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ABSTRACT 

Most previous research on the use of search for 
minimax game playing has focused on improving search 
efficiency rather than on better utilizing available 
information. In a previous paper we developed models of 
imperfect opponent play based on a notion we call 
playing strength. In this paper, we use the insights 
acquired in our study of imperfect play and ideas 
expressed in papers by Slagle and Dixon, Ballard, Nau, 
and Pearl to develop alternatives to the conventional 
minimax strategy. We demonstrate that, in particular 
situations, against both perfect and imperfect 
opponents, our strategy yields an improvement 
comparable to or exceeding that provided by an 
additional ply of search. 

I. INTRODUCTION 

Any two-player, zero-sum, perfect information 
game can be represented as a minimax game tree, where 
the root of the tree denotes the initial game situation 
and the children of a node represent the results of the 
moves which could be made from that node. Most 
previous research on search for minimax game playing 
has focused on improving search efficiency. Results of 
this type improve the quality of player decision making 
by providing more relevant information. In contrast, 
our research focuses on better utilizing information 
rather than searching for more. In this paper, we 
summarize previous work on this issue, describe a new 
approach based on a model of opponent fallibility, and 
provide and discuss our results. In particular, we have 
devised a modification of the *-minimax search 
procedure for tree containing chance nodes (Ballard 
[82,83]) to improve the overall performance of the 
minimax backup search algorithm. We shall 
demonstrate that, in particular situations, against 
perfect and imperfect opponents, our strategy yields an 
improvement comparable to or exceeding that provided 
by an additional ply of search. In the examples 
appearing below, we follow convention and call the two 
players “Max” and “Min” and use “+‘I to denote nodes 
where Max moves and “-” to represent similar nodes for 
Min. Positive endgame (leaf) values denote positive 
payoffs for Max. Readers unfamiliar with the 
conventional minimax backup search and decision 
procedure should refer to Nilsson [60]. 
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II. PREVIOUS WORK ON PROBLEMS WITH MINIMAX 

Given perfect play by our opponent, we know from 
game theory that a conventional minimax strategy 
which searches the entire game tree yields the highest 
possible payoff. However, most actual players, whether 
human or machine, lack the conditions needed to insure 
optimal play. In particular, because the trees of many 
games are very deep, and tree size grows exponentially 
with depth, a complete search of most real game trees is 
computationally intractable. In these instances, static 
evaluation functions and other heuristic techniques are 
employed to reduce the search used in making 
decisions. Before presenting our current work, we 
discuss previous efforts to deal with incomplete search 
and imperfect opponents. 

A. Compensating for incomplete search 

During the middle to late 1960’s, James Slagle and 
his associates sought to improve the performance of 
minimax backup by attempting to predict the expected 
value of (D+l)-level minimax search with only a D-level 
search (Slagle and Dixon [70]). Their strategy was 
called the “M and N procedure” and determined the 
value of a Max node from its M best children and the 
value of a Min node from its N best children. The M and 
N procedure is based on the notion that the expected 
backed-up value of a node is likely to difler from the 
expected backed-up value of its best child. From 
empirical data, they defined a “bonus function” to be 
added to the static value of the best looking child of a 
node, hoping that this would lead to a better estimate of 
the true value of the parent. Using the game of “Kalah”, 
they found that M and N yields an improvement in the 
expected outcome of the game about 13% as great as 
does an additional ply of search. 

B. Modeling Imperfect Opponent Play 

In Reibman and Ballard [83] we introduced general 
rules for constructing a model for an imperfect player 
based on a notion we call playing strength. Intuitively, 
playing strength is an indication of how well a player 
can be expected to do in actual competition, rather 
than against a theoretical perfect opponent. In our 
previous work, we also presented a model of an 
imperfect opponent based on a fixed probability of 
player error. The simulated imperfect Min player chose 
the best available move a fixed percentage of the time; 
otherwise Min chose another of the available moves. 
Thus the expected value of an imperfect opponent’s “-” 
node was considered to be the value of its best child 
plus a fixed fraction of the value of any other children. 
Though it failed to consider the relative differences 
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between the values of moves, this simple model was 
found to be better for use in our study than 
conventional minimax. 

The reader may have noticed in the preceding 
section a resemblance between the notion of a bonus 
function and our attempt to accurately predict the 
expected value of moves made by a fallible opponent. In 
Ballard and Reibman [83b], we prove that in a simplified 
form of the model we present below, with a fixed 
probability of opponent error, our strategy can be 
obtained by an appropriate form of M and N (and vice 
versa), although the exact backed up values being 
determined will differ. This is because Slagle and Dixon’s 
bonus function was approximately linear, while ours, 
based on the arc-sum tree model we use below, is a 4-th 
degree polynomial. 

-HI. THE UNRESOLVED PROBLEM OF OPPONENT FALLIBILITY 

In addition to having an inability to completely 
search actual game trees, actual implementations of 
minimax assume perfect play by their opponent. 
However, this assumption often is overly conservative 
and can be detrimental to good play. We now present 
two general classes of situations where minimax’s 
perfect opponent assumption leads to sub-optimal play. 

A. Forced Losses and Breakhg Ties 

The first problem with minimax that we consider is 
its inability to “break ties” between nodes which, though 
they have the same backed-up value, actually have 
different expected results. A readily observable example 
of this problem is found in forced loss situations. In the 
two-valued game in Figure 1, Max is faced with a forced 
loss. Regardless of the move Max makes at the ‘I+” node, 
if Min plays correctly Max will always lose. Following the 
conventional minimax strategy, Max would play 
randomly, picking either subtree with equal frequency. 
Suppose, however, that there is a nonzero probability 
that Min will play incorrectly. For illustration, assume 
Min makes an incorrect move 10% of the time. Then if 
Max moves randomly, the expected outcome of the game 
is .5(O) + .5(.9+0 + .l*l) = .05. If Max knows that, on 
occasion, Min will move incorrectly, this knowledge can 
be used to improve the expected payoff from the game. 
Specifically, Max can regard each “-I’ node as a “chance 
node” similar to those that represent chance events 
such as dice rolls in non-minimax games. (Ballard 
[82,83] gives algorithms suited to this broader class of 
“*-minimax” games.) Thus Max evaluates “-” by 
computing a weighted average of its children, based on 
their conjectured probabilities of being chosen by Min, 
rather than by finding just the minimum. Following this 
strategy, Max converts the pure minimax tree of Figure 
1 into the *-minimax tree also shown, and determines 
the values of the children of the root as 0 and 0.1. The 
rightmost branch of the game tree is selected because it 
now has the higher backed-up value. In terms of 
expected payoff, (which is computed as O*(O) + 1.0*(.9*0 
+ .1*1) = O.l), this is clearly an improvement over 
standard minimax play. Furthermore, this strategy is an 
improvement over minimax in forced loss situations 
regardless of the particular probability that Min will err. 

tmkql /+\ lzakup 
+ 

txxhp / \ hackup 
value=0 / \ MlUe=c value=0 / \ value=.1 

+ + 
/\ /\ p=.5 / \ F.5 p=.l / \ p=.9 
00 10 00 10 

Figure 1 : In an attempt to salvage a forced loss situation 
the minimax tree on the left is converted to the +-minimax 
tree on the right. 

Our observed improvement in forced loss 
situations is a specific example of “tie-breaking”, where 
the equal grandchild values happen to be zero. Because 
minimax uses only information provided by the 
extreme-valued children of a node, positions with 
different expected results often appear equivalent to 
minimax. Variant strategies can thus improve 
performance by breaking ties with information minimax 
obtains but does not use. 

B. Exploiting Our Opponent’s Potential For Error 

By always assuming its opponent is a minimax 
player, minimax misses another class of opportunities to 
improve its expected performance, although less 
obvious than the forced loss situation presented above. 
An example is found in Figure 2. Assume as above that 
Min makes the correct move with probability .9. If Max 
uses the conventional backup strategy and chooses the 
left node, the expected outcome of the game is 2.1. If, 
however, we recognize our opponent’s fallibility and 
convert the Min nodes to “*‘s”, (as in Figure 2), we must 
choose the right branch and the game’s expected result 
increases to 2.9. Thus by altering the way we back up 
values to our opponent’s nodes in the game tree, we can 
improve our expected performance against an imperfect 
opponent. 

backup /+\ b=m 
+ 

baclaq, / 1 backup 
vallE& 1 \ val-afF1 valuec2.1 / \ valuE+Z.9 

* - + 
/\ If. jF.S/\p=.l p=.9/\p=.l 
23 1 20 23 120 

Figure 2 : By converting the minimax tree on the left to 
the *-minimax tree on the right we may capitalize on our 
opponents potential for error. 

In the example of a forced loss, the improvement 
in performance was due to the ability of a weighted 
average backup scheme to correctly choose between 
moves which appear equal to conventional minimax. In 
the second example, our variant backup yielded a 
“radical difference” from minimax, a choice of move 
which differed not because of “tie-breaking”, but 
because differing backup strategies produced distinct 
choices of which available move is correct. 



IV. A NEW MODEL FOR IMPERFECT PLAY 

Having observed an opportunity to profit by 
exploiting errors which might be made by our opponent, 
we have formulated a more sophisticated model of an 
imperfect opponent than was previously considered. We 
will first provide the motivation for our enhancements 
and then describe the details of the imperfect player 
model used in the remainder of the paper. 

A. Motivation for a Noise-based Model 

In general, it should be fairly easy to differentiate 
between moves whose values differ greatly. However, if 
two moves have approximately the same value, it could 
be a more difficult task to choose between them. The 
strength of a player is, in part, his ability to choose the 
correct move from a range of alternatives. Playing 
strength can therefore correspond to a “range of 
discernment”, the ability of a player to determine the 
relative quality of moves. An inability to distinguish 
between moves with radically different expected 
outcomes could have drastic consequences, while 
similar difficulties with moves of almost equal expected 
payoff should, on the average, have less effect on a 
player’s overall performance. 

We model players of various strengths by adding 
noise to the information they use for decision making. A 
player with noiseless move evaluation is a perfect 
opponent, while a player with an infinite amount of noise 
injected into its evaluation plays randomly, We 
introduce noise at the top of an imperfect player’s 
search tree in an amount inversely proportional to the 
player’s strength. 

B. The Noise-based Model in Detail 

We now describe the details of our imperfect 
player model. Each imperfect Min player is assigned a 
playing strength. Tn simulating actual games, the 
imperfect Min player conducts a conventional minimax 
backup search to approximate the actual value of each 
child of the current position. The backed-up values of 
each child are then normalized with respect to the 
range of possible backed-up values and a random 
number, chosen from the uniform distribution 0 <= x <= 
S, (where S is inversely related to the player’s strength), 
is added to the normalized value of each child. Thus the 
lower a player’s strength the higher the average 
magnitude of the noise generated. The true node value 
with noise added is then treated as a conventional 
backed-up value. We add the noise to the top of a 
player‘s search tree because the actual effect of adding 
noise to the top of the tree can be studied analytically 
while the effect of introducing noise in the leaves is less 
well understood (Nau [f30,82]). As described in Reibman 
and Ballard [83], we have verified that, in our noise- 
based model, decision quality degrades monotonically 
with respect to increases in the magnitude of the noise 
added to the conventional backed-up value. 

V. A STRATEGY FOR USE AGAINST IMPERFECT OPPONENTS 

We now present a strategy for use against 
imperfect opponents. We have based this strategy on 
the *-minimax search algorithms for trees containing 
chance nodes in order to compensate for the 
probabilistic behavior of fallible opponent. Three main 

assumptions are used as a foundation: (1) Against a Mm 
player assumed to be perfect, we should use a 
conventional Max strategy. (2) Against an opponent who 
plays randomly, we should evaluate ‘I-” nodes by taking 
an unweighted average of the values of their children. 
(3) In general, against imperfect players, we should 
evaluate I’-” nodes by taking a weighted average of the 
values of their children, deriving the appropriate 
probabilities for computing this average from an 
estimate of our opponents playing strength. 

In an attempt to predict the moves of our 
imperfect opponent, we assign our opponent a predicted 
strength, denoted PS, between 0 and 1. To determine 
the value of I’-” nodes directly below the root, our 
predictive strategy searches and backs up values to the 
@‘+‘@ nodes directly below each I’-” node using 
conventional minimax. A “-I’ node with branching factor 
Br is then evaluated by first sorting the values of its 
children in increasing order, then taking a weighted 
average using probabilities PS, 
PS)**(Br-1) * PS. 

(l-Ps)*Ps,...,( l- 
If PS=l, we consider only the 

minimum-valued child of a ‘I-” node, in effect predicting 
that our opponent is perfect. At the other extreme, as 
PS approaches 0, a random opponent is predicted and, 
since the probabilities used to compute the weighted 
average become equal, the Min node is evaluated by an 
unweighted average of its children. How well our model 
predicts the moves of an imperfect opponent should be 
reflected in our strategy’s actual performance against 
such a player. 

Vi. AN EIWIRKXL ANALYSIS OF THE PREDICTIVE fjTRATEGY 

In Reibman and Ballard [83] we conducted an 
empirical analysis to investigate the correlation between 
playing strength as defined in our model and 
performance in actual competition. We now conduct an 
empirical study to compare the performance of our 
predictive algorithm with that of conventional rninimax 
backup. We conduct our trials with complete n-ary 
game trees generated as functions of three parameters: 
D denotes the depth of the tree in ply, Br the branching 
factor, and V, the maximum allowable “arc value”. In 
our study we assign values to the leaves of the game 

tree by growing the tree in a top-down fashion (Puller, 
et at [73]). Every arc in the tree is independently 
assigned a random integer chosen from the uniform 
distribution between 0 and V. The value of each leaf is 
then the sum of arcs leading to it from the root. 

The portion of our study presented here consists 
of several identical sets of 5000 randomly generated 
game trees with Br=4, D=5, and V=lO. Against seven 2- 
ply Min opponents, ranging from pure minimax to almost 
random play, we pit conventional minimax players 
searching l-, 2-, and 3-ply, and 10 predictive players, 
each with a 2-ply search and a PS chosen from between 
.1 and .9. The results of this experiment are found in 
Table 1. Before summarizing our observations, we note 
that the numbers in Table 1 represent points on a 
continuum; they indicate general trends but do not 
convey the entire spectrum of values which lie between 
the points we have considered. 

In the first column of Table 1, we observe that, 
though it might be expected that pure Max backup 
would be the optimum strategy against conventional 
Edin, several of our predictive players perform bett-2r 



Table 1 
Empirical Study Results 

Trials=5000, Br=4, D=5, Game Values O-50 
Average payoff over all games 

Max’s Strategy 0.00 

l-ply minimax 27.23 30.60 32.34 33.13 33.62 34.14 34.58 
2-ply minimax 20.15 31.29 32.90 33.46 33.90 34.47 34.76 
3-ply minimax 28.98 32.05 33.36 33.96 34.31 34.65 35.01 

2-ply PS = 0.9 28.2 1 31.40 33.03 33.62 34.03 34.58 34.9 1 
Z-ply PS = 0.8 28.2 1 31.40 33.03 33.62 34.03 34.58 34.92 
Z-ply PS = 0.7 28.21 31.40 33.02 33.62 34.04 34.58 34.92 
2-ply PS = 0.6 28.2 1 31.40 33.02 33.62 34.05 34.60 34.95 
2-ply PS = 0.5 28.20 31.41 33.05 33.66 34.10 34.66 35.00 
2-ply PS = 0.4 28.20 31.42 33.10 33.70 34.15 34.72 35.07 
2-ply PS = 0.3 28.17 31.41 33.11 33.75 34.19 34.99 35.12 
2-ply PS = 0.2 28.13 31.40 33.13 33.77 34.22 34.83 35.16 
2-ply PS = 0.1 28.08 31.39 33.14 33.79 34.24 34.85 35.19 

Imperfect Player Noise Range 
0.25 0.50 0.75 1.00 2.00 6.00 

than a conventional Max player searching the same 
number of ply. The observed improuement is as much as 
7% of the gain we would expect from adding an 
additional ply of search to the conventional Max 
strategy. This result is analogous to that obtained with 
Slagle and Dixon’s M and N strategy. Like M and N, our 
improvement is due, at least in part, to a strategy which, 
by considering information from more than one child of 
a node, partially compensates for a search which fails to 
reach the leaves. 

In the central columns of Table 1, we see that 
against an opponent whose play is imperfect, our 
strategy can provide almost half the expected 
improvement given by adding an additional ply of 
search to the conventional Max strategy. We believe this 
gain is due primarily to the ability of our strategy to 
capitalize on our opponent’s potential for errors. 

If we examine the results in the last two columns 
of Table 1, we observe that, against a random player, our 
strategy yields an improvement up to twice that yielded 
by an additional ply of search. As the predicted 
strength of our opponent goes down, our predictions of 
our opponent’s moves become more a simple average of 
the alternatives available to him than a minimax 
backup. We have previously conjectured that the most 
accurate prediction of the results of random play is 
such a weighted average and, as expected, our 
strategy’s performance continues to improve 
dramatically as the predicted strength decreases. 

We also observe a possible drawback to the 
indiscriminate use of our strategy. When we begin to 
overestimate our opponents fallibility, our performance 
degrades. In Column 1 of Table 1, our performance 
peaks. If we inaccurately overestimate the weakness of 
our opponent, our performance declines and eventually 
falls below that of minimax. We have observed similar 
declines in other columns as we let the predicted 
strength move even closer to 0 than the minimum 
predicted strengths shown in Table 1. 

Having derived the results given above, we decided 
to tabulate the maximum improvement our strategy 
achieves over minimax. This summary is found in Table 
2. We also give the results (in Table 2) of statistical 
confidence tests we have applied to our empirical 
analysis. These tests help to assess whether our 
strategy actually performed better than minimax. The 
percentages indicate the level of confidence that the 
improvements observed were not due to chance (given 
the actual normal distribution of our sample of trees). 
We note that in all but the first two columns our 
confidence levels are well over 90%. 

VII. CONCLUSION 

In this paper we have discussed the problem of 
adapting game playing strategies to deal with imperfect 
opponents. We first observed that, against a fallible 
adversary, the conventional minimax backup strategy 
does not always choose the move which yields the best 
expected payoff. To investigate ways of improving 
rninimax, we formulated a general model of an imperfect 
adversary using the concept of “playing strength”. We 
then proposed an alternative game playing strategy 
which capitalizes on its opponents potential for error. 
An empirical study was conducted to compare the 
performance of our strategy with that of minimax. Even 
against perfect opponents, our strategy showed a 
marginal improvement over minimax and, in some other 
cases, great increases in performance were observed. 

We have presented some results of our efforts to 
develop variant minimax strategies that improve 
performance of game players in actual competition. Our 
present and future research includes a continued effort 
to expand and generalize our models of play, our 
predictive strategy, and the assessment of opponents 
iTsing a playing strength measure. Further study of our 
models has included not only additional empirical 
experiments but also closed-form analysis of some 
closely related game tree search problems. We hope to 
eventually acquire a unified understanding of several 



Table 2 

Statistical Analysis of Empirical Study 

X 
Predictive play % 
% improvement over 
2-ply minimax 
(in % of l-ply) 

Statistical Confidence: 
Is our optimum expected 
payoff better than that 
of Z-ply minimax? 

Imperfect Player Noise Range 

0.00 0.25 0.50 0.75 1.00 2.00 

7.2% 17.1% 52.1% 66.0% 82.9% 211.0% 

58.2% 82.9% 98.2% 99.8% 99.8% 99.8% 

distinct problems with minimax in order to develop a 
more general game playing procedure which retains the 
strong points of minimax while correcting its perceived 
inadequacies. 
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