
Basmina Pavlin 

Computer and Infcumation Science Department 
University of Mtssacbusetts 

Amherst, Massachusetts, 01003 

A model of a distributed knowledge-based system is 
presented. The model captures the features specific to 
those systems, such as alternative paths to the solution, 
utilization of inexact and/or incomplete knowledge and data, 
dynamic task creation, complex subproblem dependencies 
and focusing aspect of problem s&ing. The model is 
applied to the analysis of communication policies in a 
distributed interpretation system. The result of the analysis 
is the best policy for the given environment and system 
conditions. Another use of the model as a real-time 
simulation tool is suggested. 

The development and performance-tuning of a 
knowledgebased system like HEARSAY-II [ZJ is still 
mostly an art. Ideally, one would like to have a set of 
equations which relate system’s input, internal structure and 
output, as in classical control theory. This would allow 
complete analysis of the system and predict its behavior for 
any input. Unfortunately, in such complex systems the 
interaction of m*Y parameters precludes such 
characterization. We feel that even with a complex system 
a limited analysis should be attempted, and that this is 
possible with an appropriate modeling procedure. 

One of the first attempts at modeling a 
knowledge-based system was done by Fox [‘I], but his 
model is too abstract to deal with the phenomenon of 
subproblem interaction, an important factor in system 
performance. His model is also limited in applicabiity 
because it is a static approximation, namely, time 
relationships among processing elements are not considered. 

IQ our earlier work on system measures 131, we 
addressed one aspect of the performancetuning problem: 
what would be the change in system performance if a 
component with different characteristics was introduced? 
Due to the nature of the question, that work concentrated 
on the model of a component (knowledge source, 
scheduler), and it relied on system mechanisms for 
component interaction. 

This research was sponsored, in part, by the National Science 
Foundation under Grant MCS-m27 and by the Defense 
Advanced Research Projects Agency (DOD), monitored by the 
Office of Naval Research under Contract NR049-041. 

This work centers around a different question: what 
would be the change in performance if a different 
relationship among the components was introduced? We 
develop a model of the complete system and its 
environment, in which a pracessing component is relatively 
simple, and the focus is on the interaction among the 
components. Since our intention is to model a distributed 
system, both the interaction among knowledge sources and 
the interaction among the nodes are considered. 

In the following sections, we describe the model of a 
distributed knowledge-based system (IXBS), show an 
example if its application as an analysis tool, and suggest 
its application as a real-time simulation tool for these 
systems. 

There 
incorporated 

are a 
in any 

number 
realistic 

of features 
performance 

that 
model 

Qeed to be 
of a IXBS: 

1. The system usuahy works on a single problem, 
which is divided into many subproblems with 
complex dependencies, so that allocation of one 
subproblem can not be considered independent of 
the others. 

2. The solution is derived by employing a limited 
search, in which there is no full enumeration, 
but only promising dtematives are explored. 
Thus, many tasks are created during processing, 
they are not known before the processing starts. 

3. Processing in D-s is often characterized by 
uncertainty, since input data 
or missing. 

may be inaccurate 
Also, the problem on which the 

gu;tnis working is often so complex that the 
methods have 

identified. 
been only partially 

4. In order to reduce the uncertainty in the 
quaff, there is often redundancy in the 

process. It originates either in 
alternative views of the environment, or in 
different types of knowledge applied to the same 
data. Alternative solution paths are formed, and 
there are many possible tasks involved in the 
solution of the problem. The focusing problem 
becomes a crucial aspect of successful processing, 
and the main issue centers not around the 
question who will do the work, but if anybody 
weds to do it at all. 

314 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



We build a model starting with a Petri-net 
representation [5j. The Petri-net formalism has the basic 
concepts necessary for modeling a distributed system with 
asynchronous pr cxessing: the notion of events which occur 
under certain conditions and the ability to represent the 
asynchronous nature of events. The basic concepts in the 
model are activites, domains and data units. 

The correspondence between a Petri-net and a DKBS is 
shown in Table 1. An uzctivity represents a knowledge 
application process, while a domain is a part of the 
environment or the processing space from which the activity 
takes its input. Data contained in a domain we call a &zta 
unit. In a HEARSAY-like system, for example, an activity 
would be a group of knowledge source invocations, a 
domain would be a part of the area of interest, and a data 
unit would be a group of hypotheses. Domain boundaries 
and the scope of an activity are both application dependent. 
Their choice for a particular apphcation will be shown in 
the example section. 

The system configuration is defined as a fourtuple: 

N=@AJ,O) 
D-the set of domains 
A-the set of activities 
IA to D*- input function 
OA to D*- output function 

Input and output functions specify input and output 
domains for an activity. 

A state of the network is defined by the placement Let us denote ds a data unit which represents the 

of data units: solution of the system: 

P=(q, . ..nJ 
s-number of domains in D 

where rq is a number of data units at domain i in D. 
The system executes by changing its state. The state is 
changed by performing an activity, which causes data units 
to be created at its output domains. An activity can be 
performed only if it is enabled, that is, if it has a data 
unit in each input domain. The execution ends when a 
data unit is created in one of the system output domains 
(those which are not input to any activity). 

Petri-net interpretation 
m-m 

I 
e 

I 
token 

I 
data unit 

I 

Tabfe 1: The correspondence between a Pet&net and a 
DKBS system. 

Interpreted in this way, Petri-nets become a 
convenient formalism for depicting static relationships among 
the components in a DKBS, but it lacks a dynamic system 
characterization The system is more successful if its 
solution is more accurate, or achieved in a shorter time; a 
succession of activities which leads to such a solution 
represents a good allocation strategy. Accuracy and time 
are then essential characteristics of both activites and data. 
We depart from basic Petri-nets by augmenting data units 
with attributes and activities with transition functions. AlsO, 
in order to capture the focusing aspect of problem solving, 
we define execution rules, g which among the 
possible tasks will be performed. 

The tune required to perform an activity is a 
function of the amount of work that needs to be done. 
We have chosen the concept of volume as the simplest 
estimate of that amount of work. Thus, we define a data 
unit as a triple: 

d=(w,O 
v-the volume of data 
a-the accuracy of data 
t-the time of arrival of data. 

The value of each of these attributes in the model is an 
estimate that needs to be obtained from the real system by 
some sampling process. In a HEARSAY-like system, for 
example, the volume is an estimate of the number of 
hypotheses, the accuracy is their belief, and an estimate of 
the arrival of data is the time atribute. 

ds=(vs,as,ts). 

In general, a higher accuracy will be achieved by 
combining more independent views on the problem, at the 
expense of longer solution time. Consequently, the objective 
of the system represents a trade-off between these two 
0ppcGng requirements, and we define the performance 
evaluation function to be the ratio of the accuracy and 
the elapsed time: 

d=adts. 

An activity is seen as performing three functions: fv, 
fa and ft on the attributes of input data. Let input data 
units be denoted: 

i=l,...p 

and the output data unit: 

d=(v,a,t). 

Then the functions of an activity can be represented as 
follows: 

v=fi(vl,...,v*) 
a=fa(al,...+Q 
t=ft(v1,..., v*, q,..., t*). 

315 



The fv, volume transition function, determines the 
volume of the output based on the volumes of inputs. 

The fa, accuracy transition function, determines the 
accuracy of the output based on the accuracies of inputs. 

The ft, or time transition function, determines the 
time of creation of output data. The output time depends 
both on input times and the volume of data. 

An activity is performed if it has the highest 
priority among enabled activities (those which have data in 
their input domains). The execution rule specifies this 
priority relationship. 

A critical factor in the model’s applicability is 
determination of the transition functions used by the 
model. They may be hard to determine accurately, 
especially if the intention is to use the model in the design 
phase, when a working system is not available. However, 
the functions can be stated in rather general form (as will 
be shown in the example) and fine tur.ted in the 
verification phase. 

As an example application, let us consider the use of 
the model in determining appropriate commuuication 
strategies for the distributed vehicle monitoring testbed [4]. 
The testbed simulates a distributed interpretation system 
whose goal is to create a dynamic map of vehicles moving 
through the system’s environment. Vehicles emit acoustic 
signals which are identified and roughly located by sensors. 
Sensors report this information to nearby nodes. Every 
node is an architecturally complete HEARSAY-II system. 

In order to create a map, every vehicle or a 
formation of vehicles (pattern) has to be identified, 
located and tracked. A vehicle is identified by a number 
of groups, corresponding to its different acoustic sources 
(engine, fan). Groups correspond to signals related by the 
same harmonic frequency. Thus, four levels of abstraction 
can be identified in the solution process: signal, group, 
vehicle and pattern. For this example, we assume that 
signal tracks are formed first, and then combined into 
tracks on higher abstraction levels. 

Let us consider the system with two nodes which 
partially overlap in their input domains. For this example, 
we consider only single vehicle formations moving in one 
direction. The nodes are positioned along that direction, so 
that node 1 receives input data first. The solution is to be 
formed at node 2. It is then appropriate that node 1 
should send information to node 2. We want, with the help 
of the model, to answer the following questions: 

1. What type of information should be 
communicated: exclusive 
shared 

(non-overlapping), 
(overla ing), or all (overlapping and 

non-overlapping 3 Pp 

2. Should the information be communicated on a 
low level of abstraction (group) or on a high 
level (pattern)? 

Sii possible configurations, coresponding to different 
combinations of communication level and communicated 
information, will be examined: 

a. 

b. 

C. 

d. 

e. 

f. 

For 

1. 

2. 

3. 

4. 

Communication of non-overlapping information, 
on a low level. 

Communication of non-overlapping information, 
on a high level. 

Communication of all information on a low level. 

Communication of non-overlapping information on 
a low level, overlapping information on a high 
level. 

Communication of overlapping information on a 
low level, overlapping information on a high 
level. 

Communication of all information on a high 
level. 

this problem we define four types of activities: 

Synthesis (S) whose results are data on higher 
abstraction level. 

Merging (M) whose results are data of a larger 
scope (longer tracks). 

Unification (LJ) which combines different views of 
the same events. 

Communication (C) which moves data from one 
node to the other. 

The transition functions are based on the observations of 
the testbed behavior. Their definition is summarized in 
Table 2. The execution rule used in the simulation 
assumes, the following priority relation when more than 
one activity is enabled: 

communication Vi Ai Ti+tc 

Table 2: Definition of translffon fonsffons. 

fv-volume transition functisn 
fa-accuracy transition function 
f&time transition function 
di-input data unit, di=(Vi,Ai,Ti) 
Cs,Cm-knowledge power constants 

Cs=Cm=l 
*time to process unit volume, tp=l 
tc-time to communicate unit volume, tc=l 

316 



We define four input data units: 

1. dll is the input from the domain exclusive to 
node 1. 

2. d12 is the input that node P collects from the 
overlapping domain. 

3. d21 is the input that node 2 collects from the 
overlapping domain. 

4. d22 is the input from the domain exclusive to 
node 2. 

Figure 1: Configurathn a. 

The model is simulated for the following data definition: 

dll=(2, 0.6, 0) 
dl2=(3, 0.6, 0) 
d21=(3, 0.4, 4) 
d22=(2, 0.4, 4) 

Figures 1 to 6 show alI the activities performed in 
each configuration with a given execution rule, before the 
solution. is reached. The input domains are marked by 

Figure 3: Configuration s. 

Figure 2: Confignration b. 

317 

Figure 4: Configuration d. 



incoming arrows, the output domain is marked by an 
outgoing arrow. Performance is judged by comparing the 
values of the objective function, J, for different 
configurations. 

The values of the solution accuracy (on zero to one 
scale),solution time (in number of system cycles), and tbe 
objective function obtained by model simulation and 
coresponding experiments in the testbed are shown in 
Figures 7 to 9. Both the simulation and the experiments 
show configuration f to be the best. Furthermore, the 
ordering of configurations is preserved in the simulation 
results, serving as a limited verification of the model. 

f 

F&we 5: Configur&ioa e. 

An important step towards the control of complex 
systems is the analysis of the relation between the 
environment, system structure and the performance. We 
have devised an approach in which a limited analysis of 
one aspect of that problem is possible: finding a best class 
of communication policies for a distributed interpretation 
system operating in a simplified environment. 

The approach may prove useful outside simple and 
structured environments amenable to analysis. We believe, 
(based on initial results) that the policies are relatively 
robust to limited changes in environmental conditions, so 
that the results also hold for more realistic environments 
similar to the analyzed ones. Also, the results of the 
analysis can be transfered to more complex environments, if 

.6 

a b c d e f 
Figure 7: !Mtdion assurasy. 

45, 

35, 

25, 

a b c d e f 
Fignre 8: !Solotion time. 

a b c d e f 
Figure 9: Qbjective fonstfon. 

Figure 6: ConfIgnrsl&Hs~ f. 

316 



they can be 
environments. 

treated as a combination of the simple 

Another use of the model is as a system stand-in. A 
system supplied with the results of the analysis has a stored 
sommunication policy for an analyzed environment; a 
system supplied with the model and confronted with a 
novel environment can simulate a number of communication 
structures. Although without the analysis benefits of 
complete search and a global optimum, this may be a very 
useful guide in the choice of communication policies. 

ACKNOWL,EDGMENTS 

I am grateful to Daniel D. Corkill and Victor R. 
Lesser whose careful reading and helpful suggestions led to 
an improved version of the original manuscript. 

Mark S.Fox 
“Organizational Structuring: Designing Large Complex 

Software.” 
Technical Report, Department of Computer Science, 

CarnegieMellon University, Pit&burg, Pennsylvania, 
December 1979. 

Victor R. Lesser and Lee D. Erman 
“A Retrospective View of the Hearsay-II Architecture.” 
In Proc. IJCAI-77, pp. 790-800. 

Victor RLesser, Scott Reed and Jasmina Pavlin 
“Quantifying and Simulating the Behavior of 

Knowledge-based Interpretation Systems.” 
In Proc. IJCAI-1979, pp. 111-113. 

Victor Lesser, Daniel Corkill, Jasmina Pavlin, Larry 
Lefkowitz, Eva Hudlicka, Richard Brooks, and Scott 
Reed 

“A high-level simulation testbed for cooperative 
distributed problem solving.” 

Proceedings of the Third International Conference on 
Distributed Computer Systems, pages 341-349, October 
1982. 

5. James L. Peterson 

REFERENCES 

‘Petri Net Theory And Modeling of systems.” 
Prentice-Hall Inc., Englewood Cliffs, NJ. 07632, 1981. 

319 


