
SPECIFICATION-BASED COMPUTING ENVIRONMENTS 

Robert Baker, David Dye 
Matthew Morgenstern, Robert 

r7 
Neches 

USC/Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90291 

Abstract 

This paper considers the improvements that could result from 
basing future computing environments on specification languages 
rather than programmtng languages. Our goal is to identify those 
capabilities which will srgnificantly enhance the user’s ability to 
benefit from the computing environment. 

We have identified five such capabilities: Search. Coordination. 
Automation, Evolution. and Inter-User Interactions. They will be 
directly supported by the computing environment. Hence. each 
represents a “freedom” that users will enjoy without having to 
program them (i.e., be concerned with the details of how they are 
achieved). They form both the conceptual and the practical basis 
for this computing environment. 

A prototype computing environment has been built which 
supports the first three of these capabilities and which supports a 
simple but real service. 

introduction 
This paper considers the improvements that could result from 

basing future computing environments on specification languages 
rather than programming languages. Our goal is to identify those 
capabilities which will significantly enhance the user’s ability to 
benefit from the computing environment. 

We have identified five such capabilities: Search. Coordination, 
Automation, Evolution. and Inter-User Interactions. They will be 
directly supported by the computing environment (the first three 
have been implemented in a prototype). Hence. each represents a 
“freedom” that users will enjoy without having to program them 
(i.e., be concerned with the details of how they are achieved). 
They form both the conceptual and the practical basis for this 
computing environment, for to the extent that we are successful in 
providing them as freedoms (specifications rather than 
algorithms), and hence tower the “wizard” level of users, we must 
provide corresponding automatic compilation techniques to keep 
this environment responsive, and hence, useable. 

None of these freedoms is by itself new. Our contribution lies in 
their combination and use as the basis for a specification based 
computing environment. 

The ideas presented here have evolved from the efforts and philosophy of the 

SAFE group at ISI, particularly the development of the formal specification 
language of GIST and the ability to map it via transformations into efficient 

implementations. We are deeply appreciative of Neil Goldman’s contributions to 
both the conceptual design and implementation of this effort 

This research was supported by Defense 
(DARPA) contract MDA903-81 C-0335 

Advanced Research Projects Agency 

There are some obvious dependencies among these freedoms. 
and this decreases the number of mechanisms needed to support 
them. This mechanism sharing is aescribed In the lmplementatlon 
section following consideratron of the freedoms themselves. 

Computing Environment Freedoms 

Search 

The main activity m a computing environment is building and 
mampulating various types of objects. Many of these objects are 
persistent--their lifetime exceeds, and is independent of. the 
programs that build and manipulate th&m. 

For objects to be persistent, they must be stored somewhere so 
that they can be reaccessed later. Current storage and retrieval 
mechanisms are inadequate and require detailed programmmg. 
Files are neither appropriately sized nor adequately Indexed to be 
used as containers for objects. External databases have strong 
limitations on the types of objects that can be stored (and on the 
manipulations that can be performed on stored objects). Objects 
stored in a programming environment are idrosyncraticatly 
indexed and retrieved. 

Consider instead an environment. based on the database 
viewpoint, which houses a universe of persistent objects within the 
environment itself and which provides descriptive access to those 
objects. That is, rather than using some predefined criteria. ANY 
combination of attributes, properties, and relations can be used to 
access an object (or set of objects if the request was not specific 
enough). Objects housed within the environment can be 
manipulated by the full power of that environment. Any 
modification causes them to be automatically reindexed for later 
descriptive reference. 

This, of course, describes a fully associative entity-relationship 
database [Chen79] integrated with a programming language that 
creates and maniputates the objects in that database. All objects 
in the environment are represented in the database (a one-level 
virtual store) in terms of their relationships (including entity-class) 
with other objects. The only changes that can occur in this 
universe of objects are the database operations of creating and 
destroying object instances, and asserting or denying 
relationships between objects. By requiring all the objects of the 
environment to be housed in the database, by imposing a full 
associativity requirement on that database, and by expressing the 
services of the environment totally in terms of the object (i.e.. 
database) manipulations they perform (that is. by lntegratmg the 
processing with the database), users would be freed from having 
to predetermine how objects ought to be indexed so that they can 
be later retrieved. and from programmmg their retrlevai from that 

12 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



predetermined structure. Much of the complexity and difficulty of 
usmg current environments arises from the care and feeding of 
such “access structures”. in this new environment. any 
classification structure merely becomes additronal properties of 
the object which can be used, like any others. as part of a 
descrrptive reference to that object. 

Coordination (Consistency) 
Given the ability to create and manipulate persrstent objects 

and to access them descriptively. the next most important 
capability is to coordinate sets of such objects _- that is. keep them 
consistent with one another. Whenever one object in such a 
coordinated set changes. the others must be appropriately 
updated. Currently. we attempt to realize such coordination 
through procedural embedding. That is. into each service that 
modifies such an object we insert code to update the others. 
Since the consistency criteria are not explicit. this currently is 
necessarily a manual task and is error prone, both in the 
placement and form of the required update. Such manual 
procedural embeddings are a key reason current systems are 
complex. This problem is exacerbated by the fact that the 
servrces: and the relationships among objects affected by these 
services. are evolving independently. 

Consider instead making the coordination rules explicit so that 
coordinated objects are defined in terms of each other. Each 
definition is expressed in terms of a mapping (called a 
perspecfive) which generates a dependent object (called a view) 
from one or more objects with which it is coordinated. Whenever 
a coordinated object changes, the view can be updated 
automatically (a la Thinglab [Borning77] and VisiCalc 
[Wolverton81]. Views are first-class objects [Kay74. lngalls781: 

they can be accessed descriptively, and, if the back mapping is 
defined. they can be modified, causing the appropriate changes in 
the “defining” objects. (Some of these back-mappings can be 
inferred automatically [Novak83]; others are underdetermined and 
must be explicitly defined.) 

Such coordination represents a major departure from existing 
systems. Coordtnated objects are tightly coupled. so that changes 
in one are automatrcally reflected In the others. With such a 
mechanism. once the coordmation crrteria (mapprngs) are stated. 
the system could assume full responsibility for maintaining 
consrstentcy among coordinated objects. Changes to existing 
services or addition of new ones could be accommodated 
automatically. Furthermore. the system could then employ lazy 
evaluation [Friedman761 to delay updating views until those 
updates were actually required. 

The reason that the terms, perspective and view. were chosen, 
respectively. for the mapping and the object produced is that. in 
addition to its intended use as the mechanism to keep objects 
coordinated. perspectives will also be used as the mechanism by 
which a user displays and manipulates objects, Displays are just 
particular views (which like other views must be kept coordinated 
with the object being viewed) for which the system knows how to 
create a picture on the user display screen and how user gestures 
(whether by entering text. making selections, and/or graphical 
motion) change the display (and hence, both the picture on the 
screen and. via a back mapping, the object being viewed). 

Coordination is thus an extremely powerful mechanism. It not 
only provides an explicit mechanism for maintaining consistency 
between objects. but also provides the mechanism by which 
manipulatable filtered (Le., partial) views could be constructed for 
both internal and external (display) use. 

The user interface to this environment would therefore be a set 
of perspectives (mappings) used for display. Through them the 
user could observe objects. watch them change. invoke tools and 
services to manipulate them. or change them himself This user 
interface would be fully programmable and extensible (see 
Evolution below). 

As an example of the power of the coordination mechanism, 
justified text is just a view of text, and object code is just a view of 
source code. By defining justification and compilation as the 
perspectives which produce those views, these processes will be 
automatically invoked as needed. The maintenance task 
(coordinating the objects) will shift from the user to the system. 

Automation 

In mteractmg with a computtng envrronment many repetitive 
sequences are employed Programming language based 
environments provide the ability to bundle such repetitrve 
sequences as macros and/or procedures. But such macros 
and/or procedures still have to be invoked explicitly The user is 
required to remain in the loop having to perform the pattern 
recognition function and determine when and upon which objects 
to Invoke the macro and/or procedures. 

By adding demons to the computing environment. users could 
be freed from being in-the-loop through automating the way that 
their environment reacts to specified situations Those situations 
would become the firing pattern of the demons. and the responses 
become their bodies This would allow users to define active 
“agents” operating on their behalf which autonomously monitor 
the computing environment for those situations for which a 
response has been defined. This freedom allows users to focus 
their attention on the more idiosyncratic aspects of the computing 
while their agents handle the more regularized ones. In particular. 
these agents could operate in the absence of the user. responding 
to interactions initiated from other user’s environments (see Inter- 
User Interactions below). 

This automation mechanism not only frees users from repetitive 
tasks, but also changes their perception of their environment, 
First. it emphasizes the data base orientation of the environment 
by basing responses on situations (the state of some set of 
objects) rather than on the processes (code) that produced those 
srtuations. As we will see in the next section. this data base 
orientation greatly facilitates evolution of the tools and services in 
the environment. Second. these responses convert the previously 
passive environment into an active one. 

As an example of automation, consider an agent which 
responds to the arrival of a message by presorting it for the user 
into some predefined catagory on the basis of the sender. the 
topic, and/or the content of the message. and then decides 
whether to inform the user of its arrival based on the user’s 
current activity. 

Evolution (Perspecuity) 
One of the key problems with traditional computing 

environments is the mabilrty to modify the tools and services of 
those environments. Programming language based environments 
improve this situation by coding the tools and services in the 
language of the environment (with which the user IS necessarily 
familiar) and by making the source code available to the user. To 
the extent that the user can understand the tools and services. he 
can modify them. 

Once the commitment has been made to provide accessible 
source code, evolvability is ‘almost completely an 

13 



understandability issue. This is another way that adopting a 
specification-based approach has a big payoff. Besides 
alleviating implementation concerns. each of the specification 
freedoms improves understandability by allowing the code to more 
closely describe intent rather than implementation. 

As a prime example. consider the use of the “automation” 
demons. described in the previous section. to provide situation- 
based extensions. Rather than procedurally embedding the 
extension at each appropriate place in the existing tools or 
services, a single demon is created that specifies when. in terms of 
the objects in the environment (i.e.. a situation). the extension is 
appropriate. By localizing the extension and specifying the 
situation to which it is to be applied. the understandability of the 
resulting service is greatly enhanced. We believe that such rule- 
based technology has much wider applicability than expert 
systems. 

But tool and service understandability need not be based solely 
on the readability of the source code. These tools and services 
manipulate objects in the environment. That is, they have 
behavior, and that behavior provides a strong basis for 
understandability [Balzer69]. By making the behavior explicit in 
the form of a recorded history (as an object in the environment) 
the full power and extensibility of the viewing (coordination) 
mechanism could be used to understand the recorded behavior. 

The recorded history would include attribution so that the old 
debugging problem of determining how an object reached its 
current state and who was responsible for it will finally be 
resolved. 

Recording history is a major design commitment of our 
computing environment which provides the basis for its behavior 
based understandability. To the extent tnat we are successful in 
providing an evolvabie. integrated. and automated computing 
environment. the need for such behavior based understanding will 
correspondingly increase. 

The recorded history also provides the basis for an important 
habitability feature--the ability to undo operations [Teitleman72]. 
There are three reasons why such a capability IS crucral. First. we 
are fallible--fro’m lack of forethought or just plain carelessness. 
Second. no matter how consrstent and well integrated the 
environment is. we will occasionally be unpleasantly surprised at 
the effect of an operation. or the situation in which it was invoked. 
Finally, users need a convenient way to experiment, to learn about 
unfamiliar servrces. to debug their own additions to the 
environment. and simply just to see the effects of some course of 
action. For all these reasons. an undo mechanism which can be 
invoked after the operation(s) to be undone IS a crucial habitability 
feature (as shown by its popularity and use in the Interlisp 
[Teitleman 781 environment). Such a facility can be easily 
constructed from the recorded history. 

Inter-user Interaction 
So far we have examined the freedoms of search. coordination. 

automation, and evolution. These four freedoms resolve the major 
difficulties encountered within a computing environment. But our 
future computing environments cannot be self-contained. They 
must interact with the environments of other users and with 
various shared services. 

As was the case when we considered persistent objects, files 
are an inappropriate mechanism (though they are the basis for 
existing inter-user interactions). Inter-user interactions require no 
less powerful nor rich a set of capabilities than those needed 

within a single environment. Objects need to be accessed. 
coordinated. and manipulated across environment boundaries. 
The boundary between environments has to be suppressed so 
that the full power of the computing environment can be applied to 
inter-user interactions. 

One remaining issue must be addressed. Within someone else’s 
environment, our rights and privileges are very different from 
those within our own. Within our own environment, we can do as 
we please--accessing any object, manipulating it, and defining the 
rules of consistency which it must obey. Within someone else’s 
environment. we have no rights and privileges We must ask 
permission for anything within someone else s environment 

We do this by dividing the notion of ar, active ObJeCt 

]Kay74. Hewitt771 into an active mtermeoiary (programmed agent) 
and a (passive) ObJeCt owned by that intermediary. If we are 
manipulating (including accessing) an Object that we own. then 
the manipulation is performed directly. However. an attempt to 
manipulate someone else’s ObJeCt IS treated as (i.e.. translated to) 
a request to the owner of that object. which can be either honored 
or refused. This specification freedom enables ObJeCt owners to 
define external access and manipulation rights that allow others to 
manipulate objects without respect to environment boundaries as 
long as they don’t exceed those rights. Privacy and/or access 
can be programmed on a local object-by-object basis and can be 
both state and requestor dependent. 

Beyond Freedoms: 
General Support 

In addition to the specification freedoms described above. two 
other capabilities must be available within the computing 
environment to simplify service creation and improve the 
habitability of the environment. First is a comprehensive set of 
general object manipulations. Since the main activity in any 
computing environment is building and manipulating ObJeCtS. 

such a set of widely applicable object manipulations is essential 
[Goldstein80]. These manipulations include object definition 
(since the class of object types is not fixed), instantiation (since 
the set of objects of each type is not fixed). exammatron (often 
called browsing in interactive systems), modification. and 
destruction. To the extent that traditional services have employed 
idiosyncratic versions of these capabilities. providing a 
comprehensive set of widely applicable object manipulations will 
reduce service implementation effort while improving the 
consistency and coherency (and hence habitability) of the 
environment. As an example of such a reduction. consider an 
electronic mail service. The only portions of this service which 
must be specially built are the definition of the object message 
and the mail service specific operations of sending a completed 
message (transferring a copy to each of its addressee attributes) 
and answering a message (partially constructing a message with 
the addressees and the beginning of the body (“In reply to your 
message o?...“) filled In). All of the other capabilities normally 
associated with a mail service such as comparing messages 
examining them. editing them. filing them retnevmg them 
deleting them. etc.. are provided through the general object 
manrpulation capabilities of the environment Clearly. such 
reductions In the scope of service implementatron greatly facilitate 
the creation of new services. 

14 



The second additional capability required within the computing 
environment is a suitable user interface. As previously discussed 
under the coordination freedom. the user interface will be a set of 
perspectives (mappings) used to display and manipulate objects. 
By defining a “service invocation” as an object it can be 
instantiated. displayed. and manrpulated by this Interface. and by 
definrng a service on such objects which Invokes the named 
service on the specified objects (parameters). then this interface 
can be used as a “command interpreter” to specify the 
parameters needed for some service and to Invoke it. In addition. 
since a wide variety of views will already be needed for user 
browsing. these same views can be used to display the effects of 
services. In fact, smce all the effects of a servrce invocation are 
recorded in the history. a much more sophrstrcated displa) 
mechanrsm can eventually be created. external to the services. 
which examines the effects and determines what to drsplay based 
not only on these effects, but also the current user context 
including what is currently displayed on the screen and on various 
user declarations of personal preference. By removing both input 
(service invocation) and output (how to display effects) from 
service definitions. their scope will be reduced to a kernel 
consisting of only the functional object manipulation effects of the 
service. This will greatly simplify service creation while 
simultaneously providing a more powerful comprehensive user 
interface. 

Implementation 
A working prototype of this computing environment exists. A 

small but real service has been constructed. This service 
maintains a portion of the ISI employee data base including such 
information as office, phones, secretary, directory name and 
electronic mail location. It uses coordination rules to ensure that 
a person’s backup phone is the primary phone of his secretary 
and that the person’s primary phone is the phone in his office. It 
uses an automation rule to send a message to the receptionist 
whenever someone’s office is changed It also includes a service 
specific view which generates an updated phone-list mcorporatrng 
all of the above information In a predefined format. We hope to 
maintain thus data base through our specification based 
computing environment once the prototype becomes sufficiently 
robust. 

Three of the five freedoms (search. coordination. and 
automation) have been implemented. All three are based on 
existing AP3 [Goldman821 capabilities. The prototype currently 
“compiles” the service into the corresponding AP3 calls. 
Coordination and automation both translate into AP3 demons. 
The AP3 demons mechanism itself piggybacks on AP3’s 
associative database retrieval mechanism. So all three 
implemented freedoms rely upon this single powerful facility. 

In addition, both aspects of the “General Support”--a 
comprehensive set of object manipulatron facilities and a 
(primative) interactive user interface--have been built. These 
object manipulation facilities enable one to interactively view 
modify, and extend both instances of objects and object 
definitions themselves. 

Our current efforts are focused on creation of a suitable 
language for expressing actions, coordmatton. and automations 
and on recording history so that we can address the 
comprehension and modifiability requirements of the evolution 
freedom. 

Once we have completed the conceptual framework, a major 
effort will be focused on optimizing the specification freedoms 

introduced. especially coordination to eliminate unneeded 
recalculations and to incrementally update those that are 
required. 

Conclusion 
We have examined current computing environments and tried 

to understand the causes for their limitations, particularly in the 
areas of integration and habitability. Operating system based 
computing environments must be integrated at the subsystem 
level. The narrow communication channel imposed via files 
(whether real or in-core) appears to fundamentally preclude tight 
integration. 

The situation is very different for programmmg language based 
computing environments They appear structurally ideal for tight 
integration Arbitrary oojects can be defined and shared The full 
range of control structures In the programming language can be 
used to tie tools and services together While this programmrng- 
language basis is adequate for rntegratron It causes habitability 
problems. The mechanisms are simply too low level (detailed) for 
the computrng environment task. Rather than describing what to 
do. users must program how to do it. precisely because they are 
dealing with a programming language 

The obvious solution is to augment the computing environment 
language with higher level specificat/on constructs. Each such 
construct represents a freedom that users can enjoy (because 
they no longer have to program the construct) and a responsibility 
the system must accept to provide an efficient implementation of 
the construct to keep the environment responsive 

We have identified five such freedoms. They are: 

1. Search--the ability to locate objects via descnptrve 
reference. 

2. Coordination--the ability to state the consistency 
criteria among objects and to have it maintained as 
any of them are changed. 

3. Automation--the ability to define the autonomous 
response to specified situations so that the user need 
not remain in the loop for repetitive operations. 

4. Evolution--the ability to modify and extend existing 
services through increased perspecuity of those 
services and their behavior. 

5. Inter-User Interaction--the ability to determine how 
others will be allowed to access your objects. as they 
determine. 

None of these freedoms is, by itself, new. Our contribution lies 
in their combination and use as the basis for a specification based 
computer environment. 

We have no doubt that such freedoms. together with a 
comprehensive set of general object manipulations and user 
interface capabilities. will greatly facilitate service creation and 
markedly improve the habitability of future computmg 
envrronments. These freedoms must oe supported wrth efficient 
mechanrsms. Two mechanisms seem most crucial. The frrst IS an 
adaptive associative entity-relationship database This requrred 
mtegration of techniques developed In the database. 
programmmg language and artificial mtelligence ftelds 
[Goldman821 and has been used to Implement tne first three 
freedoms. The second IS view maintenance. It requires the 

15 



integration of techniques for obsolescence detection. lazy (and 
opportunistic) evaluation. generation of back-mappings. and. 
most important. incremental update. 

The open question is how long it will take to provide this 
underlying support technology. Our working prototype is merely a 
first step. All the hard optimization problems and many of the 
conceptual modeling ones are still ahead of us. 

References 

[Balzer 691 R. Balzer. “Exdams - Extensible Debugging and 
Monitoring Systems”, Proceedings of the Spring Joint 
Computer Conference, 1969, pp. 567-580. 

[Borning 771 A. Borning, “Thinglab -- An Object Oriented System 
for Building Simulation Using Constraints”, Proceedings of 
the Fifth International Joint Conference on Artificial 

Intelligence, Cambridge, Mass., Aug. 1977. 

[Chen 791 P. P. Chen (ed.), Proceedings of the International 
Conference on Entity-Relationship Approach to Systems 
Analysis and Design, Los Angeles, Dec. 1979. 

[Friedman 761 D. P. Friedman and D. S. Wise, “CONS Should Not 
Evaluate Its Arguments”, in Michaelson and Milner (eds.). 
Automator, Languages, and Programming. Edinburgh 
University Press, 1976, pp. 257-284 

[Goldman 821 N. M. Goldman, “AP3 Reference Manual”, 
USC/Information Sciences Institute, June 1982. 

[Goldstein 801 I. Goldstein and D. Bobrow, “Descriptions for a 
Programming Environment”, Proceeding of the First 
Annual Conference of the Amencan Association for 
Artificial Intelligence, Stanford, Calif., 1980. 

[Hewitt 771 C. E. Hewitt and H. Baker, “Laws for Communicating 
Parallel Processes”, Proceedings of /F/P-77, Toronto, Aug. 
1977 

[lngalls 781 D. Ingalls. “The Smalltalk- Programmmg System: 
Design and Implementation” In 5th ACM Symposrum on 
Pnnciples of Programming Languages. ACM 1978 

[Kay 741 A. Kay. “SMALLTALK. A Communication Median for 
Children of All Ages”. Xerox Palo Alto Research Center. 
Palo Alto. Calif. 1974 

[Novae 831 G. Novak. Jr.. “Knowledge-based Programming Using 
Abstract Data Types”. AAAi Proceedings 3rd Nat/ona/ 
Conference on Artif/cia/ Inrelhgence. Wash.. D.C. 1983. 

[Teitelman 721 Warren Teitelman, “Automated Programming . The 
Programmer’s Assistant”, Proceedings of the Fali Joint 
Computer Conference. Dec. 1972 

[Teitelman 781 Warren Teitelman lnterllsp Reference 
Xerox Palo Alto Research Center. Oct. 1978 

[Wolverton 811 Van Wolverton. IBM 

Personal Software Inc.. 1981. 
Personai 

Manual. 

Comwter VksiCalc, 


