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ABSTRACT 

In this short paper we present a brief exposi- 
tion of a composite decision process - our unifying 
formulation of search procedures - which provides 
new insights concerning the relationships among 
heuristic search, dynamic programming and branch 
and bound procedures. 

1. Introduction 

Various heuristic procedures for searching 
And/Or graphs, game trees, and state space repre- 
sentations has appeared in the A.I. literature 
over the last few decades, and at least some of 
them have been thought to be related to dynamic 
programming (DP) and branch and bound (B&B) pro- 
cedures of Operations research (O.R.). But the 
relationships between these classes of procedures 
have been rather contoversial. 

For example, Pohl argues in [22] that heuris- 
tic search procedures are very different from B&B 
procedures, whereas Hall [5] and Ibaraki [8,10] 
claim that many heuristic procedures for searching 
state space representations are essentially B&B 
procedures. Knuth does not consider the alpha- 
beta game tree search algorithm to be a B&B proce- 
dure; he considers its less efficient version 
(called Fl in his classical treatment of alpha- 
beta [14] to be branch and bound. But, Reingold 
et al. [23] consider alpha-beta to be a type of 
B&B. While describing the algorithm HS (which is 
the same as the AO* And/Or graph search algorithm 
[211) in [HI, Martelli and Montanari state that 
their algorithm is different from B&B because 
"(BGrB)technique does not recognize the existence 
of identical subnroblems, But Ibaraki's B&B proce- 
dure [lo] does recognize the existence of identical 
subproblems. While describing the heuristic search 
procedure A? for finding a shortest path in a state 
space, Nilsson [20] considers dynamic programming 
to be essentially a breadth-first search method. 
However, Dreyfus & Law [4] show that Dijkstra's 
algorithm for the shortest path [2], an algorithm 
very similar to Ah, can be viewed as a dynamic 
programming algorithm. Morin Sr Marsten [19] permit 
DP computations to be augmented with bounds, which 
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means that they do not consider it necessary that 
DP computations be breadth-first. 

The relationship between B&B and dynamic pro- 
gramming techniques has also been rather controver- 
sial. Kohler [15] and Ibaraki 191 discuss how a 
number of dynamic programming procedures can be 
stated in the framework of B&B. Morin & Marsten 
[19] consider some classes of B&B procedures as 
dynamic programming procedures augmented with some 
bounding operations. Ibaraki's work [7,10] seems 
to imply that dynamic programming is a more general 
problem solving scheme than B&B for solving discrete 
optimization problems. Smith [24] presents a k-adic 
problem reduction system model as a model for opti- 
mization problems and considers, in that context, 
dynamic programming to be a bottom up approach, and 
B&B to be a top down procedure. 

We have developed a methodology whereby most of 
these procedures can be viewed in a unified manner 
[171. The scheme reveals the true nature of these 
procedures, and clarifies their relationships to 
each other. The methodology also aids in synthe- 
sizing (by way of analogy, suggestions, induction, 
etc.) new variations as well as generalizations of 
the existing search procedures. 

In the rest of this short paper, we present a 
brief exposition of our unified approach to search 
procedures and discuss how it unveils the true 
nature and interrelationships of these procedures. 

2. A Unified Approach 

A large number of problems solved by dynamic 
programming, heuristic search, and B&B can be con- 
sidered as discrete optimization problems, i.e., 
the problems can be stated as: find a least cost 
(or largest merit) element of a given set X. In 
most of the problems of interest, X is too large to 
make the exhaustive enumeration for finding an opti- 
mal element practical. But the set X is usually not 
unstructured. Often it is possible to view X as a 
set of policies in a multistage decision process, 
or as a set of paths between two states in a state 
space, or as a set of solution trees of an And/Or 
graph. These and other ways of representing X 
immediately suggest various tricks, heuristics, and 
short cuts to finding an optimal element of X. 
These short cuts and tricks were developed by 
researchers in different areas, with different per- 
spectives and for different problems; hence, it is 
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not suprising that the formal techniques developed 
look very different from each other, even though 
they are being used for similar purposes. 

We have developed the concept of composite 
decision process (defined below) as a general model 
for formulating discrete optimization problems. 
This model provides a good framework for represent- 
ing problem specific knowledge such that it can be 
usefully exploited for finding an optimum element 
of x. We have also developed systematic proce-- 
dures for exploiting such knowledge for the effi- 
cient discovery of an optimum element of X, and 
shown that many of the existing search procedures 
are special cases of our procedures. 

2.1 Composite Decision Processes _- 

A composite decision process (CDP) C = (G,t,c) 
is a 3-tuple where G = (V,N,S,P) is a context-free 
grammar (V,N,P, and S are respectively the sets of 
terminal symbols, nonterminal symbols, productions 
and the start symbol), t denotes the set of cost 
attributes associated with productions of G (a 
real valued k-ary cost attribute tp(.,...,.) is 
associated with each production p = "w + wl- . . . wk" 
of G), and c is a real valued cost function defined 
over the set of terminal symbols of G. 

The set of parse trees rooted at the start 
symbol S of G represents the discrete set X of the 
optimization problem formulated by C. A cost f(T) 
is assigned to each parse tree T of G in terms of 
the set of cost attributes t and the function c. 
We first define a real valued function cT over the 
nodes n of a parse tree T of G as follows: 
(i> If n is a terminal symbol then 

(1.a) c,(n) = c(n). 
(ii) If n is a nonterminal symbol and nl,...,nk 

are descendents (from left to right) of n in 
T (implying that G has a production p = "n + 
nl . . . nk") then 
(1. b) cT(n) = tP(cT(nl),...,cT(nk)). 

If n is the root symbol of a parse tree T then we 
define 

(2) f(T) = c,(n). 
For a node of a parse tree T, CT(n) denotes 

the cost of the subtree of T rooted at n. For a 
production p: n -t nl . . . nk, t (xl,...,xk) denotes 
the cost of a derivation tree 'T rooted at n if 
the costs of the subtrees of T rooted at nl,...,nk 
are xl,...,xk. Thus the cost of a parse tree 
is recursively defined in terms of the costs of its 
subtrees. See Fig. 1 for an illustration. The 
minimization problem for the composite decision 
process C can be stated as follows: find a parse 
tree T* rooted at the start symbol S such that 
f(T*) = min{f(T) 1 T is a parse tree rooted as S]. 

We next introduce a type of composite decision 
process for which the minimization problem can be 
reduced to the problem of solving a system of 
recurrence equations. 

Monotone Composite Decision Processes 

A CDP C = (G(V,N,S,P),t,c) is called a mono- 
tone composite decision process (MCDP) if all of 

the k-ary cost attributes tp associated with the 
productions p: n -f nl . . . nk are monotonically non- 
decreasing in each variable, i.e., 

tp(xl,..., Xk) 5 tP(Yl,...'Yk). 

For a symbol n of the grammar G, let c*(n) 
denote the minimum of the costs of the parse trees 
rooted at n. The following theorem proved in [17] 
establishes that for a monotone CDP, c9<(n) can be 
defined recursively in terms of {c;k(m> ) m is a part 
of a string directly derivable from n]. 

Theorem 1: For a monotone composite decision process 
c=(G,t,c) , the following recursive equations hold. 

(3a) If n is a nonterminal symbol then 

C’(n) = min(tp(c"(nl),...,c"(nk) 1 p: n + "1 
. . . nk is a production in G]. 

(3b) If n is a terminal symbol then 

c*(n) = c(n). 

For many interesting special cases there exist 
efficient algorithms which solve these equations to 
compute c*(S), the smallest of the costs of the 
parse trees rooted at S [17]. These algorithms can 
often be easily modified to build a least-cost parse 
tree rooted at S. In such a case, the minimization 
problem of a monotone CDP becomes equivalent to 
solving a system of recursive equations. 

Relationships with Dynamic Programming --~- 

Note that solving an optimization problem by 
Bellman's dynamic programming technique also involves 
converting the optimization problem into a problem 
of solving a set of recursive equations. Since most 
of the discrete optimization problems solvable by 
the conventional dynamic programming technique (and 
many more) can be stated in the monotone CDP format, 
we can consider the monotone composite decision pro- 
cess as a generalized dynamic programming formula- 
tion, and the recursive equations of Theorem 1 as 
the generalized recursive equations of dynamic pro- 
gramming. 

It is also possible to state a principle simi- 
lar to Bellman's principle of optimality (all sub- 
policies of an optimum policy are also optimal). 
First, let us define the optimality criterion for a 
parse tree (the counterpart of Bellman's "policy" 
in our formulation). A parse tree rooted at symbol 
n of G is called an optimum parse tree if its cost -___- 
(f-value) is the smallest of all the parse trees 
rooted at symbol n of G. 

Lemma 1: For a monotone composite decision process 
C = (G,t,c), for every symbol n of G, there exists 
an optimal parse tree rooted at n, all of whose sub- 
trees (rooted at the immediate successors of n) are 
optimal. 

Proof: See [17]. 
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Thi s statement is somewhat different (in fact 
"weaker") than Bellman's principle of optimality. 
Nevertheless, Lemma 1 guarantees that an optimal 
parse tree can always be built by optimally choosing 
from the alternate compositions of only the optimal 
subtrees. This technique of first finding the 
optimal solution to small problems and then cons- 
strutting optimal solutions to successively bigger 
problems is at the heart of all dynamic programming 
algorithms. 

A stronger statement much similar to Bellman's 
principle of optimality can be made for a subclass 
of monotone CDP. A CDP C = (G,t,c) is called a 
strictly monotone CDP (SMCDP), if all the k-ary 
functions t associated with productions p: n + 
nl . . . nk a!e strictly increasing in each variable, 
i.e., Xi<yi and x*<y. for j#i and l<j<k ===> -- 
tp$,..., xk> < +y:,...,y& 

Lemma 2: For a strictly monotone CDP C = (G,t,c), 
all the subtrees of an optimal parse tree rooted at 
a symbol n of G are also optimal. 

Proof: See [17]. 

Relationships with Sequential Decision Processes 

If the context-free grammar G of a CDP C = 
(G,t,c) is further restricted to be regular then we 
can use the direct correspondence between regular 
grammars and finite state automata to show that C 
is essentially a sequential decision process (SDP). 
The concept of SDP was introduced by Karp [13] as a 
model for the problems solved by dynamic programm- 
ing. 

The concept of a sequential decision process 
has been extensively studied in various areas in 
different guises. State space descriptions used in 
Artificial Intelligence to solve various problems 
are essentially sequential decision processes. The 
minimization problem of a SDP is essentially a 
generalized version of the well known shortest path 
problem studied extensively in the Operations 
Research literature [3]. Various Branch & Bound, 
dynamic programming and heuristic search procedures 
have been developed for problems which can be 
modeled by SDPs (e.g., [71, [lo], [41, [201). 
Generalized versions of many of these procedures are 
also applicable to problems modeled by CDPs (see 
E171). In fact we came up with the concept of a 
CDP as a generalization of the concept o,$ an SDP. 

The Scope of the CDP Formulation ----- 

The concept of composite decision process is 
very important. In addition to the problems modeled 
by SDPs, it models a large number of problems in 
A.I. and other areas of computer science which can 
not be naturally formulated in terms of SDPs. The 
wide applicability of CDPs becomes obvious when we 
notice that there is a direct natural correspondence 
between context-free grammars and And/Or graphs used 
in A.I. applications to model problem reduction 
schema [6]. Due to this correspondence, the speci- 
fication of a problem by an And/Or graph can often 
be viewed as its specification in terms of a CDP, 

and the problem of finding a least cost solution 
tree of an And/Or graph becomes equivalent to the 
minimization problem of its corresponding CDP. Due 
to the correspondence between And/Or trees and game 
trees, the problem of finding the minimax value of 
a game tree can also be represented in the CDP 
formulation. Furthermore, many other important 
optimization problems such as the problem of con- 
structing an optimal decision tree, constructing an 
otpimal binary search tree, finding an optimal 
sequence for matrix multiplication can be naturally 
formulated in terms of CDPs (see [17]). 

2.2 Solving the Minimization Problem ~- 

We have shown in [17] that , in its full gener- 
ality, the minimization problem of a monotone CDP 
(hence of a CDP) is unsolvable. However, we identi- 
fied three interesting special cases (acyclic mono- 
tone CDP, positive monotone CDP, strictly monotone 
CDP) of monotone CDPs for which the minimization 
problem is solvable. In all the three cases a least 
cost parse tree of G rooted as S can be provably 
identified by generating and evaluating only a 
finite number of parse trees of G, even though G 
may generate infinite number of parse trees. This 
is a sufficient proof for the solvability of their 
minimization problems. But even these finite parse 
trees can be too many. In the following we briefly 
discuss two general techniques to solve the minimi- 
zation problems of these CDPs in a manner which can 
be much more efficient than the simple enumeration. 

The Generalized Dynamic Programming Technique 

One way of solving the minimization problem of 
a given monotone CDP C = (G(V,N,S,P),t,c) is to 
successively find (or reverse the estimates of) 
c*(n) for the symbols n of the grammar G until c*(S) 
is found. Viewed in terms of And/Or graphs, bigger 
problems are successively solved starting from the 
smaller problems. The term "bottom up" is quite 
suggestive of this theme and is often used for many 
search procedures which are special cases of the 
technique discussed above. Historically, many of 
these procedures have also been called Dynamic 
Programming computations. Furthermore, the basic 
ideas of Dynamic Programming procedures - Bellman's 
principle of optimality and the recursive equations 
- are associated with monotone composite decision 
processes in their generalized forms. Hence we have 
named these bottom up procedures for minimization of 
CDPs as dynamic programming. 

In [17] we have presented dynamic programming 
procedures to solve the minimization problem of the 
three classes of CDPs. Interestingly, Ibaraki's 
procedures for solving the minimization problems of 
SDPs, Dijkstra's algorithm for shortest path, 
Knuth's generalization of Dijkstra's algorithm, 
Martelli and Montanati's bottom up search algorithm 
for constructing an optimal solution tree of an 
Acyclic And/Or graph, and many other optimization 
algorithms (usually termed as dynamic programming 
algorithms) can be considered as special cases of 
these procedures. 



The Generalized Branch-and-Bound Technique -. -__ --- and BJC, since these procedures are special cases of 
the general procedure. 

In this second technique, we start with some 
representation of the total (possible infinite) set 
of parse trees out of which a least cost parse tree 
needs to be found. We repeatedly partition this set 
(a partitioning scheme is usually suggested by the 
problem domain). Each time the set is partitioned, 
we delete all members of the partition for which it 
can be shown that even after eliminating the set, 
there is a least cost parse tree in one of the 
remaining sets. This cycle of partitioning and 
pruning can be continued until only one (i.e., a 
least cost) parse tree is left. 

This "top down" process of partitioning and 
pruning for determining an optimal element of a set 
has been used for solving many optimization prob- 
lems in Operations Research, where it is known as 
branch and bound (B&B). It is easy to see that the 
central idea of B&B - the technique of branching 
and pruning to discover an optimum element of a 
set - is at the heart of many heuristic procedures 
for searching state space, And/Or graphs, and game 
trees. But none of the B&B formulations presented 
in the O.R. literature adequately model And/Or 
graph and game tree search procedures such as alpha- 
beta, SSS" [27], AO* and B* [l]. This has caused 
some of the confusion regarding the relationship 
between heuristic search procedures and B&B. 

To remedy this situation, we have developed a 
formulation of B&B which is more general and also 
much simpler than existing formulations. We have 
further developed a B&B procedure to search for an 
optimum solution tree of an acyclic And/Or graph 
(i.e., to solve the minimization problem of an 
acyclic monotone CDP) which generalizes and unifies 
a number of And/Or graph and game tree search pro- 
cedures such as AO*, SSS*, alpha-beta, and B* [17]. 

3. Concluding Remarks 

The generalized versions of DP and B&B (for 
solving the minimization problems of CDPs) provide 
a unifying framework for a number of heuristics 
search procedures. In particular, the B&B formula- 
tion for searching acyclic And/Or graphs has helped 
unveil the close relationship of alpha-beta with 
SSS", showing that if a minor modification is made 
in the B&B formulation of SSS*, the resulting pro- 
cedure is equivalent to alpha-beta (see [17,16]). 
This is most interesting, for alpha-beta as conven- 
tionally presented [14] appears very different from 
SSS* as described by Stockman [27]. Considering 
that alpha-beta has been known for over twenty 
years, it is noteworthy that SSS* was discovered 
only recently in the context not of game playing, 
but of a waveform parsing system [26]. Perhaps if 
an adequate B&B formulation for alpha-beta had been 
available earlier, SSS* would have been developed 
as a natural variation of alpha-beta. The B&B 
formulation also makes it easy to visualize many 
variations and parallel implementations of SSSfc 
presented in [17,11,12]. In [17] we also proved 
the correctness of a general procedure for searching 
acyclic And/Or graphs. This greatly simplifies the 
correctness proofs of algorithms such as AO*, SSS;k, 

We have considered B&B and DP as two distinct 
ways (a top down search procedure and a bottom up 
search procedure) of solving the minimization prob- 
lem of a CDP. However, it turns out that for an 
important subset of the problems formulated by the 
CDP, the class of DP algorithms becomes indistin- 
guishable from the class of B&B algorithms (see 
[171). This explains why DP and B&B algorithms for 
several optimization problems were thought to be 
related, and why B&B procedures of Ibaraki [lo] for 
solving the minimization problem of a SDP could 
also be viewed as DP computations. 

The general search procedures discussed in this 
paper make use of two types of information to effi- 
ciently find an element of a discrete set X - 
"syntactic" and "semantic". The syntactic informa- 
tion is present in the representation of X (e.g., 
by a context-free grammar, regular grammar, etc.), 
and is used in DP in the form of principle of opti- 
mality , and in B&B in the form of a dominance rela- 
tion. But the only semantic information used in 
these procedures is in the form of heuristics or 
bounds associated with subproblems or subsets of X. 
It should be interesting to investigate what other 
types of problem specific knowledge can be inte- 
grated into these search procedures or their varia- 
tions. We conjecture that such investigation will 
also be of help in improving problem solving search 
procedures which are not necessarily used for opti- 
mization problems. 

Context-Free Grammar 

U N 
G = ({a,b,d],{S,A},S,P) 

Productions: Cost Attributes: 

P,: S -f aA, tp (r1,r2) = min r1,r2 , 

P2: A -+ abd, 
P: 

tp (r 2 l,r2,r3) = rl+r2+r3, 

p3 
: A+ad, tp (rl,r2) = r1+r2 

p4 
: S+aS, 

tP 3( rl,r2) = r1+r2 
4 

terminal costs: c(a) = 5, c(b) = 10, c(d) = 15. 

l(a) A composite decision process 
C = (G(A,N,S,P),t,p,c) 

Figure 1 
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c, (a) = 5 
PJ-+h/ / 

C 
cTl(b)=10 

T (a>=5 
1 

c Tl Cd)=15 

16) The derivation tree Tl depicting derivation 
of aabd from S: 

f(T2) = cT2(S) = 5. 

Figure 1 can't. 
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