
I YAPS : A PRODUCTION RULE SYSTEM MEETS OBJECTS* 

ABSTRACT 

Elizabeth Allen 

University of Maryland 

This paper describes an antecedent-driven pro- 
duction system, YAPS (Yet Another Production Sys- 
tem) which encodes the left hand sides of produc- 
tion rules into a discrimination net in a manner 
similar to that used by Forgy ([Forgy 811, [Forgy 
791) in OPS5. YAPS, however, gives the user more 
flexibility in the structure of facts in the data- 
base, the kinds of tests that can appear on the 
left hand side of production rules and the actions 
that can appear on the right hand side of the 
rules. This flexibility is realized without sac- 
rificing the efficiency gained by OPS5 through its 
discrimination net implementation. The paper also 
discusses how YAPS can be used in conjunction with 
object oriented programming systems to yield a sys- 
tem in which rules can talk about objects and 
objects can have daemons attached to them. It 
discusses methods of dividing YAPS into independent 
rule sets sharing global facts. 

basic cycle when facts in the data base are matcnea 
against the left hand sides of productions rules to 
determine those rules ready to fire. This problem 
was addressed by Forgy [Forgy 791 in his thesis 
describing OPS. He observed that during a produc- 
tion rule cycle, only a few facts are added to or 
removed from the data base and, consequently, a 
production system could be much more efficient if 
it remembered between cycles what facts matched the 
patterns in the left hand sides of the production 
rules. Then, whenever a fact was added or deleted, 
matches would be made or deleted and rules which 
had been completly matched would be the rules ready 
to fire. To compare new facts against the set of 
production rules, he encoded left hand side pat- 
terns in a discrimination net. This method of 

---------- 
* Funding for this project was provided by the 

Goddard Space Flight Center in Greenbelt, Maryland. 

saving matches between cycles of the production 
system cut out much of the overhead and allowed 
larger rule systems to run without needing to swap 
rules in and out of active use as many expert sys- 
tems currently do. 

However, Forgy's OPS5 production system [Forgy 
811 has some drawbacks which are fairly serious 
from a user's point of view. They are: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Facts in the database are restricted to flat 
lists of atoms and numbers; nested sublists 
are not supported. This restricts facts to 
having only one arbitrarily long field of 
parameters as well as preventing a user from 
structuring his facts conveniently. 

Tests that appear on the left hand side of a 
production rule can only use equality, ine- 
quality and arithmetic comparisons involving 
no more than two variables. 

Right hand side actions are restricted to a 
set of actions specified by OPS5, and though 
these actions cover some of the things a user 
might want to do, they do not allow a user to 
write arbitrary lisp bodies. This is an 
unwanted and unnecessary restriction. 

The syntax of OPS5 is difficult to deal with. 
Often, it is not at all obvious how to inter- 
pret the patterns on the left hand sides of 
production rules. While the syntax problem is 
not crucial to running a production system, it 
can be a problem when writing production rules 

and when 
OPS5. 

reading production rules written in 

Right hand sides of production rules are 
always interpreted by the OPS interpreter. 
There is no way to gain the speed up of com- 
piling the rules. 

OPS5 is hard to run under program control. It 
is designed mainly to be used as a top level 
controller of a system of just production 
rules. 

This paper describes the production system 
YAPS (Yet Another Production System) which is 
designed to allow greater flexibility and readabil- 
ity of production rules while not giving up the 
efficiency gained by OPS5. YAPS has none of the 
above restrictions and has a clear, straightforward 
syntax making productions much easier to read and 
modify. YAPS may be run conveniently under program 
control and can maintain and run multiple rule sets 
and data bases. This makes YAPS a much more gen- 

5 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



era1 tool. 

2. A User's View of YAPS - ----_- 
Facts in YAPS may be arbitrarily nested lisp 

lists of atoms and integers. Patterns may contain 
variables which match any constant lisp expression 
within a fact. Variables are atoms whose first 
character is a hyphen (-1; a hyphen appearing alone 
will match 
YAPS is: 

anything. A sample production rule in 

location monkey -xl " .' 
reach monkey -reach) 
box -box -boxsize) 
location -box -x) 
size monkey -monke size) 
>= -reach -boxsize 3 
<= -hei h;)(+ -monkeysize -boxsize)) 
remove 7 
fact reach monkey "(+ -monkeysize 

1 
-boxsize)) 

The keyword test separates left hand side patterns 
from the left hand side tests. Note that the 
second test referneces three variables. Patterns 
may also be used which specify that particular 
facts may not be in the database are also allowed. 
For example, 

(p find-largest 
(data -x) 
(" (data -y) with (> -y -x1> 

--> (let ((-ans (calculation -xl)> 
(remove 1) 
(fact calculate -x -ans> 
(fact data -ans)> 

This rule guarantees that when it runs, the largest 
data in the data base will be bound to 'I-x". The 
keyword with separates the list of not patterns 
from the tests associated with them in the not 
clause. An arbitrary number of not clauses and 
tests may appear on the left hand side of a produc- 
tion rule. The right hand side, as can be seen in 
this rule, can contain arbitrary lisp bodies. 

In addition, YAPS makes it easy to run produc- 
tion systems under program control. Whenever a 
goal fact (in the form of a fact whose car is 
trgoallt) is added to the YAPS data base and thepro- 
duction rules are not already running, the produc- 
tion system automatically runs until all goals are 
removed from the system or until there are no more 
productions ready to fire. In addition, if there 
are outstanding goals in the data base and a fact 
is added which allows one of the rules to fire, the 
system is run. This gives YAPS the desired daemon 
behavior. 

YAPS also supports multiple rule sets and data 
bases which can be entered and exited by the con- 
trolling system. Any fact asserted while within a 
given data base will be asserted in that data base. 
Facts can also be asserted in a global data base 
causing the fact to be asserted into all the YAPS 
data bases and rule sets. 

manua 1 
For more information 
[Allen 821.) 

on YAPS, see the YAPS 

20 Implementation of YAPS -- 
YAPS is implemented in Franz Lisp [Foderaro 

801 running under Berkeley UNIX* [Joy et al 813 and 
using the University of Maryland flavors package 
([Wood 821, [Allen et al 821). The most important 
structure in YAPS is the discrimination net which 
encodes left hand sides of production rules in the 
system. When facts are added to the data base, 
they are fed into the top of the discrimination net 
where they are compared against patterns appearing 
on the left hand sides of the production rules. 
Each node in the discrimination net has a path (say 
"carfl or ttcadrlt) specifing a position in the fact 
and an associative list of expected values and 
child nodes. When a fact matches all the constants 
of a pattern, it is unified with the pattern, and a 
binding is generated. All partial bindings are 
compared against other partial bindings for pat- 
terns in the same production rule, and new bindings 
are generated whenever there is a match. Like 
OPS5, left hand side tests are performed as soon as 
a potential binding has values for all the vari- 
ables in the test, and a binding is only made if 
the test succeeds. Thus, the tests are performed 
as early as possible and false partial bindings are 
pruned early. Bindings which completely match the 
left hand side of some production rule are placed 
in the conflict set and, according to the conflict 
resolution algorithm, one is chosen. 

When facts are removed from the data base, all 
the bindings in which they appear are removed. 
This is done by associating with each fact the list 
of bindings in which it appears and by mapping down 
the list removing bindings as the fact is removed. 
This differs from OPS5. In OPS5, facts are recom- 
pared against the discrimination net upon removal 
to find bindings in which they appear. 

When a production is added to YAPS, a function 
is defined whose arguments are the left hand side 
variables and whose bodies are the right hand side 
bodies. Thus, left hand side variables are just 
local variables in the right hand side function. 
When a production rule is run, this function is 
applied to the list of values of the left hand side 
variables. These functions may be compiled if the 
file containing the YAPS productions is compiled. 
This speeds up the lisp code both by allowing the 
right hand sides to be compiled and by having mac- 
ros such as fact expanded at compile time. OPS5 
does not define such a function for the right hand 
side of a production forcing the right hand sides 
of rules to always be interpreted. 

4. Production Systems and Flavor Objects --- 
Object oriented programming in Artificial 

Intelligence using such systems as MIT's Lisp 
Machine Flavors [Weinreb & Moon 811 has become 
popular recently and with good reason. Steps taken 
to merge production systems with object oriented 
programming can yield quite useful systems in which 
facts and productions manipulate objects by viewing 
them as atomic entities. At the same time, daemons 
in the form of production rules can be attached to 
---------- 

* UNIX is a trademark of Bell Laboratories 



objects and can run when certain messages are sent 
to the object. These objects can have their own 
individual rule sets and data bases but with the 
ability to add specific facts considered global 
information for the composite data base. 

YAPS also provides a flavor, the daemon-mix-in --- 
flavor, which can be mixed into other flavors giv- 
ing objects of those flavor pointers to the desired 
YAPS rule set and data base. The daemon-mix-in 
flavor defines messages like "buildp", tIgoallt and 
"fact" which manipulate its rule set and data base. 
Then, when a goal message is sent to an object, the 
desired goal it asserted into its data base and any 
production rules thus enabled are fired. As the 
rules fire, they may add more goals to either its 
own data base or to some other object's data base 
by sending rlgoal" messages to other objects. (Of 
course it may also send other messages to various 
objects as it so desires since there are no res- 
trictions as to what may appear on the right hand 
side of a rule.) Another message defined by 
daemon-mix-in is ltget-valuelt. This message is used --- 
to get the value of an instance variable. If the - 
value of the variable is tlUNBOUND1l, then a goal is 
asserted into the object's data base to compute the 
value of the variable. This provides a mechanism 
for slots to be filled in as their values are 
needed. 

As an example of using production rules 
together with flavors, consider the problem of mon- 
itoring the usage of files in an operating system. 
Suppose we want to provide users with the ability 
to attach daemons to their files and directories 
specifing actions to be taken any time the file is 
read from, written to, edited or executed. For 
example, there might be a file regularly modified 
by a group of people. A daemon attached to the 
file could warn anyone who wants to edit the file 
in case someone else is already editing the file. 
Also, a system maintainer might monitor a utility 
for the purpose of profiling its users. He could 
post a daemon on that utility that would write a 
message to a log file whenever someone ran the pro- 
gram. This message would give the name of the user 
and the form of the call. (An operating system 
which has these capabilities and more is described 
in [Israel 821.) YAPS in conjunction with flavors 
does this by defining a "file" flavor and mixing in 
the daemon-mix-in flavor to get daemons attached to 
the files. - Then whenever a file request was made, 
a message could be sent to that object in the form 
of a goal and appropriate actions taken, including, 
most likely, filling the request. 

5. Conclusion 

YAPS is an alternative to OPS5 as an 
antecedent-driven production system. It is compar- 
able to OPS5 in terms of efficiency but allows 
greater flexibility in facts in the data base and 
in writing production rules themselves. It is also 
particularly suitable as the basis for a production 
rule system which both manipulates objects and has 
objects which manipulate rules. YAPS does not make 
the mistake of forcing a system to be completely 

encoded using production rules or to be controlled 
at the top level by production rules living in the 
system. Instead, YAPS is a flexible tool, which 
combines with other lisp tools to build systems 
which can take advantage of using production rules 
in just those places where they are needed. 

Acknowledgements 

I would like to thank Randy Trigg for reading 
a prior draft of this paper and the Maryland AI 
Group for their support. 

REFERENCES 

[Allen et al 821 
Allen, E., R. Trigg, and R. Wood, Maryland 
Artificial Intelligence Group Franz Lisp 
Environment, University of Maryland CS TR- 
1226, October 1982. 

[Allen 821 
Allen, E.M., YAPS: Yet Another Production 
System, University of Maryland CS TR-1146, 
February 1982. 

[Foderaro 803 
Foderaro, J.K., The Franz LISP Manual, Regents ---- 
of the University of California, 1980. 

[Forgy 791 
Forgy, C.L, On the Efficient Implementation of 
Production Systems, Ph.D. Thesis, Dept. of 
Computer Science, Carnegie-Mellon Univ., Feb. 
1979. 

[Forgy 811 
Forgy, C. L., OPS5 User's Manual, Carnegie- 
Mellon University CMU-CS-78-116, 1981. 

[Israel 821 
Israel, B., Customizing a Personal Computing 
Environment Through Object-Oriented Program- 
ming, University of Maryland CS TR-1158, March 
1982. 

[Joy et al 811 
Joy, W.N., R.S. Farby, and K. Sklower, UNIX 
Programmer's Manual, Dept. of Electrical 
Engineering and Computer Science, Univ. of 
California, Berkeley, CA, June 1981. 

[Weinreb & Moon 811 
Weinreb, D. and D. Moon, Objects, Message 
Passing, and Flavors, pp. 279-313 in Lisp 
Machine Manual, Massachusetts Institute of 
Technology, Cambridge, MA, March 1981. 

[Wood 821 
Wood, R.J., Franz Flavors: An Implementation 
of Abstract Data Types in an Applicative 
Language, Dept. of Computer Science, Univ. of 
Maryland, TR-1174, June 1982. 


