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ABSTRACT 

It is becoming increasingly apparent that some aspects of intelligent 

behavior rcquirc enormous computational power and that some sort 

of massively parallel computing architecture is the most plausible way 

to deliver such power. Parallelism, rather than raw speed of the 

computing elements. seems to be the way that the brain gets such jobs 

done. But even if the need for massive parallelism is admitted, there 

is still the question of what kind of parallel architecture best fits the 

needs of various AI tasks. 

In this paper we will attempt to isolate a number of basic 

computational tasks that an intelligent system must perform. We will 

describe several families of massively parallel computing 

architectures, and we will see which of these computational tasks can 

be handled by each of these families. In particular, we will describe a 

new architecture, which we call the Boltzmann machine, whose 

abilities appear to include a number of tasks that are inefficient or 

impossible on the other architectures. 

FAMILIES OF PARALLEL ARCHITECTURES 

By “massively parallel” architectures, we mean machines with a 

very large number of processing elements (perhaps very simple ones) 

working on a single task. A massively parallel system may be 

complete and self-contained or it may be a special-purpose device, 

performing some particular task as part of a larger system that 

contains other modules of a different character. In this paper we will 

focus on the computation performed by a single parallel module, 

ignoring the issue of how to integrate a collection of modules into a 

complete system. 
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One useful way of classifying these massively parallel architectures 

is by the type of signal that is passed among the clcmcnts. Fahlman 

(1982) proposes a division of thcsc systems into three classes: marker- 

passing, valuc-passing, and message-passing systems. 

Message-passing systems are the most powerful family, and by far 

the most complex. They pass around mcssagcs of arbitrary 

complexity, and perform complex operations on these messages. 

Such generality has its price: the individual computing clcmcnts are 

complex, the communication costs are high, and there may be severe 

contention and traffic congestion problems in the network. Message 

passing dots not seem plausible as a detailed model of processing in 

the brain. Such models are being actively studied elsewhere (Hillis, 

1981; Hewitt, 1980) and we have nothing more to say about them 

here. 

Marker-passing systems, of which NETL (Fahlman, 1979) is an 

example, arc the simplest family and the most limited. In such 

systems, the communication among processing elements is in the form 

of single-bit markers. Each “node” element has the capacity to store a 

few distinct marker bits (typically 16) and to perform simple Boolean 

operations on the stored bits and on marker bits arriving from other 

elements. These nodes are connected by hardware “links” that pass 

markers from node to node, under orders from an external control 

computer. The links arc, in effect, dedicated private lines, so a lot of 

marker traffic can proceed in parallel. 

A node may be connected to any number of links, and it is the 

pattern of node-link connections that forms the system’s long-term 

memory. In NETL, the elements are wired up to form the nodes and 

links of a semantic network that represents some body of knowledge. 

Certain common but computation-intensive searches and deductions 

arc accomplished by passing markers from node to node through the 

links of this network. A key point about marker-passing systems is 

that there is never any contention due to message traffic. If many 

copies of the same marker arrive at a node at once, they are simply 

OR’ed together. 

Value-passing systems pass around continuous quantities or 

numbers and perform simple arithmetic operations on these values. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



Traditional analog computers arc simple valuc-passing systems. Like 

marker-passing systems, value-passing systems never suffer from 

contention. If several values arrive at a node via different links, they 

are combined arithmetically and only one combined value is received. 

Many of the iterative relaxation algorithms that have been proposed 

for solving low-level vision problems are ideally suited to value- 

passing architectures, and so arc spreading-activation models of 

semantic processing (Davis and Rosenfcld, 1981; Anderson, 1983). 

At CMU we have done some preliminary design work on a machine 

that we call Thistle. This system combines the marker-passing 

abilities of NETL with value-passing. Each clement of the Thistle 

machine has storage for 16 single-bit markers and 4 eight-bit values. 

The values can be added, multiplied, scaled, and compared to one 

another. Links in the Thistle system pass a value from one node to 

another, perhaps gated by various markers and multiplied by a 

“weight” associated with the link. In Thistle, the values converging 

on a node can be summed or combined by MIN or MAX. 

Both NETL and Thistle use a Ima2 representation for their 

knowledge: each concept or assertion resides in a particular 

processing element or connection. If a hardware clement fails, the 

corresponding knowledge is lost. It has been suggcstcd many times 

that a distribuled representation, in which a concept is represented by 

some pattern of activation in a large number of units, would be more 

reliable and more consistent with what is known about the workings 

of the brain. Such systems are harder to analyze, since the behavior of 

the system depends on the combined action of a large number of 

elements, no one of which is critical. However, distributed systems 

offer certain computational advantages in addition to their inherent 

reliability. The Boltzmann architecture, described in the next section, 

is a variant of the value-passing architecture that uses distributed 

representations and probabilistic processing elements. The 

randomness is actually beneficial to the system, allowing it to escape 

from local minima during searches. 

THE BOLTZMANN MACHINE 

The Boltzmann architecture is designed to allow cflicicnt searches 

for combinations of “hypotheses” that maximally satisfy some input 

data and some stored constraints. Each hypothesis is rcprcsentcd by a 

binary unit whose two states rcprescnt the truth values of the 

hypothesis. Interactions between the units implement stored 

knowledge about the constraints between hypothcscs, and cxtcrnal 

input to each unit represents the data for a specific case. A contcnt- 

addrcssablc memory can be implemcntcd by using distributed 

patterns of activity (large combinations of hypotheses) to stand for the 

kinds of complex items for which we have words. New items are 

stored by modifying the interactions bctwccn units so as to create new 

stable patterns of activity, and they are rctricved by settling into the 

pattern of activity under the influence of an cxtcrnal input vector 

which acts as a partial description of the required item. 

A good way to approach the best-fit problem is to define a measure 

of how badly the current pattern of activity in a module fits the 

external input and the internal constraints, and then to make the 

individual hardware units act so as to reduce this measure. Hopfield 

(1982) has shown that an “energy” measure can be associated with 

states of a binary network, and we generalize this measure to include 

sustained inputs from outside the network: 

E= - l/2 ): WoSiSj - x (qi-ei)Si 
ij i 

(1) 

where q1 is the external input to the ifh unit, wg is the strength of 

connection (synaptic weight) from the jfh to the irh unit, s, is a boolean 

truth value (0 or l), and ei is a threshold. 

A simple way to find a local energy minimum in this kind of 

network is to repeatedly switch each unit into whichever of its two 

states yields the lower total energy given the current states of the other 

units. If hardware units make their decisions at random, 

asynchronous moments and if transmission times are negligible so 

that each unit always “sees” the current states of the other units, this 

procedure can only dccrcasc the energy, so the network must settle 

into an energy minimum. If all the connection strengths are 

symneirica~, which is typically the cast for constraint satisfaction 

problems, each unit can compute its effect on the total cncrgy from 

information that is locally available. The difference bctwecn the 

energy with the k* unit false and with it true is just: 

AEk = C wkisi + qk-8k 
i 

So the rule for minimizing the total cncrgy is to adopt the true state 

if the combined external and internal input to the unit cxcceds its 

threshold. This is just the familiar rule for binary threshold units. 

It is possible to escape from poor local minima and find better ones 

by modifying the simplc’rule to allow occasional jumps to states of 

higher energy. At first sight this seems like a messy hack which can 

netcr guaranfee that the global minimum will be found. However, 

the whole module will behave in a useful way that can be analyzed 

using statistical mechanics provided that each unit adopts the state 

with a probability given by 

1 
Pk= 1 + e-AEk/T (3) 
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where T is a scaling parameter that acts like the temperature of a 

physical system. 

This rule, which resembles the input-output function for a cortical 

neuron (Hinton and Scjnowski, 1983a). ensures that when the system 

has reached “thermal equilibrium” the relative probability of finding 

‘it in two global states is a Boltzmann distribution and is therefore 

determined solely by their energy difference: 

In what follows, we will focus on tasks that have to do with 

recognition and search in a very large space of stored descriptions, but 

a key point is that these abilities arc also important in planning and 

inference. For example, the various recognition processes described 

here may be used to select rules and actions in some sort of 

production system. In such systems, scqucntial behavior would be 

driven by a series of massively parallel recognition steps. 

&L =,&-&W- 
PP 

(4) 

Set Intersection 

If T is large, equilibrium is reached rapidly but the bias in favor of 

the lower energy states is small. If T is small. the bias is favorable but 

the time required to reach equilibrium is long. One way to beat this 

trade-off is to start with T large and then reduce it (Kirkpatrick, 

Celatt, & Vecchi, 1983). 

An important consequence of achieving a Boltzmann distribution is 

that it allows several simple learning rules which modify the 

probability of a global state by modifying the individual connection 

strengths. At equilibrium, the probability of a state is a simple 

function of its energy (Eq. 4), and the energy is a linear hnction of 

the weights between pairs of units that are active in that state (Eq. 1). 

This allows us to compute the derivative of the probability of a global 

state with respect to each individual weight. Given this derivative, the 

weights can be changed so as to make the probabilities of global states 

approach any desired set of probabilities, and so it is possible to 

program a Boltzmann maChine at the level of desired probabilities of 

states of whole modules, without ever mentioning the weights (Hinton 

& Sejnowski, 1983a). This kind of deliberate manipulation of 

probabilities requires a “programmer” who specifies what the 

probabilities should be. A more powerful learning procedure that 

does not require a “programmer” is also possible in these networks. 

The procedure modifies the weights so as to generate good internal 

models of the structure of an environment. There is not space here to 

describe this procedure (see Hinton & Sejnowski, 1983b for details). 

COMPUTATIONAL PROBLEMS 

One recurrent theme in the history of AI is the discovery that 

certain aspects of intelligence could be modeled in some elegant way, 

if only we had enough computing power. Once a task is understood 

in these terms, the search begins for ways to provide that power or to 

come up with tricks that reduce the amount of computation required. 

Massive parallelism provides us with a new tool for attacking some of 

these computational problems. In this section WC will identify some 

fundamental computational abilities that any truly intelligent system 

will have to possess, and we will SW how well the parallel 

architectures described above can handle each of these tasks. 

Recognition can be viewed as the process of finding, in a very large 

set of stored descriptions, the one that best fits a set of observed 

features. In its simplest form, this can be viewed as a set-intersection 

problem. Each observable feature is associated with a set of items that 

exhibit that feature. Given a number of observed features, we want to 

find the item or items in memory that exhibit all of these features; 

that is, we must intersect the sets associated with the observed features 

to find the common members. 

This set-intersection operation is discussed at length in Fahlman 

(1979). It is a well-defined operation that comes up very frequently in 

AI knowledge-base systems. On a serial machine, set-intersection 

takes time proportional to the size of the smallest of the sets being 

intersected, but frequently all of the sets are quite large. In a parallel 

marker-passing system such as NETL, such set intersections are done 

in a single operation, once the members of each set have been marked 

with a different marker. The system simply asks (in a single cycle) for 

elements that have collected all of the markers. Value-passing systems 

can do as well by marking the members of each set with one unit of 

activation and then looking for units whose activation is over some 

threshold. 

The Boltzmann machine can also intersect sets in a single settling, at 

least in simple cases. Consider, for instance, a representational 

scheme in which each active hardware unit represents a very large set 

-- the set of all items whose patterns have that unit active. A more 

specific set is rcprescnted by a combination of active units, and the 

intersection of several specific sets is represented by the union of these 

combinations. Tht union of the active units acts as an intensional 

representation of the mtorscction -- it can be formed cccn if no known 

item lies in all the sets. Given this intcnsional description, the 

problem of finding the item that fits it is just the problem of activating 

the additional units in the pattern for that item. This is the kind of 

pattern completion task which the Boltzmann machine can solve in a 

single settling (Hinton, 1981a). 



Transitive closure 

In knowledge-base systems it is frequently necessary to compute the 

closures of various transitive relations. For example, WC might need 

to mark all of the animals in the data base, perhaps because we want 

to intcrscct this set with another. If the “is a” relation is transitive, a 

rcptilc is an animal, and a lizard is a reptile, then lizards are animals. 

We must therefore mark not only those items whose membership in 

the animal class is explicitly stated, but also those that inherit this 

membership through a chain of “is a” statcmcnts. The “is a” relation 

is the most important of the transitive relations in most data bases, but 

we might also want to compute closures over relations such as “part 

of’, “bigger than”, “later in time”, etc. 

In a serial machine, the computation of a transitive closure requires 

time proportional to the size of the answer set. In a marker-passing 

machine, it takes time proportional to the length of the longest chain 

of relations that has to be followed. If the relations form a single long 

chain these times are identical, but if they form a short bushy tree, the 

marker-passing system can be very much faster. Value-passing 

systems that use local representations can simulate marker-passing 

systems on this task, and so get the same sort of performance. 

The Boltzmann architecture does not handle this task so cleanly. 

Closure over the “is a” relationship can be handled by making the 

pattern of active units for an item include the patterns for all items 

above it in the type hierarchy. By starting with a part of this pattern 

and completing it (that is, dropping into an energy minimum in which 

additional units are turned on) we can in effect compute the closure of 

“is a”. However, it is not yet known whether this technique will work 

for data bases with very large, tangled type hierarchies, and it cannot 

be simply extended to handle additional transitive relations such as 

“part of ‘. Hinton (19Slb) describes an encoding of “part of’ 

hierarchies in a Boltzmann-like system, but in that model the “part 

of’ hierarchy must be traversed sequentially. 

Contexts and partitions 

Some information in a knowledge base is universal, but much of it 

is valid only in certain contexts: times, places, imaginary worlds or 

hypothetical states. At any given time, the system is working within 

some set of nested and overlapping contexts: it must have access to 

the bundle of information associated with each of those contexts and 

to the universal information, but not to information that is only valid 

in other contexts. Each context acts like a transparent overlay to the 

knowledge base, adding a bundle of new facts or occasionally 

covering something up. 

In the presence of multiple overlapping partitions, a serial machine 

must check each assertion for membership in one of the active 

partitions before that assertion can be used. This can be a time- 

consuming task. Marker-passing systems handle this easily. The tree 

of active contexts is marked using the transitive closure machinery. 

This mark is then propagated to all of the assertions associated with 

these contexts, activating them: assertions without this mark are 

inactive in subsequent processing. In effect. WC are using one set of 

markers to gate the passage of other markers: many simple Boolean 

operations are performed during each cycle. The value-passing and 

Boltzmann architectures have similar abilities: the state of some units 

can cause other units to behave normally or turn off. In these systems 

we can also fade contexts in and out gradually, if that is what the 

problem requires. (See Berliner, 1979) 

Best-match recognition 

The set-intersection computation described above is sufficient if the 

features are discrete, noise-free, and if every member of a class 

exhibits all of the associated features. Few real-world recognition 

tasks approach this ideai. More often, the task is to find the stored 

description that best matches a set of features, even if the match is 

imperfect. Some of the features may be observed with high 

confidence, while others are weak. Some observations my fall on the 

boundary between two features or may be smoothly continuous. 

Marker-passing systems are very poor at handling imperfect 

matches of this sort. Value-passing systems like Thistle are idcal for 

this: there can be a very large number of observations, each sending 

some amount of activation to a number of hypothcscs; the size of this 

activation depends on the confidence level of the observation and the 

strength of the connection between the feature and the hypothesis. 

Hypotheses may also be given some extra activation on the basis of 

top-down expectations. After all of thcsc votes have been collected, 

the system simply asks for the clement with the most activation to 

identify itself -- this is our best match. The Boltzmann machine does 

almost as well as Thistle in cases like this: in clear-cut casts it finds the 

global energy minimum corresponding to the description that best fits 

the wcightcd combination of observed features and expectations. If 

there are several good descriptions it is biased towards the best. 

Gestalt recognition 

In the preceding paragraphs we looked only at bottom-up 

recognition, perhaps modified by a bit of top-down priming to help 

expected answers. Real-world recognition problems present a more 

complicated picture: the whole object can only be identified on the 

basis of its features, but the features can only be identified in relation 

to one another and to the emerging picture of the whole; if taken out 

of context, each feature is ambiguous (Palmer, 1975). There is usually 

a single answer -- a set of Identities for the whole and for each of the 

parts -- that is much better than any other, but this cannot be found 

by pure bottom-up or pure top-down processing: instead, like the 

solution of a set of simultaneous equations. it must either emerge as a 
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whole or be found by laborious iteration. There may be many levels 

of features and sub-features, with a complex network of inter-level 

constraints. 

Here the Boltzmann machine is in its element. The observations 

and expectations provide the inputs to the network. The knowledge 

about the plausibility of each possible interpretation is stored in the 

weights within the network. The problem is to combine these sources 

of information rapidly and correctly. The inputs define one potential 

energy function over possible states of the network, and the weights 

define another. The statistically optimal solution can bc found by 

adding the functions together and finding the global minimum 

(Hinton and Scjnowski, 1983b). This is exactly what the Boltzmann 

machine dots. On paper, then. the Boltzmann machine looks very 

promising for recognition tasks of this sort, but more analysis and 

some large-scale simulations are needed in order to dctcimine 

whether this promise is realistic. A detciministic value-passing 

machine like Thistle might be able to get comparable results, but 

programming it to do so would be a very difficult task because there is 

no known learning procedure, and great care would have to be taken 

to avoid local minima that would trap a deterministic iterative search. 

Marker-passing systems exhibit the same limitations here that we saw 

in best-match recognition; they are inappropriate for this sort of task. 

Recognition under transformation 

Sometimes the problem is not just to recognize a whole object and 

its features at once, but to do this even though the object has 

undergone a complex transformation. In vision, for example, we must 

match the image against a set of stored, viewpoint-invariant shape 

descriptions and to do this we must apply transformations like 

translation, rotation, scaling, and perhaps other, non-rigid 

transformations (Hinton, 1981c). Once again, we are trying to make 

many choices at once in order to find a combination of choices that 

gives us the best match. Some of the choices are made over smooth 

continuous domains (the transformations) and some are discrete 

choices (the description chosen from memory). Once again, the 

Boltzmann machine should excel at this task, but must be tested; the 

Thistle machine might be able to do the job but would require tricky 

programming; the NETL machine is out of the game. 

Many other computational tasks could be added to the list, but 

these are the ones that currently seem most important to us. None of 

the architectures we have explored can do a good job on all of these 

tasks. This analysis suggests two goals for the immediate future: first, 

to explore more thoroughly the computational properties of the 

Boltzmann architecture, especially when applied to large real-world 

tasks; second, to try to find some way to combine, in a single system, 

the “gestalt recognition” of the Boltzmann machine, the precise set 

operations of NEIL-style marker passing, anu the flexible sequential 

behavior of the traditional von Neumann architecture. 
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