
Knowledge-based Programming
Using Abstract Qata Types’

Gordon S. Novak Jr.2

Heuristic Programming Project

Computer Science Department

Stanford University

Stanford, CA 94305

1. Abstract
Features of the GLISP programming system that support

knowledge-based programming are described. These include
compile-time expansion of object-centered programs,
interpretation of messages and operations relative to data type,
inheritance of properties and behavior from multiple superclasses,
type inference and propagation, conditional compilation, symbolic
optimization of compiled code, instantiation of generic programs
for particular data types, combination of partial algorithms from
separate sources, knowledge-based inspection and editing of
data, menu-driven interactive programming, and transportability
between Lisp dialects and machines. GLISP is fully implemented
for the major dialects of Lisp and is available over the ARPANET.

2. Introduction
A compiler can be viewed as a program that, using knowledge

embodied as data and procedures, converts a specification of a
program into an executable program. Compilers for traditional
programming languages have embodied a relatively small amount
of knowledge and have not been easily extensible by the user.
Restrictions imposed by traditional languages, for example, that a
calling program and subroutine must be written in terms of
identical data types, have inhibited the accumulation of
programming knowledge in the form of reusable programs.

The power of a programming system can be measured by the
leverage it provides, that is, by its ability to convert abbreviated
specifications into sizable programs. To increase the power of
compilers, it is necessary to increase the knowledge they contain
and to make user-specified knowledge effective during the
compilation process. This paper describes the knowledge used
by the GLISP compiler and its associated programming systems,
focusing on features that permit reusability of programs and
accumulation of programming knowledge. The GLISP compiler
provides a high degree of leverage in converting GLISP programs
into efficient Lisp code.

‘This research was supported in part by NSF Grant SED-7912803 in the Joint
National Science Foundation - National Institute of Education Program of

Research on Cognitive Processes and the Structure of Knowledge in Science and
Mathematics and in part by the Defense Advanced Research Projects Agency

under Contract MDA-903-80-c-007.

LAuthor’s present address: Computer Science Department, University of Texas
at Austin, Austin, TX 78712. Phone (512) 471.4353. Net address
CS.NOVAK@UTEXAS-20.

3. GLISP
GLISP [5] [6] [7] is a high-level language that includes Lisp as a

sublanguage and is compiled into Lisp. It provides a powerful
abstract data-type mechanism that allows the structure and
computed properties of objects to be described. Properties,
predicate adjectives, and messages can be inherited from multiple
superclasses. Compilation of properties is recursive at compile
time and is performed relative to the types of the objects in
question; this allows the same properties and behavio; to be
inherited by objects that are represented differently.

GLISP provides an -object-centered programming system that
allows messages to be interpreted at run time. A major advantage
of GLISP compared to other object-centered programming
systems is that when the type of an object is known, the GLISP
compiler can determine the appropriate response function for a
message to the object at compile time and can compile a direct
call to that function or macro-expand it in-line. This brovides the
representational power of object-centered programming with no
penalty in execution speed compared to ordinary Lisp.

4. Related Work
The use of messages and computed properties in GLISP is

related to the use of messages in object-centered programming
(OCP) systems [I] [3] [4]; GLISP contains a system for
interpretation of run-time messages to objects and thus supports
OCP. However, OCP has several inherent problems.

The first problem is that object-centered programs tend to be
slow compared to programs written in the underlying language
(typically 20 to 50 times slower). One reason for this slowness is
that messages must be interpreted at run time; when the response
to a message is a small amount of code (e.g., for data access), this
overhead becomes a large fraction of execution time. Even with
special hardware support, the overhead of message lookup is a
significant cost.

A potentially more serious performance problem is caused bv
the referential opacity of OCP. Most program optimization;
require some global knowledge about the program; that is, most
optimizations are of the form “If both operations A and B are to be
performed, there is a way to do A and B together that is cheaper
than doing each separately.” For example, if one wishes to make
a list of the female “A” students in a class, it may be cheaper to
compute the set of students who are both female and “A”
students than to compute the two sets separately and intersect
them. In an OCP system in which the female students and “A”
students were found by sending messages, however, it would not
be possible to perform this optimization because it would not be
known how the two sets were computed.

288

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

Another problem caused by referential opacity is that error
checking must be deferred to run time. If the response to a
message is not looked up until run time, it will not be known until
then whether the object can in fact respond to that message,
whether the result objects it returns can respond to the messages
that will be sent to them, and so forth; this complicates debugging.
Borning and lngalls [2] have reported an experimental compile-
time type-checking system for Smalltalk.

By looking up message responses at compile time, GLISP
eliminates the overhead of run-time lookup for most messages.
Because messages can be expanded as in-line code,
optimizations that span multiple messages (as in the example
above) can be performed by the compiler. When object types are
known, error checking is performed statically at compile time
rather than dynamically.

5. Program Reusability
Much of the work in traditional programming consists of

specializing standard algorithms for particular uses. The
specializations performed by the programmer include instantiation
of algorithms for particular data representations, combination of
separate algorithms into a composite algorithm, and optimization
based on knowledge of the conditions of use of the algorithm. In
this section, compiler features that are necessary for compilers to
perform such specializations are discussed; these features make it
possible for standard algorithms to be written as generic programs
and reused for different applications.

5.1. Data-type Independence
Most programming languages require that programs be written

in terms of specific data types. Lisp is particularly bad in this
regard because data access is performed by function calls; thus,
dependencies on particular storage structures are built into
program code. In GLISP, when a procedure is inherited as the
response to a message or property reference, the static types of

the actual arguments are substituted for the types of the formal
arguments of the procedure; the inherited procedure can be
specialized for the actual argument types either by open
compilation (analogous to macro expansion) within the
referencing program or by specializing it as a closed procedure.
The GLISP object descriptions provide a level of indirection
between the names of properties and the representation of the
properties. Since substructures and computed properties are
referenced in the same way in GLISP program code, a procedure
can reference a property that is stored in one use and computed
in another.

Additional compiler features are needed to achieve data-
representation independence. Programs often write data as well
as reading it. GLISP can “invert” an algebraic expression that
ultimately involves only a single occurrence of stored data; this
allows a program to “store” into a computed property so long as
that property has a single “equivalent” property that is stored. For
example, given a CIRCLE object whose RADIUS is stored, it is
legitimate to assign a value to the AREA of the CIRCLE; the
compiler produces code to store a RADIUS value corresponding
to the specified AREA value.

Programs also create new data objects. Vector addition, for
example, involves the creation of a new vector whose elements
are formed by adding the components of the input vectors. To
create a new vector that is like the input vectors, it is necessary to
be able to specify a type that is the same as the type of another
datum. GLISP provides a TYPEOF operator, which returns the

compile-time type of the expression that is its argument. Thus, a
generic vector-addition function can be used for different kinds of
vectors:

(VECTORPLUS (GLAMBDA (U,V:VECTOR)
(A (TYPEOF U) WITH X q U:X + V:X

Y = U:Y + V:Y)))

A particular kind of vector, a FVECTOR, can be described as
follows:

(FVECTOR (CONS (Y BOOLEAN) (X STRING))
SUPERS (VECTOR))

Given an expression “F+G”, where F and G are FVECTORs, the
compiler will produce the code:

(CONS (OR (CAR F) (CAR G))
(CONCAT (CDR F) (CDR G)))

The operator “+” is defined for VECTORS as the function
VECTORPLUS; this definition is inherited by FVECTORs, so that
the function VECTORPLUS is open-compiled with the type
FVECTOR for its arguments. VECTORPLUS produces a new
object whose type is the same as the type of its first argument; the
“t” operators within VECTORPLUS are interpreted according to
the types of the components of the FVECTOR type, so that the
BOOLEAN components are ORed and the STRING components
are concatenated.

5.2. Multiple Views of Data
Real program data are often not of a single, simple type but may

be viewed in several different ways. GLISP provides mechanisms
whereby features of objects may be inherited from multiple views.
The first such mechanism is inheritance from multiple
superclasses. When a property is inherited from a superclass, it is
compiled recursively in the context of the original object; the
references made by the definition of the inherited property may
then involve inheritance from different superclasses. This feature
allows the user to have a number of shallow inheritance
hierarchies rather than one deep hierarchy; the shallow
hierarchies tend to be “cleaner” because each deals with only a
limited facet of behavior.

In some cases, it is desirable to view an object as an object of
another type without actually materializing the data involved in the
view type. GLISP provides a virtual view mechanism that permits
such views. For example, in the GEV editor, an item of the
displayed data is viewed as containing areas on the display screen
(the area around the item’s name and the area around its
displayed value). Using virtual views of the item, these areas are
defined in terms of computed quantities (e.g., the number of
characters in the item’s name determines the width of the name
area); the procedure that tests whether a point is inside an area
can then be inherited to test whether the mouse pointer is
selecting the item. The code that is produced by the compiler is
written in terms of the data that is actually stored, so that an
“area” datum does not need to be constructed in order to use the
inherited generic procedure.

5.3. Combination of Algorithms
Real programs are typically composed of a number of smaller

component algorithms that are combined and specialized for their
particular use. For example, a number of iterative programs can
be viewed as being composed of the following components:

Iterator: Collection + Element*

Filter: Element + Boolean

Viewer: Element + View

Collector:

Initialize: nil + Aggregate

Accumulate: Aggregate X View * Aggregate

Report: Aggregate -+ Result

The lterator enumerates the elements of the collection in temporal
order; the Filter selects the elements to be processed; the Viewer
views each element in the desired way; and the Collector collects
the views of the element into some aggregate. For example,
finding the average monthly salary of plumbers in a company
might involve enumerating the employees of the company,
selecting only the plumbers, viewing an employee record as
“monthly salary”, and collecting the monthly salary data for the
average.

GLISP allows the operation of such an iterative program to be
expressed as a single generic function; this function can then be
instantiated for a given set of component functions to produce a
single Lisp function that performs the desired task. Instantiation
of generic functions is somewhat similar to instantiation of
program plans in the Programmer’s Apprentice [8]; in GLISP,
there is a single language for both generic and concrete
programs, and instantiation occurs by recursive expansion of
code at compile time. Such an approach allows programs to be
constructed very quickly. The lterator for a collection is
determined by the type of the collection, and the element type is
likewise determined. A library of standard Collectors (average,
sum, maximum, etc.) is easily assembled; each Collector
constrains the type of View that it can take as input. The only
remaining items necessary are the Filter and Viewer; these can
easily be acquired by menu selection using knowledge of the
element type (as is done in GEV, described below).

6. Compiler Knowledge
The GLISP compiler runs within a variety of Lisp systems; it

embodies knowledge about the underlying Lisp system that helps
make GLISP programs transportable. Implementors of Lisp
systems have unfortunately introduced many variations in the
names, syntax, and semantics of even the basic system functions
of Lisp. GLISP performs the mapping from operations on various
data types into the corresponding function calls in the host Lisp
system; it also defines basic data types with GLISP object
descriptions, so that standard properties of these data types are
available in a dialect-independent manner. The compiler performs
type inference for Lisp system functions, so that the types of their
results will be known without requiring explicit declarations.

GLISP encourages the development of abstract data-type
packages that mediate the interaction between user programs and
idiosyncratic system features. For example, the GEV system uses
Window/Menu data-type packages that allow the same code to
run on Lisp machines with bitmap displays and on time-sharing
systems with ordinary terminals.

The compiler performs symbolic simplification of the Lisp code
it generates; this improves efficiency and allows the user to use
the representational power of GLISP without paying a run-time
penalty. Particular attention is paid to optimization of set
operations and loops over sets to avoid unnecessary construction
of intermediate sets. Symbolic simplification also provides
conditional compilation in a clean form. The user may declare to
the compiler that certain data have values that are considered to
be compile-time constants. Compile-time execution of operations
on constants can produce constant values for conditional tests;
symbolic simplification of the resulting code causes unreachable
program code to vanish. For large programs with many options,
such as symbolic algebra packages, elimination of code for
unwanted options can provide substantial savings in program
space and execution time without changes to the original source
code.

7. GEV: Knowledge-based Data
Inspection

GEV (for GLISP Edit Value) is a program, written in GLISP, that
interprets Lisp data according to its GLISP data-type descriptions
and displays it in readable form in a window. The display contains
three sections: the edit path that led to the current object, the data
that are actually stored in the object, and computed properties of
the object. Figure 7-1 shows an example. The user can “zoom
in” on an item of interest, which will be displayed in greater detail
according to its type description; this allows the user to browse
quickly through a semantic network of related data. A data-type
description can specify that certain computed properties should

-lPP - HPP
ZUNTRACTS - (Ad’+anced A, I , krchit- , , , >
v4 - GLISP
-EADER .-’ GSN

B IRTHDATE - July 21, 1947
P H 0 N E - (415) 497-4532

QUIT
PROP

POP

ADJ

EDIT
ISA

PROGRAM
MSG

Figure 7- 1: A GEV window display.

290

be displayed automatically whenever an object of that type is
displayed; other computed properties can be requested by menu
selection. The SHORTVALUE property of an object is used to
display the object when “seen from afar”; for example, the
SHORTVALUE for a PERSON object could be defined to be the
person’s initials. A tilde (“a”) indicates that a SHORTVALUE is
displayed rather than the actual Lisp value.

GEV allows the user to write looping programs interactively by
menu selection. When the “program” command is selected, GEV
first displays a menu of operations that can be performed. Next, a
menu of possible sets over which the program could iterate is
displayed. Finally, successive menus are presented to allow the
desired property of the object to be selected; this process
terminates when the user gives a “done” command or when a
terminal value is reached. From these selections, a GLISP
program to perform the specified operations is written, compiled,
and run; this process normally takes less than a second. The
result is printed and added to the GEV window; Figure
7-2 illustrates this process. The “program” feature allows the user
to write significant programs rapidly without knowing the format of
lhe data and without knowing any programming language. Since
GEV interprets data according to GLISP object descriptions, it can
be used for inspection of any Lisp data for which such
descriptions are supplied.

HPP - HPP

TITLE - H eu r i st i c P r r~ cj r $3 ro ra i rl g P r oj -
ABBREVIATI- HPP
~DMIMISTRA- = TGR
I;ilNTRAI:TS -. (Al:lvanced A , I , Archi t- , , ,)
EXECLIT IVES - (EAF L~F;I: 63~ TCR)

BUUGET G59307.2
&!IYERAGE LB- 540861.23

AVERAGE BUDGET LABOR OF HPP CONTRACTS = 54000.28

Figure 7-2: Menu programming in GEV.

8. Summary
GLISP is an integrated programming system that uses

declarative knowledge of the implementations of objects t0
generate code for operations on the objects. Recursive
compilation relative to object types provides code efficiency
comparable to ordinary Lisp with the representational power of
object-centered programming. The GEV system interprets GLlSP
object descriptions to provide intelligent inspection and editing of
data and menu-driven interactive program generation.

GLISP and GEV are fully implemented and are being used by a
number of university and industrial research labs for
implementation of Al systems.

9. How to Obtain GLISP
GLISP and GEV are avai!able without charge over the

ARPANET. GLISP files are stored in the directory <GLISP> on the
host computer SUMEX-AIM.3 At the time of writing, GLISP is
available for lnterlisp, Maclisp, Franz Lisp, UCI Lisp, ELISP, and
Portable Standard Lisp; Zetalisp and Common Lisp are planned.
The manual is available as GLUSER. MSS (Scribe source form) and
GLIJSER. LPT, and it tells how to obtain the files for the different
Lisp dialects. The file GLISP. NEWS contains news on recent
developments.

3
The login “anonymous guest” may be useJ for FTP transfers.

References

1. Bobrow, D. G., and Stefik, M. The LOOPS Manual. Tech. Rept.

KB-VLSI-81- 13, Xerox Palo Alto Research Center, 1981.

2. Borning, A., and Ingalls, D. A Type Declaration and Inference

System for Smalltalk. Proc. 9th Conf. on Principles of

Programming Languages, ACM, 1982.

3. Cannon, H. I. Flavors: A Non-Hierarchical Approach to Object-

Oriented Programming. Tech. Rept. Working Paper, A.I. Lab,

Massachusetts Institute of Technology, October, 1981.

4. Ingalls, D. The Smalltalk- Programming System: Design and

Implementation. 5th ACM Symposium on Principles of

Programming Languages, 1978.

5. Novak, G. S. GLISP Reference Manual. Tech. Rept. HPP-82-1,

Heuristic Programming Project, Computer Science Dept., Stanford

University, February, 1983.

6. Novak, G. S. GLISP: A High-Level Language for A.I.

Programming. Proc. 2nd Natlorlal Conference on Artificial

Intelligence, Carnegie-Mellon University, 1982.

7. Novak, G. S. “GLISP: A Lisp-based Programming System with

Data Abstraction.” A./. Magazine 4, 3 (August 1983).

8. Waters, Richard C. “The Programmer’s Apprentice:

Knowledge Based Program Editing.” /EEE Transactions on

Software Engineering SE-8, 1 (January 1982).

