
ABSTRACT 

This paper describes how integrity con- 
straints, whether user supplied or automatically 
generated during the search, and analysis of 
failures can be used to improve the execution of 
function free logic programs. Integrity con- 
straints are used to guide both the forward and 
backward execution of the Programs. This work 
applies to arbitrary node and literal selection 
functions and is thus transparent to the fact 
whether the logic program is executed SeWentiallY 
or in parallel. 

1. Introduction - 

1.1. The Problem -- -- 
Interpreters for logic programs have employed, 

in the main, a simple search strategy for the exe- 
cution of logic programs. PROLOG (Roussel 
Warren C19791, 

c19751, 
Roberts C19771) the best known and 

most widely used interpreter for logic programs 
employs a straightforward depth first search stra- 
tegy augmented by chronological backtracking to 
execute logic programs. This control strategy is 
'blind' in the sense that when a failure occurs, no 
analysis is done to determine the cause of the 
failure and to determine the alternatives which may 
avoid the same cause of failure. Instead the most 
recent node where an alternative exists, is 
selected. This strategy has the advantage that it 
is efficient in that no decisions need to be made 
as to what to select next and where to backtrack 
to. However, the strategy is extremely inefficient 
when it backtracks blindly and thus repeats 
failures without analyzing their causes. 

Pereira C19821, Bruynooghe Cl9781 and others 
have attempted to improve this situation by incor- 
porating the idea of intelligent backtracking 
within the framework of the PROLOG search strategy. 
In their work the forward execution component 
remains unchanged, however, upon failure their sys- 
tems analyze the failure and determine the most 
recent node which generated a binding which caused 
the failure. This then becomes the backtrack node. 
This is an improvement over the PROLOG strategy but 
still suffers from several drawbacks. Their scheme 
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works only for a depth first search strategy and 
always backtracks to the most recent failure caus- 
ing node. Also, once the backtrack node has been 
selected, all information about the cause of the 
failure is discarded. This can lead to the same 
failure in another branch of the search tree. 

A node in the search space is said to be 
closed when it has provided all the results possi- 
ble from it. In most PROLOG based systems a node 
cannot be closed until every alternative for that 
node is considered. However, by using integrity 
constraints as will be shown later, a node can be 
closed once it is determined that exploring further 
alternatives for that node will not provide any 
more results. 

When executing a logic program it is often 
desirable to permit an arbitrary selection function 
and to have several active nodes at any given time. 
It is also useful to be able to remember the causes 
of failures and use this information to guide the 
search process. 

1.2. Function Free Logic Programs and Integrity 
Co&traints 

The theory we treat is that of function-free 
Horn clauses as described in Kohli and Minker 
C19831. It is assumed that the reader is familiar 
with Horn clause logic programs as described in 
Kowalski [1979]. We assume throughout the paper 
that the inability to prove an atom implies its 
negation (Clark[1978] and ReiterC19781). 

An integrity constraint is an invariant that 
must be satisfied by the clauses in the knowledge 
base. That is, if T represents a theory of func- 
tion free logic programs and IC represents a set of 
integrity constraints applicable to T, then T U IC 
must be consistent. 

'e closed function free Horn Integrity constraints ar 
formulae of the form: 

(a) <- P,,...,P,, or 

(b) Q <- P,,...,P,, or 

(c) E,,E2,...,En <- P,, 
where the E., i=l,. 

1 
cates i.e. each 
where at least one 
ables. 

. . . . 'rn 

..,n, are equality predi- 
Ei is of the form xi = y. 1 
of the x., 1 y. 1 are vari- 

Thus, an integrity constraint of the form 
represents negated data, in the sense 

(a>, 
that 
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PI /\ P2 /\ . . . /\ Pm can never hold if T U IC is 
consistent. 

An integrity constraint of the form (b), 
states that if PI /\ P2 /\ . . . /\ Pm holds then Q 
must be provable from the knowledge base. 

Integrity constraints of the form (c), 
represent dependencies between the arguments of 
P&9 Pm' . . . . 

2. Goals and Integrity Constraints - -- 

2.1. Integrity Constraints to Limit Forward Execu- ---- 
tiOn 

Though integrity constraints are not necessary 
for finding the solution of a given set of goals 
with respect to a given logic program (Reiter 
C197811, they can greatly enhance the efficiency of 
the search process and thus improve the performance 
of the problem solver (McSkimin and Minker [19771, 
King CI9811). 

Integrity constraints enable the semantics of 
the given domain to direct the search strategy by 
enabling the problem solver to prune those alterna- 
tives which violate integrity constraints and thus 
focus the search. Thus integrity constraints 
influence the forward execution of the problem 
solver by enabling it to detect which sets of goals 
are unsolvable because they violate integrity con- 
straints. This avoids exploring alternatives which 
must fail after a, possibly lengthy, full search. 

Thus whenever a new set of subgoals is gen- 
erated, this set can be tested to determine if it 
violates any integrity constraints. If so, the 
node in question can be discarded and another path 
considered. 

2.2. Implementation and Search Strategy -- -- 
There are several forms of integrity con- 

straints as described in Section 1.2. 

Whenever a new set of goals is generated it 
must be tested to determine if it violates an 
integrity constraint. Though each of the forms 
(a), (b), and (c) above require slightly different 
treatments to determine if they are violated, the 
underlying mechanism for each is the same. 

Form (c) constraints can be transformed into 
form (a) by moving the disjunction of equalities on 
the left into a conjunction of inequalities on the 
right, i.e., 

EI,E2,-.,En <- PI, . . . . Pm 
is equivalent to -- 

<- PI,...,Pm,EI,E2,...,~. 

ing 
Form (b) can be interpreted to mean that solv- 
Q is equivalent to solving pI ,...,P, and thus 

p1 ,o*e,Pm can be replaced by Q in the set of goals. 
Since it is only necessary to determine if the 

right hand side of some integrity constraint can 
subsume the goal clause, an extremely straightfor- 
ward algorithm can be used. A clause C subsumes a 
clause D iff there exists a substitution c such 
that CoE D. The subsumption algorithm executes in 
linear time and does not increase the complexity of 
the search (Chang and Lee [1973]). 

Consider now, how the various forms of 
integrity constraints can be used to limit the for- 
ward execution. 

If a form (a) constraint subsumes a newly gen- 
erated goal clause, the goal violates the con- 
straint and can be deleted from the search space. 

Whenever a literal is solved, it must be 
determined whether it unifies with a literal in the 
right hand side of a form (c) constraint. If so, 
the resulting substitution is applied to the con- 
straint, the solved literal is deleted, and the 
clause is added to the set of integrity con- 
straints. 
For example, if 

x,=x2 <- P(x,x,),P(x,x2) 
is a constraint and P(a,b) is solved then P(a,b) 
unifies with a literal in the above constraint with 
the substitution set (a/x, b/x.,). The revised con- 
straint 

x2=b <- P(a,x,) 
is then obtained and added to the set of integrity, 
constraints. Now any node containing P(a,x) can be 
considered a deterministic node, since only one 
possible solution for P(a,x) exists. 

Finally, if the right hand side of a form (b) 
constraint subsumes the goal, then the resulting 
substitution is applied to the left hand side of 
the constraint and a new alternative goal with the 
left hand side substituted for the right hand side 
of the constraint, is generated. For example, if 

Q(x,z> <- 5(x,y),P2(Y,d 
is a constraint, and the goal clause under con- 
sideration is 

<- R(a,u),PI(a,y),P2(y,z),S(b,z) 
then 

<- PI(X,Y),P2(Y,Z) 
subsumes the goal with substitution {a/x). Apply- 
ing this substitution to <- Q(x,z) results in <- 
Q(a,z). Generating an alternative node with Q 
replacing P,, 2 P then results in the above goal node 
being repladed-by the following OR-node 

Parent Node 

Whenever a violation of an integrity con- 
straint occurs, it is treated as a failure. This 
results in failure analysis and backtracking which 
are detailed in the next section. 

20 Local and Global Conditions --- 
Global conditions are integrity constraints 

which are applicable to every possible node in the 
search space. Local conditions are integrity con- 
straints which are generated during the proof pro- 
cess and which are applicable only to the descen- 
dant nodes of some given node in the search space. 

3.1. Failure -- - 
The failure of a literal can provide informa- 

tion for directing the search. A literal 'fails' 
when it cannot be unified with the head of any 
clause in the knowledge base. Since this failure 



means that the literal cannot be proven in the 
current knowledge base, because of the assumption 
of failure by negation, the literal's negation can 
be assumed to hold. Thus, this literal can be 
viewed as an implicit integrity constraint, and the 
failure can be viewed as a violation of the 
integrity constraint. Thus, every failure can be 
viewed as a violation of some integrity constraint, 
implicit or explicit. This allows us to extract 
useful information from every failure, and to use 
this information in directing the search. 

The possible causes of unification conflicts are: 
(a) The literal is a pure literal. That is, there 
is no clause in the knowledge base, which has as 
its head the same predicate letter as the literal 
selected. This implies that any literal having the 
same predicate letter as the selected literal, will 
fail anywhere in the search space. This informa- 
tion can be useful in terminating other branches of 
the search tree in which a literal containing this 
predicate letter occurs. Thus if P(a,x) is a pure 
literal, then all of its argument positions can be 
replaced by distinct variables and the resulting 
literal can be added to the set of integrity con- 
straints as a form (a) constraint, i.e., 

<- P(x,,x2) 
is added to the set of constraints. 

(b) There are clauses in the knowledge base which 
could unify with the selected literal, but which do 
not unify because of a mismatch between at least 
two constant names. In this case the selected 
literal can never succeed with that particular set 
of arguments. This information can be used as an 
integrity constraint. For example, if the selected 
literal is 

P(x,a,x) 
and the only P clauses in the knowledge base are 

P(nil,nil,nil) <- 
P(z,z,b) <- PI(z,b),P2(z) 

then the unification fails and <-P(x,a,x) can be 
added to the set of integrity constraints. 

3.2. Explicit and Implicit Integrity Constraints -- 
Integrity constraints may be either explicit 

or implicit. Explicit constraints are those pro- 
vided initially in the domain specification. These 
constraints affect the forward execution of the 
problem solver as detailed in Section 2 and can be 
used in the derivation of implicit constraints. 

Implicit constraints are generated during the 
proof process, i.e., during the solution of a 
specific set of goals. These constraints arise out 
of the information gleaned from failure as shown in 
section 3.1, and from successes in certain contexts 
as will be shown in later sections. These con- 
straints may be considered to be implicit in the 
sense that they are not explicitly supplied but are 
derived during the proof process. 

1.3. Applicability of Integrity Constraints - -- 
An integrity constraint may be globally or 

locally applicable. It is globally applicable if 
it can be applied to any node in the search space. 
Explicit constraints are always globally applicable 
since they are defined for the domain and are 
independent of any particular proof tree. Implicit 

constraints may be either locally or globally 
applicable. 

A locally applicable constraint is one which 
must be satisfied by a given node and all its chil- 
dren. Any node which is not part of the subtree 
rooted at the node to which the constraint is 
locally applicable, need not satisfy the con- 
straint. Locally applicable constraints are 
derived from the failure of some path in the search 
space. The analysis of the cause of the failure 
results in the generation of a locally applicable 
constraint which is transmitted to the parent node 
of the failure node. This local constraint must 
then be satisfied by any alternative expansions of 
the node to which it applies. This effectively 
prunes those alternatives which cannot satisfy the 
constraint. The following example illustrates these 
techniques. 

Logic Program: 
- P(a,b) <- 

Q(y,z) <- Q,h,x), Q2(z,y) 
Q(y,z) <- Q3(z,y) 
Q,(b,d) <- 
Q2(b,b) <- 
Q2(c,c) <- 
Q2(c9b) <- 
Q2(x,y) <- Q4(c,x) 
Q3(c,b) <- 
Q4(x,x) <- 

Query: 
<- p(x,y),Q(y,z) 

Search Tree: -- 

(I) 
<- ~(x,x),Q(~,z) -- 

From the above search tree, Node 4, <- Q,(c,x) can 
be propagated as a global imp1 ici .t constrai .nt since 
<- Q,(c,x) can never be solved Also, z = c can be 
propagated as a local implicit constraint to node 3 
and thus later prevent the generation of node 7. 
This constraint is local to node 3 and its children 
since that is the node that bound z to c. As can 
be seen from the example an alternative expansion 
of node 2 giving node 8 succeeds with z bound to c. 



3.4. Generation and Propagation of Conditions -- - 
Implicit constraints are generated at leaf 

nodes of the search space and are propagated either 
globally or as locally applicable constraints to 
some parent of the leaf node. Rules for generating 
and propagating implicit constraints are detailed 
below. 

When a goal fails along all paths, then that 
goal along with its current bindings is propagated 
as a global integrity constraint. Thus, if 
PM c( sta~ts2*~o;~~~~~l~~ere the di, i = I,...,n aye co:; 

, fails for every expansion 
p, then <- P(d, d, . . ..d ) is a global 
because it can ,ne+er szcceed in the 

constraint 
current 

knowledge base. 

Since that goal can never succeed with its 
current bindings, alternatives which give rise to 
different bindings for its arguments must be tried. 
Thus those nodes which created these bindings 
receive as local constraints the information that 
these bindings must not be repeated along alterna- 
tive expansions of those nodes. That is, if 
P(d 4 . . ..c( ) fails and there is some ancestor 
P' (3f 6'such that some di of P is bound to some xi 
of P' and xi is contained in some literal (other 
than P') in the clause containing P', then -- 
<- x. = cl. is a local integrity constraint for the 
clauke coktaining P'. If there are several d. 
which have been bound in different ancestor clause& 
of P, the conjunction of these bindings must be 
propagated to the binding clauses. 

Local constraints which are propagated to a 
node by a descendant of the node must then be pro- 
pagated to all other descendants of that node. 
This is because, as was noted above, the binding to 
X. in the node containing Pi was due to the selec- 
tton of some literal other than Pi in that node. 
Thus, Pi will be present in every expansion of that 
node and the binding of x i will cause Pi to eventu- 
ally fail. 

Consider a node P which has several children 
P,' P2’ . . . . 

‘n’ 
Associated with each Pi is a set of 

local integrity constraints generated by its des- 
cendent nodes. Then if there is some local 
integrity constraint associated with every Pi, that 
integrity constraint is propagated to P. 

4. Summary -- 
A control strategy has been developed for 

function-free logic programs to permit intelligent 
search based both on domain specific information in 
the form of integrity constraints and on an 
analysis of failures. Integrity constraints limit 
search in the forward direction, while failure 
analysis results in the creation of integrity con- 
straints. Failure analysis is also used to deter- 
mine backtrack points more likely to succeed. The 
concepts of local and global constraints are used 
to inhibit exploring fruitless alternatives. Sub- 
sumption is employed to take advantage of the con- 
straints. In Kohli and Minker C19831, a logic pro- 
gram is specified for an interpreter which will 
perform the above. 

We intend to incorporate these concepts into 
PRISM, a parallel logic programming system [Kasif, 
Kohli and Minker 19833, under development at the 
University of Maryland. 
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