
THE COMPOSITE DECISION PROCESS: A UNIFYING FORMULATION FOR HEURISTIC
SEARCH, DYNAMIC PROGRAMMING AN'D BRANCH & BOUND PROCEDURES+

Vipin Kumar*
Laveen Kanal'k*

*Department of Computer Science, University of Texas at Austin, Austin, TX
"*Department of Computer Science, University of Maryland, College Park, MD

ABSTRACT

In this short paper we present a brief exposi-
tion of a composite decision process - our unifying
formulation of search procedures - which provides
new insights concerning the relationships among
heuristic search, dynamic programming and branch
and bound procedures.

1. Introduction

Various heuristic procedures for searching
And/Or graphs, game trees, and state space repre-
sentations has appeared in the A.I. literature
over the last few decades, and at least some of
them have been thought to be related to dynamic
programming (DP) and branch and bound (B&B) pro-
cedures of Operations research (O.R.). But the
relationships between these classes of procedures
have been rather contoversial.

For example, Pohl argues in [22] that heuris-
tic search procedures are very different from B&B
procedures, whereas Hall [5] and Ibaraki [8,10]
claim that many heuristic procedures for searching
state space representations are essentially B&B
procedures. Knuth does not consider the alpha-
beta game tree search algorithm to be a B&B proce-
dure; he considers its less efficient version
(called Fl in his classical treatment of alpha-
beta [14] to be branch and bound. But, Reingold
et al. [23] consider alpha-beta to be a type of
B&B. While describing the algorithm HS (which is
the same as the AO* And/Or graph search algorithm
[211) in [HI, Martelli and Montanari state that
their algorithm is different from B&B because
"(BGrB)technique does not recognize the existence
of identical subnroblems, But Ibaraki's B&B proce-
dure [lo] does recognize the existence of identical
subproblems. While describing the heuristic search
procedure A? for finding a shortest path in a state
space, Nilsson [20] considers dynamic programming
to be essentially a breadth-first search method.
However, Dreyfus & Law [4] show that Dijkstra's
algorithm for the shortest path [2], an algorithm
very similar to Ah, can be viewed as a dynamic
programming algorithm. Morin Sr Marsten [19] permit
DP computations to be augmented with bounds, which

$Paper presented at the 1983 AAAI meeting; Proc.
American Assoc. for A.I., Wash., DC, Aug. 83.

Research partially supported by NSF grants ECS-
78-22159 and MCS-81-17391.

means that they do not consider it necessary that
DP computations be breadth-first.

The relationship between B&B and dynamic pro-
gramming techniques has also been rather controver-
sial. Kohler [15] and Ibaraki 191 discuss how a
number of dynamic programming procedures can be
stated in the framework of B&B. Morin & Marsten
[19] consider some classes of B&B procedures as
dynamic programming procedures augmented with some
bounding operations. Ibaraki's work [7,10] seems
to imply that dynamic programming is a more general
problem solving scheme than B&B for solving discrete
optimization problems. Smith [24] presents a k-adic
problem reduction system model as a model for opti-
mization problems and considers, in that context,
dynamic programming to be a bottom up approach, and
B&B to be a top down procedure.

We have developed a methodology whereby most of
these procedures can be viewed in a unified manner
[171. The scheme reveals the true nature of these
procedures, and clarifies their relationships to
each other. The methodology also aids in synthe-
sizing (by way of analogy, suggestions, induction,
etc.) new variations as well as generalizations of
the existing search procedures.

In the rest of this short paper, we present a
brief exposition of our unified approach to search
procedures and discuss how it unveils the true
nature and interrelationships of these procedures.

2. A Unified Approach

A large number of problems solved by dynamic
programming, heuristic search, and B&B can be con-
sidered as discrete optimization problems, i.e.,
the problems can be stated as: find a least cost
(or largest merit) element of a given set X. In
most of the problems of interest, X is too large to
make the exhaustive enumeration for finding an opti-
mal element practical. But the set X is usually not
unstructured. Often it is possible to view X as a
set of policies in a multistage decision process,
or as a set of paths between two states in a state
space, or as a set of solution trees of an And/Or
graph. These and other ways of representing X
immediately suggest various tricks, heuristics, and
short cuts to finding an optimal element of X.
These short cuts and tricks were developed by
researchers in different areas, with different per-
spectives and for different problems; hence, it is

220

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

not suprising that the formal techniques developed
look very different from each other, even though
they are being used for similar purposes.

We have developed the concept of composite
decision process (defined below) as a general model
for formulating discrete optimization problems.
This model provides a good framework for represent-
ing problem specific knowledge such that it can be
usefully exploited for finding an optimum element
of x. We have also developed systematic proce--
dures for exploiting such knowledge for the effi-
cient discovery of an optimum element of X, and
shown that many of the existing search procedures
are special cases of our procedures.

2.1 Composite Decision Processes _-

A composite decision process (CDP) C = (G,t,c)
is a 3-tuple where G = (V,N,S,P) is a context-free
grammar (V,N,P, and S are respectively the sets of
terminal symbols, nonterminal symbols, productions
and the start symbol), t denotes the set of cost
attributes associated with productions of G (a
real valued k-ary cost attribute tp(.,...,.) is
associated with each production p = "w + wl- . . . wk"
of G), and c is a real valued cost function defined
over the set of terminal symbols of G.

The set of parse trees rooted at the start
symbol S of G represents the discrete set X of the
optimization problem formulated by C. A cost f(T)
is assigned to each parse tree T of G in terms of
the set of cost attributes t and the function c.
We first define a real valued function cT over the
nodes n of a parse tree T of G as follows:
(i> If n is a terminal symbol then

(1.a) c,(n) = c(n).
(ii) If n is a nonterminal symbol and nl,...,nk

are descendents (from left to right) of n in
T (implying that G has a production p = "n +
nl . . . nk") then
(1. b) cT(n) = tP(cT(nl),...,cT(nk)).

If n is the root symbol of a parse tree T then we
define

(2) f(T) = c,(n).
For a node of a parse tree T, CT(n) denotes

the cost of the subtree of T rooted at n. For a
production p: n -t nl . . . nk, t (xl,...,xk) denotes
the cost of a derivation tree 'T rooted at n if
the costs of the subtrees of T rooted at nl,...,nk
are xl,...,xk. Thus the cost of a parse tree
is recursively defined in terms of the costs of its
subtrees. See Fig. 1 for an illustration. The
minimization problem for the composite decision
process C can be stated as follows: find a parse
tree T* rooted at the start symbol S such that
f(T*) = min{f(T) 1 T is a parse tree rooted as S].

We next introduce a type of composite decision
process for which the minimization problem can be
reduced to the problem of solving a system of
recurrence equations.

Monotone Composite Decision Processes

A CDP C = (G(V,N,S,P),t,c) is called a mono-
tone composite decision process (MCDP) if all of

the k-ary cost attributes tp associated with the
productions p: n -f nl . . . nk are monotonically non-
decreasing in each variable, i.e.,

tp(xl,..., Xk) 5 tP(Yl,...'Yk).

For a symbol n of the grammar G, let c*(n)
denote the minimum of the costs of the parse trees
rooted at n. The following theorem proved in [17]
establishes that for a monotone CDP, c9<(n) can be
defined recursively in terms of {c;k(m>) m is a part
of a string directly derivable from n].

Theorem 1: For a monotone composite decision process
c=(G,t,c) , the following recursive equations hold.

(3a) If n is a nonterminal symbol then

C’(n) = min(tp(c"(nl),...,c"(nk) 1 p: n + "1
. . . nk is a production in G].

(3b) If n is a terminal symbol then

c*(n) = c(n).

For many interesting special cases there exist
efficient algorithms which solve these equations to
compute c*(S), the smallest of the costs of the
parse trees rooted at S [17]. These algorithms can
often be easily modified to build a least-cost parse
tree rooted at S. In such a case, the minimization
problem of a monotone CDP becomes equivalent to
solving a system of recursive equations.

Relationships with Dynamic Programming --~-

Note that solving an optimization problem by
Bellman's dynamic programming technique also involves
converting the optimization problem into a problem
of solving a set of recursive equations. Since most
of the discrete optimization problems solvable by
the conventional dynamic programming technique (and
many more) can be stated in the monotone CDP format,
we can consider the monotone composite decision pro-
cess as a generalized dynamic programming formula-
tion, and the recursive equations of Theorem 1 as
the generalized recursive equations of dynamic pro-
gramming.

It is also possible to state a principle simi-
lar to Bellman's principle of optimality (all sub-
policies of an optimum policy are also optimal).
First, let us define the optimality criterion for a
parse tree (the counterpart of Bellman's "policy"
in our formulation). A parse tree rooted at symbol
n of G is called an optimum parse tree if its cost -___-
(f-value) is the smallest of all the parse trees
rooted at symbol n of G.

Lemma 1: For a monotone composite decision process
C = (G,t,c), for every symbol n of G, there exists
an optimal parse tree rooted at n, all of whose sub-
trees (rooted at the immediate successors of n) are
optimal.

Proof: See [17].

221

Thi s statement is somewhat different (in fact
"weaker") than Bellman's principle of optimality.
Nevertheless, Lemma 1 guarantees that an optimal
parse tree can always be built by optimally choosing
from the alternate compositions of only the optimal
subtrees. This technique of first finding the
optimal solution to small problems and then cons-
strutting optimal solutions to successively bigger
problems is at the heart of all dynamic programming
algorithms.

A stronger statement much similar to Bellman's
principle of optimality can be made for a subclass
of monotone CDP. A CDP C = (G,t,c) is called a
strictly monotone CDP (SMCDP), if all the k-ary
functions t associated with productions p: n +
nl . . . nk a!e strictly increasing in each variable,
i.e., Xi<yi and x*<y. for j#i and l<j<k ===> --
tp$,..., xk> < +y:,...,y&

Lemma 2: For a strictly monotone CDP C = (G,t,c),
all the subtrees of an optimal parse tree rooted at
a symbol n of G are also optimal.

Proof: See [17].

Relationships with Sequential Decision Processes

If the context-free grammar G of a CDP C =
(G,t,c) is further restricted to be regular then we
can use the direct correspondence between regular
grammars and finite state automata to show that C
is essentially a sequential decision process (SDP).
The concept of SDP was introduced by Karp [13] as a
model for the problems solved by dynamic programm-
ing.

The concept of a sequential decision process
has been extensively studied in various areas in
different guises. State space descriptions used in
Artificial Intelligence to solve various problems
are essentially sequential decision processes. The
minimization problem of a SDP is essentially a
generalized version of the well known shortest path
problem studied extensively in the Operations
Research literature [3]. Various Branch & Bound,
dynamic programming and heuristic search procedures
have been developed for problems which can be
modeled by SDPs (e.g., [71, [lo], [41, [201).
Generalized versions of many of these procedures are
also applicable to problems modeled by CDPs (see
E171). In fact we came up with the concept of a
CDP as a generalization of the concept o,$ an SDP.

The Scope of the CDP Formulation -----

The concept of composite decision process is
very important. In addition to the problems modeled
by SDPs, it models a large number of problems in
A.I. and other areas of computer science which can
not be naturally formulated in terms of SDPs. The
wide applicability of CDPs becomes obvious when we
notice that there is a direct natural correspondence
between context-free grammars and And/Or graphs used
in A.I. applications to model problem reduction
schema [6]. Due to this correspondence, the speci-
fication of a problem by an And/Or graph can often
be viewed as its specification in terms of a CDP,

and the problem of finding a least cost solution
tree of an And/Or graph becomes equivalent to the
minimization problem of its corresponding CDP. Due
to the correspondence between And/Or trees and game
trees, the problem of finding the minimax value of
a game tree can also be represented in the CDP
formulation. Furthermore, many other important
optimization problems such as the problem of con-
structing an optimal decision tree, constructing an
otpimal binary search tree, finding an optimal
sequence for matrix multiplication can be naturally
formulated in terms of CDPs (see [17]).

2.2 Solving the Minimization Problem ~-

We have shown in [17] that , in its full gener-
ality, the minimization problem of a monotone CDP
(hence of a CDP) is unsolvable. However, we identi-
fied three interesting special cases (acyclic mono-
tone CDP, positive monotone CDP, strictly monotone
CDP) of monotone CDPs for which the minimization
problem is solvable. In all the three cases a least
cost parse tree of G rooted as S can be provably
identified by generating and evaluating only a
finite number of parse trees of G, even though G
may generate infinite number of parse trees. This
is a sufficient proof for the solvability of their
minimization problems. But even these finite parse
trees can be too many. In the following we briefly
discuss two general techniques to solve the minimi-
zation problems of these CDPs in a manner which can
be much more efficient than the simple enumeration.

The Generalized Dynamic Programming Technique

One way of solving the minimization problem of
a given monotone CDP C = (G(V,N,S,P),t,c) is to
successively find (or reverse the estimates of)
c*(n) for the symbols n of the grammar G until c*(S)
is found. Viewed in terms of And/Or graphs, bigger
problems are successively solved starting from the
smaller problems. The term "bottom up" is quite
suggestive of this theme and is often used for many
search procedures which are special cases of the
technique discussed above. Historically, many of
these procedures have also been called Dynamic
Programming computations. Furthermore, the basic
ideas of Dynamic Programming procedures - Bellman's
principle of optimality and the recursive equations
- are associated with monotone composite decision
processes in their generalized forms. Hence we have
named these bottom up procedures for minimization of
CDPs as dynamic programming.

In [17] we have presented dynamic programming
procedures to solve the minimization problem of the
three classes of CDPs. Interestingly, Ibaraki's
procedures for solving the minimization problems of
SDPs, Dijkstra's algorithm for shortest path,
Knuth's generalization of Dijkstra's algorithm,
Martelli and Montanati's bottom up search algorithm
for constructing an optimal solution tree of an
Acyclic And/Or graph, and many other optimization
algorithms (usually termed as dynamic programming
algorithms) can be considered as special cases of
these procedures.

The Generalized Branch-and-Bound Technique -. -__ --- and BJC, since these procedures are special cases of
the general procedure.

In this second technique, we start with some
representation of the total (possible infinite) set
of parse trees out of which a least cost parse tree
needs to be found. We repeatedly partition this set
(a partitioning scheme is usually suggested by the
problem domain). Each time the set is partitioned,
we delete all members of the partition for which it
can be shown that even after eliminating the set,
there is a least cost parse tree in one of the
remaining sets. This cycle of partitioning and
pruning can be continued until only one (i.e., a
least cost) parse tree is left.

This "top down" process of partitioning and
pruning for determining an optimal element of a set
has been used for solving many optimization prob-
lems in Operations Research, where it is known as
branch and bound (B&B). It is easy to see that the
central idea of B&B - the technique of branching
and pruning to discover an optimum element of a
set - is at the heart of many heuristic procedures
for searching state space, And/Or graphs, and game
trees. But none of the B&B formulations presented
in the O.R. literature adequately model And/Or
graph and game tree search procedures such as alpha-
beta, SSS" [27], AO* and B* [l]. This has caused
some of the confusion regarding the relationship
between heuristic search procedures and B&B.

To remedy this situation, we have developed a
formulation of B&B which is more general and also
much simpler than existing formulations. We have
further developed a B&B procedure to search for an
optimum solution tree of an acyclic And/Or graph
(i.e., to solve the minimization problem of an
acyclic monotone CDP) which generalizes and unifies
a number of And/Or graph and game tree search pro-
cedures such as AO*, SSS*, alpha-beta, and B* [17].

3. Concluding Remarks

The generalized versions of DP and B&B (for
solving the minimization problems of CDPs) provide
a unifying framework for a number of heuristics
search procedures. In particular, the B&B formula-
tion for searching acyclic And/Or graphs has helped
unveil the close relationship of alpha-beta with
SSS", showing that if a minor modification is made
in the B&B formulation of SSS*, the resulting pro-
cedure is equivalent to alpha-beta (see [17,16]).
This is most interesting, for alpha-beta as conven-
tionally presented [14] appears very different from
SSS* as described by Stockman [27]. Considering
that alpha-beta has been known for over twenty
years, it is noteworthy that SSS* was discovered
only recently in the context not of game playing,
but of a waveform parsing system [26]. Perhaps if
an adequate B&B formulation for alpha-beta had been
available earlier, SSS* would have been developed
as a natural variation of alpha-beta. The B&B
formulation also makes it easy to visualize many
variations and parallel implementations of SSSfc
presented in [17,11,12]. In [17] we also proved
the correctness of a general procedure for searching
acyclic And/Or graphs. This greatly simplifies the
correctness proofs of algorithms such as AO*, SSS;k,

We have considered B&B and DP as two distinct
ways (a top down search procedure and a bottom up
search procedure) of solving the minimization prob-
lem of a CDP. However, it turns out that for an
important subset of the problems formulated by the
CDP, the class of DP algorithms becomes indistin-
guishable from the class of B&B algorithms (see
[171). This explains why DP and B&B algorithms for
several optimization problems were thought to be
related, and why B&B procedures of Ibaraki [lo] for
solving the minimization problem of a SDP could
also be viewed as DP computations.

The general search procedures discussed in this
paper make use of two types of information to effi-
ciently find an element of a discrete set X -
"syntactic" and "semantic". The syntactic informa-
tion is present in the representation of X (e.g.,
by a context-free grammar, regular grammar, etc.),
and is used in DP in the form of principle of opti-
mality , and in B&B in the form of a dominance rela-
tion. But the only semantic information used in
these procedures is in the form of heuristics or
bounds associated with subproblems or subsets of X.
It should be interesting to investigate what other
types of problem specific knowledge can be inte-
grated into these search procedures or their varia-
tions. We conjecture that such investigation will
also be of help in improving problem solving search
procedures which are not necessarily used for opti-
mization problems.

Context-Free Grammar

U N
G = ({a,b,d],{S,A},S,P)

Productions: Cost Attributes:

P,: S -f aA, tp (r1,r2) = min r1,r2 ,

P2: A -+ abd,
P:

tp (r 2 l,r2,r3) = rl+r2+r3,

p3
: A+ad, tp (rl,r2) = r1+r2

p4
: S+aS,

tP 3(rl,r2) = r1+r2
4

terminal costs: c(a) = 5, c(b) = 10, c(d) = 15.

l(a) A composite decision process
C = (G(A,N,S,P),t,p,c)

Figure 1

223

c, (a) = 5
PJ-+h/ /

C
cTl(b)=10

T (a>=5
1

c Tl Cd)=15

16) The derivation tree Tl depicting derivation
of aabd from S:

f(T2) = cT2(S) = 5.

Figure 1 can't.

REFERENCES

[II Berliner, H., The B* Tree Search Algorithm: A
Best-First Proof Procedure, Artificial Intelli-
gence 12, pp. 23-40, 1979.

[21 Dijkstra, E.W., A Note on Two Problems in Con-
nection with Graphs, Numer. Math. 1, pp. 269- ~ -
271, 1959.

[31 Dreyfus, S.E., An Appraisal of Some Shortest
Path Algorithms, Operations Research 17,
pp. 395-412, 1969.

[41 Dreyfus, S.E. and Law, A.M., The Art and Theory
of Dynamic Programming, Academic Press,
New York, 1977

[51 Hall, P.A.V., Branch-and-Bound and Beyond,
Proc. Second Int'l. Joint Conf. on Artificial
Intelligence, pp. 641-658, 1971.

[61 Hall, P.A.V., Equivalence Between AND/OR Graphs
and Context-Free Grammars, Comm. ACM 16,
pp. 444-445, 1973.

[71 Ibaraki, T., Solvable Classes of Discrete
Dynamic Programming, J. Math. Analysis and
Applications 43, pp. 642-693, 1973.

[81 Ibaraki, T., Theoretical Comparison of Search
Strategies in Branch and Bound, Int'l. Journal
of Computer and Information Science, 5,
pp. 315, 344.

L91

[lOI

Ibaraki, T., The Power of Dominance Relations
in Branch and Bound Algorithms, J. ACM 24,
pp. 264-279, 1977.

Ibaraki, T., Branch-and-Bound Procedure and
State-Space Representation of Combinatorial
Optimization Problems, Inform, and Control 36,
PP. l-27, 1978.

= mint5,30) = 5

CT1 (‘li) = 5 + 10 + 15 = 30

[Ill

[=I

[I31

[I41

[I51

[I61

[171

Cl81

[I91

[201

[211

[221

v31

[241

v51

[261

v71

Kanal, L. and Kumar, V., Parallel Implementa-
tions of a Structural Analysis Algorithm, Proc.
IEEE Conf. Pattern Recognition and Image Pro-
cessing, pp. 452-458, Dallas, August 1981.

Kanal, L.N. and Kumar, V., A Branch and Bound
Formulation for Sequential and Parallel Game
Tree Search, Proc. 7th Int'l. Joint Conf. on
A.I., pp. 569-571, Vancouver, August 1981.

K=p, R.M. and Held, M.H., Finite-Space Pro-
cesses and Dynamic Programming, SIAM, J. Appl.
Math 15, pp. 693-718, 1967.

Knuth, D.E., and Moore, R.W., An Analysis of
Alpha-Beta Pruning, Artificial Intelligence 6,
pp. 293-326, 1975.

Kohler, W.H. and Steiglitz, K., Characteriza-
tion and Theoretical Comparison of Branch and
Bound Algorithms for Permutation Problems,
J-ACM 21, pp. 140-156, 1974.

Kumar, V. and Kanal, L., A General Branch and
Bound Formulation for Understanding and Syn-
thesizing And/Or Tree Search Procedures,
Artificial Intelligence 21, pp. 179-197, 1983.

Kumar, V., A Unified Approach to Problem Solv-
ing Search Procedures, Ph.D. Dissertaion, Univ.
of Maryland, College Park, 1982.

Martelli, A. and Montanari, U., Optimizing
Decision Trees Through Heuristically Guided
Search, Comm. ACM 21, pp. 1025-1039, 1978

Morin, T.L. and Marsten, R.E., Branch and
Bound Strategies for Dynamic Programming,
Operations Research 24, pp. 611-627, 1976.

Nilsson, N., Problem-Solving Methods in Arti-
ficial Intelligence, McGraw-Hill, New York,
1971.

Nilsson, N., Principles of Artificial Intelli-
gence, Tioga Publ. Co., Palo Alto, CA, 1980.

Pohl, I., Is Heuristic Search Really Branch and
Bound?, Proc. 6th Annual Princeton Conf. Infor.
Sci. and Systems, pp.370-373, 1972

Reingold, E., Nievergelt, J. and Deo, N.,
Combinatorial Optimization, Prentice-Hall, 1977.

Smith, D.R., Representation of Discrete Opti-
mization Problems by Dynamic Programs, Tech.
Rep. NPS 52-80-004, Naval P.

Smith, D.R., Problem Reduction Systems, unpub-
lished report, 1981.

Stockman, G.C. and Kanal, L., Problem-Reduction
Representation for the Linguistic Analysis of
Waveforms, IEEE Trans. PAM1 5, 3, May 1983.

Stockman, G.C., A Minimax Algorithm Better
Than Alpha-Beta?, Artificial Intelligence 12,
pp. 179-196, 1979.

224

