
ABSTRACT

This paper describes how integrity con-
straints, whether user supplied or automatically
generated during the search, and analysis of
failures can be used to improve the execution of
function free logic programs. Integrity con-
straints are used to guide both the forward and
backward execution of the Programs. This work
applies to arbitrary node and literal selection
functions and is thus transparent to the fact
whether the logic program is executed SeWentiallY
or in parallel.

1. Introduction -

1.1. The Problem -- --
Interpreters for logic programs have employed,

in the main, a simple search strategy for the exe-
cution of logic programs. PROLOG (Roussel
Warren C19791,

c19751,
Roberts C19771) the best known and

most widely used interpreter for logic programs
employs a straightforward depth first search stra-
tegy augmented by chronological backtracking to
execute logic programs. This control strategy is
'blind' in the sense that when a failure occurs, no
analysis is done to determine the cause of the
failure and to determine the alternatives which may
avoid the same cause of failure. Instead the most
recent node where an alternative exists, is
selected. This strategy has the advantage that it
is efficient in that no decisions need to be made
as to what to select next and where to backtrack
to. However, the strategy is extremely inefficient
when it backtracks blindly and thus repeats
failures without analyzing their causes.

Pereira C19821, Bruynooghe Cl9781 and others
have attempted to improve this situation by incor-
porating the idea of intelligent backtracking
within the framework of the PROLOG search strategy.
In their work the forward execution component
remains unchanged, however, upon failure their sys-
tems analyze the failure and determine the most
recent node which generated a binding which caused
the failure. This then becomes the backtrack node.
This is an improvement over the PROLOG strategy but
still suffers from several drawbacks. Their scheme

* This work was supported in part by AFOSR grant
82-0303 and NSF grant MCS-79-19418.

INTELLIGENT CONTROL USING INTEGRITY CONSTRAINTS

Madhur Kohli Jack Minker

Department of Computer Science, University of Maryland, College Park, MD 20742

works only for a depth first search strategy and
always backtracks to the most recent failure caus-
ing node. Also, once the backtrack node has been
selected, all information about the cause of the
failure is discarded. This can lead to the same
failure in another branch of the search tree.

A node in the search space is said to be
closed when it has provided all the results possi-
ble from it. In most PROLOG based systems a node
cannot be closed until every alternative for that
node is considered. However, by using integrity
constraints as will be shown later, a node can be
closed once it is determined that exploring further
alternatives for that node will not provide any
more results.

When executing a logic program it is often
desirable to permit an arbitrary selection function
and to have several active nodes at any given time.
It is also useful to be able to remember the causes
of failures and use this information to guide the
search process.

1.2. Function Free Logic Programs and Integrity
Co&traints

The theory we treat is that of function-free
Horn clauses as described in Kohli and Minker
C19831. It is assumed that the reader is familiar
with Horn clause logic programs as described in
Kowalski [1979]. We assume throughout the paper
that the inability to prove an atom implies its
negation (Clark[1978] and ReiterC19781).

An integrity constraint is an invariant that
must be satisfied by the clauses in the knowledge
base. That is, if T represents a theory of func-
tion free logic programs and IC represents a set of
integrity constraints applicable to T, then T U IC
must be consistent.

'e closed function free Horn Integrity constraints ar
formulae of the form:

(a) <- P,,...,P,, or

(b) Q <- P,,...,P,, or

(c) E,,E2,...,En <- P,,
where the E., i=l,.

1
cates i.e. each
where at least one
ables.

. . . . 'rn

..,n, are equality predi-
Ei is of the form xi = y. 1
of the x., 1 y. 1 are vari-

Thus, an integrity constraint of the form
represents negated data, in the sense

(a>,
that

202

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

PI /\ P2 /\ . . . /\ Pm can never hold if T U IC is
consistent.

An integrity constraint of the form (b),
states that if PI /\ P2 /\ . . . /\ Pm holds then Q
must be provable from the knowledge base.

Integrity constraints of the form (c),
represent dependencies between the arguments of
P&9 Pm'

2. Goals and Integrity Constraints - --

2.1. Integrity Constraints to Limit Forward Execu- ----
tiOn

Though integrity constraints are not necessary
for finding the solution of a given set of goals
with respect to a given logic program (Reiter
C197811, they can greatly enhance the efficiency of
the search process and thus improve the performance
of the problem solver (McSkimin and Minker [19771,
King CI9811).

Integrity constraints enable the semantics of
the given domain to direct the search strategy by
enabling the problem solver to prune those alterna-
tives which violate integrity constraints and thus
focus the search. Thus integrity constraints
influence the forward execution of the problem
solver by enabling it to detect which sets of goals
are unsolvable because they violate integrity con-
straints. This avoids exploring alternatives which
must fail after a, possibly lengthy, full search.

Thus whenever a new set of subgoals is gen-
erated, this set can be tested to determine if it
violates any integrity constraints. If so, the
node in question can be discarded and another path
considered.

2.2. Implementation and Search Strategy -- --
There are several forms of integrity con-

straints as described in Section 1.2.

Whenever a new set of goals is generated it
must be tested to determine if it violates an
integrity constraint. Though each of the forms
(a), (b), and (c) above require slightly different
treatments to determine if they are violated, the
underlying mechanism for each is the same.

Form (c) constraints can be transformed into
form (a) by moving the disjunction of equalities on
the left into a conjunction of inequalities on the
right, i.e.,

EI,E2,-.,En <- PI, Pm
is equivalent to --

<- PI,...,Pm,EI,E2,...,~.

ing
Form (b) can be interpreted to mean that solv-
Q is equivalent to solving pI ,...,P, and thus

p1 ,o*e,Pm can be replaced by Q in the set of goals.
Since it is only necessary to determine if the

right hand side of some integrity constraint can
subsume the goal clause, an extremely straightfor-
ward algorithm can be used. A clause C subsumes a
clause D iff there exists a substitution c such
that CoE D. The subsumption algorithm executes in
linear time and does not increase the complexity of
the search (Chang and Lee [1973]).

Consider now, how the various forms of
integrity constraints can be used to limit the for-
ward execution.

If a form (a) constraint subsumes a newly gen-
erated goal clause, the goal violates the con-
straint and can be deleted from the search space.

Whenever a literal is solved, it must be
determined whether it unifies with a literal in the
right hand side of a form (c) constraint. If so,
the resulting substitution is applied to the con-
straint, the solved literal is deleted, and the
clause is added to the set of integrity con-
straints.
For example, if

x,=x2 <- P(x,x,),P(x,x2)
is a constraint and P(a,b) is solved then P(a,b)
unifies with a literal in the above constraint with
the substitution set (a/x, b/x.,). The revised con-
straint

x2=b <- P(a,x,)
is then obtained and added to the set of integrity,
constraints. Now any node containing P(a,x) can be
considered a deterministic node, since only one
possible solution for P(a,x) exists.

Finally, if the right hand side of a form (b)
constraint subsumes the goal, then the resulting
substitution is applied to the left hand side of
the constraint and a new alternative goal with the
left hand side substituted for the right hand side
of the constraint, is generated. For example, if

Q(x,z> <- 5(x,y),P2(Y,d
is a constraint, and the goal clause under con-
sideration is

<- R(a,u),PI(a,y),P2(y,z),S(b,z)
then

<- PI(X,Y),P2(Y,Z)
subsumes the goal with substitution {a/x). Apply-
ing this substitution to <- Q(x,z) results in <-
Q(a,z). Generating an alternative node with Q
replacing P,, 2 P then results in the above goal node
being repladed-by the following OR-node

Parent Node

Whenever a violation of an integrity con-
straint occurs, it is treated as a failure. This
results in failure analysis and backtracking which
are detailed in the next section.

20 Local and Global Conditions ---
Global conditions are integrity constraints

which are applicable to every possible node in the
search space. Local conditions are integrity con-
straints which are generated during the proof pro-
cess and which are applicable only to the descen-
dant nodes of some given node in the search space.

3.1. Failure -- -
The failure of a literal can provide informa-

tion for directing the search. A literal 'fails'
when it cannot be unified with the head of any
clause in the knowledge base. Since this failure

means that the literal cannot be proven in the
current knowledge base, because of the assumption
of failure by negation, the literal's negation can
be assumed to hold. Thus, this literal can be
viewed as an implicit integrity constraint, and the
failure can be viewed as a violation of the
integrity constraint. Thus, every failure can be
viewed as a violation of some integrity constraint,
implicit or explicit. This allows us to extract
useful information from every failure, and to use
this information in directing the search.

The possible causes of unification conflicts are:
(a) The literal is a pure literal. That is, there
is no clause in the knowledge base, which has as
its head the same predicate letter as the literal
selected. This implies that any literal having the
same predicate letter as the selected literal, will
fail anywhere in the search space. This informa-
tion can be useful in terminating other branches of
the search tree in which a literal containing this
predicate letter occurs. Thus if P(a,x) is a pure
literal, then all of its argument positions can be
replaced by distinct variables and the resulting
literal can be added to the set of integrity con-
straints as a form (a) constraint, i.e.,

<- P(x,,x2)
is added to the set of constraints.

(b) There are clauses in the knowledge base which
could unify with the selected literal, but which do
not unify because of a mismatch between at least
two constant names. In this case the selected
literal can never succeed with that particular set
of arguments. This information can be used as an
integrity constraint. For example, if the selected
literal is

P(x,a,x)
and the only P clauses in the knowledge base are

P(nil,nil,nil) <-
P(z,z,b) <- PI(z,b),P2(z)

then the unification fails and <-P(x,a,x) can be
added to the set of integrity constraints.

3.2. Explicit and Implicit Integrity Constraints --
Integrity constraints may be either explicit

or implicit. Explicit constraints are those pro-
vided initially in the domain specification. These
constraints affect the forward execution of the
problem solver as detailed in Section 2 and can be
used in the derivation of implicit constraints.

Implicit constraints are generated during the
proof process, i.e., during the solution of a
specific set of goals. These constraints arise out
of the information gleaned from failure as shown in
section 3.1, and from successes in certain contexts
as will be shown in later sections. These con-
straints may be considered to be implicit in the
sense that they are not explicitly supplied but are
derived during the proof process.

1.3. Applicability of Integrity Constraints - --
An integrity constraint may be globally or

locally applicable. It is globally applicable if
it can be applied to any node in the search space.
Explicit constraints are always globally applicable
since they are defined for the domain and are
independent of any particular proof tree. Implicit

constraints may be either locally or globally
applicable.

A locally applicable constraint is one which
must be satisfied by a given node and all its chil-
dren. Any node which is not part of the subtree
rooted at the node to which the constraint is
locally applicable, need not satisfy the con-
straint. Locally applicable constraints are
derived from the failure of some path in the search
space. The analysis of the cause of the failure
results in the generation of a locally applicable
constraint which is transmitted to the parent node
of the failure node. This local constraint must
then be satisfied by any alternative expansions of
the node to which it applies. This effectively
prunes those alternatives which cannot satisfy the
constraint. The following example illustrates these
techniques.

Logic Program:
- P(a,b) <-

Q(y,z) <- Q,h,x), Q2(z,y)
Q(y,z) <- Q3(z,y)
Q,(b,d) <-
Q2(b,b) <-
Q2(c,c) <-
Q2(c9b) <-
Q2(x,y) <- Q4(c,x)
Q3(c,b) <-
Q4(x,x) <-

Query:
<- p(x,y),Q(y,z)

Search Tree: --

(I)
<- ~(x,x),Q(~,z) --

From the above search tree, Node 4, <- Q,(c,x) can
be propagated as a global imp1 ici .t constrai .nt since
<- Q,(c,x) can never be solved Also, z = c can be
propagated as a local implicit constraint to node 3
and thus later prevent the generation of node 7.
This constraint is local to node 3 and its children
since that is the node that bound z to c. As can
be seen from the example an alternative expansion
of node 2 giving node 8 succeeds with z bound to c.

3.4. Generation and Propagation of Conditions -- -
Implicit constraints are generated at leaf

nodes of the search space and are propagated either
globally or as locally applicable constraints to
some parent of the leaf node. Rules for generating
and propagating implicit constraints are detailed
below.

When a goal fails along all paths, then that
goal along with its current bindings is propagated
as a global integrity constraint. Thus, if
PM c(sta~ts2*~o;~~~~~l~~ere the di, i = I,...,n aye co:;

, fails for every expansion
p, then <- P(d, d,d) is a global
because it can ,ne+er szcceed in the

constraint
current

knowledge base.

Since that goal can never succeed with its
current bindings, alternatives which give rise to
different bindings for its arguments must be tried.
Thus those nodes which created these bindings
receive as local constraints the information that
these bindings must not be repeated along alterna-
tive expansions of those nodes. That is, if
P(d 4c() fails and there is some ancestor
P' (3f 6'such that some di of P is bound to some xi
of P' and xi is contained in some literal (other
than P') in the clause containing P', then --
<- x. = cl. is a local integrity constraint for the
clauke coktaining P'. If there are several d.
which have been bound in different ancestor clause&
of P, the conjunction of these bindings must be
propagated to the binding clauses.

Local constraints which are propagated to a
node by a descendant of the node must then be pro-
pagated to all other descendants of that node.
This is because, as was noted above, the binding to
X. in the node containing Pi was due to the selec-
tton of some literal other than Pi in that node.
Thus, Pi will be present in every expansion of that
node and the binding of x i will cause Pi to eventu-
ally fail.

Consider a node P which has several children
P,' P2’

‘n’
Associated with each Pi is a set of

local integrity constraints generated by its des-
cendent nodes. Then if there is some local
integrity constraint associated with every Pi, that
integrity constraint is propagated to P.

4. Summary --
A control strategy has been developed for

function-free logic programs to permit intelligent
search based both on domain specific information in
the form of integrity constraints and on an
analysis of failures. Integrity constraints limit
search in the forward direction, while failure
analysis results in the creation of integrity con-
straints. Failure analysis is also used to deter-
mine backtrack points more likely to succeed. The
concepts of local and global constraints are used
to inhibit exploring fruitless alternatives. Sub-
sumption is employed to take advantage of the con-
straints. In Kohli and Minker C19831, a logic pro-
gram is specified for an interpreter which will
perform the above.

We intend to incorporate these concepts into
PRISM, a parallel logic programming system [Kasif,
Kohli and Minker 19833, under development at the
University of Maryland.

Cl1 Bruynooghe, M., Intelligent Backtracking for
an Interpreter of Horn Clause Logic Programs,
Report CW 16, Applied Math and Programming
Division, Katholieke Universiteit, Leuven,
Belguim, 1978.

c21 Chang, C.L., and Lee, R.C.T., Symbolic Logic
and Mechanical Theorem Proving, Academic
Press, New York, 1973.

c31 Clark, K.L., "Negation as Failure,,, in Logic --
and Databases, H. Gallaire and .J. Minker,
Eds., Plenum Press, New York, 1978, PP 293-
322.

II41 Kasif, S., Kohli, M., and Minker, J., PRISM: A
Parallel Inference System for Problem Solving,
Technical Report, TR-1243, Dept. of Computer
Science, University of Maryland, College Park,
1983.

[51 King, J.J., Query Optimization by Semantic
Reasoning, Ph.D Thesis, Dept of Computer Sci-
ence, Stanford University, May 1981.

C61 Kohli, M., and Minker, J., Control in Logic
Programs using Integrity Constraints, Techni-
cal Report, Department of Computer Science,
University of Maryland, College Park, 1983.

c71

iSI

Kowalski, R.A., Logic for Problem Solving,
North-Holland, New York, 1979.

McSkimin, J.R., and Minker, J., The Use of a
Semantic Network in a Deductive Question
Answering System, Proceedings IJCAI-77, Cam-
bridge, MA, 1977, pp 50-58.

c91 Pereira, L.M., and Porto, A., Selective Back-
tracking, in Logic Programming, K.L. Clark and
S-A. Tarnlund, Eds., Academic Press, New York,
1982, pp 107-114.

Cl01 Reiter, R., On Closed World
Logic and Databases, H. Gallaire and J.
Minker, Eds., Plenum Press, New York, 1978, pp
55-76.

1111 Roberts, G.M., An Implementation of
Y.S. Thesis, University of Waterloo, I

El21 Roussell, P., PROLOG: Manuel de Reference et
d'utilisation. Groupe d'Intelligence Artifi-
cielle, Universite d'Aix-Marseille, Luminy,
1975.

Cl31 Warren, D.H.D., Implementing PROLOG: Compiling
Predicate Logic Program, Department of Artifi-
cial Intelligence, University of Edinburgh.
Research Reports 39 and 40, 1979.

REFERENCES

Data Bases, in

PROLOG,
977.

205

