either algorithm. In particular, the instantiation
ordering X is irrelevant on average under model 0. For
individual problems though a good ordering can lead to
significant savings, and our more refined model 1 and 2
analyses of [141 capture this effect for the pure binary
case. These theories are then used there to suggest
theory-based global and local Instantiation Order (IO)
heuristics that are found to be quite effective in reducing
the complexity of problem solving.

IV ANALYTIC RESULTS

Under statistical model 0 it is easy to determine the
probability P(clp) of a given problem clp - analogously to
the model 1 result for the r = 2 case given in [14). In
terms of P(clp) we can define the expected total number
of nodes in a search tree (for a given algorithm) as N =
&, N(clp) P(clp) where N(clp) is the actual total number of
nodes generated for problem clp. Similarly, the expected
total number of consistency-checks performed in the
search tree (for a given algorithm) is by definition c
&, C(clp) P(clp) where C(clp) is the actual total number 0:
checks for problem clp. These expressions are not useful
as they stand since N(clp) and C(clp) are not known
analytically. However they can be tranformed into useable
expressions. We can use

Nklp) = &#n N(k clp) and Ciclp) = c Isksn C(k clp)

where N(k clp) and C(k clp) are respectively the actual
number of nodes generated and checks preformed at the
k-th level in problem clp. In terms of these we can define
the expected number of nodes and checks at the k-th level
of the search tree, given by

N(k) = cclp Nlk clp) Plclp) and c(k) = c,,, C(k clp) P(clp)

The expected totals are
at a level summed over

Fi =c 1 Sk% m(k) and c = c Isksn c(k)

By successive transformations of this kind, the following
expected-value expressions are obtained in [161. As
mentioned, for notational simplicity we present results for
the pure r-ary CLP on n variables each variable having
equal domain size M. We expect to present in [161 the
fully general result under more refined statistical models 1
and 2.

then expressible
all levels

as the expectation

Do for (f i) E F, X i 1 to mkf) in some order

294

Algorithm gBT

k-l)
N(k) = Mk p’ r (1)

c(k) = N(k) c(k) (2)

,Z(k) = [1 - p’ 1::) l/Cl-PI (3)

Algorithm gFC:

m(k) = Mk p(r k) [1 - (1 _ p(Fz: 1)M In-k

c’(k) = m(k) E(k) (5)

For either algorithm, c(k) is the expected number of checks
performed at a node generated at leve! k. An expression
for E(k) of gFC still remains to be determined. We can use
the above results to compare gBT with gFC in terms of the
relative number of nodes the algorithms generate. Figure

- -
IV- 1 shows the ratio N,,c / N,,, of the expected totai
number of nodes generated by the two algorithms. The
problems solved are characterized by parameters p, n, M
and r. We consider the case that M = n at two
“reasonable” values of p: 0.5 and 0.75. In both cases three

I
2/ 4 8

n=r+30

p = 0.5 M = n

families of curves are shown, corresponding to three ways
In which n varies with the independent variable r.

The n = c family: Curves for n = 5 and n = 10 are
shown. As expected these curves generally increase with r
since when r > n no constraint can be tested before
termination of either algorithm Both gBT and gFC then
generate the same full search tree of all II&S” Mk nodes -
so that Narc / Iv,,, = 1.

The n = cr family: Curves for n = lr, 3r/2, 3r and 5r
are shown In contrast to the n = c family, these curves
generally decrease with r - in other words the relative
advantage of gFC compared to gBT becomes even greater
as r grows.

The n = r + c family: Curves for n = r+O, r+ 1, r+3,
r+ 10, r+ 15 and r+30 are shown. This family shows the
behavrours of both the above two families of curves. For
the smaller c values these curves decrease with r. At larger
c values the curves first increase with r but level off at
larger r In any case, the ratio m,,c / mgBT stays small and
hence the relative advantage of gFC compared to gBT
remains large.

r

p = 0.75 M = n

Figure IV-1 Analytic comparison of gFC and gBT for solving pure r-ary clps

295

Note that as P goes to 1, both algorithms will be
increasingly unable to find inconsistent search paths and, as
above, both wil! generate full search trees with the
maximum number of nodes at each level. In this limit -
therefore, N arc = $3T and ail curves collapse to be -
horizontal at value N,,c / NgBT = 1. This ef feet however
requires p very close to 1. Even at p = 0.99 we have
found that the advantage of gFC over gBT is often still
signif icant.

It was however pointed out in [131 that c, not N, is
the appropriate measure of complexity for these algorithms.
For the pure binary case we have in [141 used c under
model 0 to analytically compare algorithm a2FC against
x2BT and n2FC against n2wFC. We expect that the
corresponding comparison for the pure r-ary case will
soon be possible, once we obtain an expression for the
still outstanding c(k) of gFC.

ACKNOWLEDGEMENTS

Many thanks to my Ph.D. committee - Saul Amarei,
Martin Dowd, Marvin Pauli and especially my supervisor
William Steiger - who strongly suggested I generalize to
arbitrary arity constraints. Without their “encouragement” this
paper may never have been written.

References

IllI

I21

c31

141

c51

Fikes, R. E.
problems

“REF-ARF: A system for solving
stated procedures.”

Intelligence. 1 (1970;527- 120.
Artificial

Haraiick, R. M. and Shapiro, L. G. “The consistent
labeling problem: Part I.” IEEE Trans. Pattern
Analysis and Machine
(19791 173-184.

Intelligence. PAMI- 112

Gaschnig, J., Performance measurement
analysis of certain search alfforithms.

and
PhD

dissertation, Dept Computer Sciekze, Carnegie-
Mellon U., 1979.

Rosenfeld, A., Hummei, R. and Zucker, S. “Scene
labeling by relaxation operations.” / EEE Trans.
Systems,
420-433.

Man and Cybernetics. SMC-6 (1976)

Freuder, E. C. “Synthesizing constraint
Comm. ACM. 2 1 (1978) 958-966.

expressions.”

II61

c71

L-81

cg1

Cl01

Cl II

Cl21

Cl31

L-141

Cl51

Cl61

r171

Cl81

Garey, M. R. and Johnson, D. S. Computers and
Intractability. Freeman, San Francisco, 1979.

Haralick, R. M., Davis, L. s. and Rosenfeid,
A. “Reduction operations for constraint satrsfaction.”
Information Sciences. 14 (I 978) 199-2 19.

Haralick, R. M. and Shapiro, L. G. “The consistent
labeling problem, Part II.” IEEE Trans. Pattern
Analysis and Machine I ntel I igence. PAMI-2:3
(1980) 193-203.

Gaschnig, J. “Experimental case studies of backtrack
vs. Waltz-type vs.
assignment problems.”

new algorithms for satisficlng
In Proc. 2-nd National Conf.

Canadian Sot. for Computational Studies of
Intelligence. Toronto, Ontario, 1978,

Montanari, U. “Networks of constraints fundamental
properties and applications to picture processing.”
f nformation Sciences. 7 (1974) 95- 132.

Mackworth, A. K.
Relations.”

“Consistency in Networks of
Artificial Intelligence. 8 (1977)

99-l 18.

McGregor, J. J. “Relational consistency algorithms
and their application in findlng subgraph and graph
isomorphisms.” Information Sciences. 19 (1979)
229-250.

Haraiick, R. M. and Elliot, G. L
search efficiency for

“Increasing tree
constraint satisfaction

problems.” Artificial Intelligence. 14 (I 980)
263-313.

Nudel, B. A.
algorithms:

“Consistent-labeling problems and their
expected-complexities and theory-

based heuristics.” Artificial lnteliigence. 2 1: 1 and
2 March (1983) Special issue on Search and
Heuristics, in memory of John Gaschnig; This issue
is also published as a seperate book. Search and
Heuristics, North-Holland, Amsterdam 1983.

Nudei, B. A. “Consistent-labeling problems and their
algorithms.” In Proc. National Conf. Artificial
intelligence. Pittsburg, 1982, 128- 132.

Nudei, B. A., title to be decided, PhD dissertation,
Dept. Computer Science, Rutgers U., 1983, To
appear

Goiomb, S. W. and Baumert, L. D. “Backtrack
programming.” J. Assoc. Computing Machinery. 12
(1965) 516-524.

Bitner, J. R. and Reingold, M. “Backtrack
pr501gr;rn;ing techniques. n Comm. ACM. 18 (1975)

296

