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1. Abstract 
Features of the GLISP programming system that support 

knowledge-based programming are described. These include 
compile-time expansion of object-centered programs, 
interpretation of messages and operations relative to data type, 
inheritance of properties and behavior from multiple superclasses, 
type inference and propagation, conditional compilation, symbolic 
optimization of compiled code, instantiation of generic programs 
for particular data types, combination of partial algorithms from 
separate sources, knowledge-based inspection and editing of 
data, menu-driven interactive programming, and transportability 
between Lisp dialects and machines. GLISP is fully implemented 
for the major dialects of Lisp and is available over the ARPANET. 

2. Introduction 
A compiler can be viewed as a program that, using knowledge 

embodied as data and procedures, converts a specification of a 
program into an executable program. Compilers for traditional 
programming languages have embodied a relatively small amount 
of knowledge and have not been easily extensible by the user. 
Restrictions imposed by traditional languages, for example, that a 
calling program and subroutine must be written in terms of 
identical data types, have inhibited the accumulation of 
programming knowledge in the form of reusable programs. 

The power of a programming system can be measured by the 
leverage it provides, that is, by its ability to convert abbreviated 
specifications into sizable programs. To increase the power of 
compilers, it is necessary to increase the knowledge they contain 
and to make user-specified knowledge effective during the 
compilation process. This paper describes the knowledge used 
by the GLISP compiler and its associated programming systems, 
focusing on features that permit reusability of programs and 
accumulation of programming knowledge. The GLISP compiler 
provides a high degree of leverage in converting GLISP programs 
into efficient Lisp code. 
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3. GLISP 
GLISP [5] [6] [7] is a high-level language that includes Lisp as a 

sublanguage and is compiled into Lisp. It provides a powerful 
abstract data-type mechanism that allows the structure and 
computed properties of objects to be described. Properties, 
predicate adjectives, and messages can be inherited from multiple 
superclasses. Compilation of properties is recursive at compile 
time and is performed relative to the types of the objects in 
question; this allows the same properties and behavio; to be 
inherited by objects that are represented differently. 

GLISP provides an -object-centered programming system that 
allows messages to be interpreted at run time. A major advantage 
of GLISP compared to other object-centered programming 
systems is that when the type of an object is known, the GLISP 
compiler can determine the appropriate response function for a 
message to the object at compile time and can compile a direct 
call to that function or macro-expand it in-line. This brovides the 
representational power of object-centered programming with no 
penalty in execution speed compared to ordinary Lisp. 

4. Related Work 
The use of messages and computed properties in GLISP is 

related to the use of messages in object-centered programming 
(OCP) systems [I] [3] [4]; GLISP contains a system for 
interpretation of run-time messages to objects and thus supports 
OCP. However, OCP has several inherent problems. 

The first problem is that object-centered programs tend to be 
slow compared to programs written in the underlying language 
(typically 20 to 50 times slower). One reason for this slowness is 
that messages must be interpreted at run time; when the response 
to a message is a small amount of code (e.g., for data access), this 
overhead becomes a large fraction of execution time. Even with 
special hardware support, the overhead of message lookup is a 
significant cost. 

A potentially more serious performance problem is caused bv 
the referential opacity of OCP. Most program optimization; 
require some global knowledge about the program; that is, most 
optimizations are of the form “If both operations A and B are to be 
performed, there is a way to do A and B together that is cheaper 
than doing each separately.” For example, if one wishes to make 
a list of the female “A” students in a class, it may be cheaper to 
compute the set of students who are both female and “A” 
students than to compute the two sets separately and intersect 
them. In an OCP system in which the female students and “A” 
students were found by sending messages, however, it would not 
be possible to perform this optimization because it would not be 
known how the two sets were computed. 
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Another problem caused by referential opacity is that error 
checking must be deferred to run time. If the response to a 
message is not looked up until run time, it will not be known until 
then whether the object can in fact respond to that message, 
whether the result objects it returns can respond to the messages 
that will be sent to them, and so forth; this complicates debugging. 
Borning and lngalls [2] have reported an experimental compile- 
time type-checking system for Smalltalk. 

By looking up message responses at compile time, GLISP 
eliminates the overhead of run-time lookup for most messages. 
Because messages can be expanded as in-line code, 
optimizations that span multiple messages (as in the example 
above) can be performed by the compiler. When object types are 
known, error checking is performed statically at compile time 
rather than dynamically. 

5. Program Reusability 
Much of the work in traditional programming consists of 

specializing standard algorithms for particular uses. The 
specializations performed by the programmer include instantiation 
of algorithms for particular data representations, combination of 
separate algorithms into a composite algorithm, and optimization 
based on knowledge of the conditions of use of the algorithm. In 
this section, compiler features that are necessary for compilers to 
perform such specializations are discussed; these features make it 
possible for standard algorithms to be written as generic programs 
and reused for different applications. 

5.1. Data-type Independence 
Most programming languages require that programs be written 

in terms of specific data types. Lisp is particularly bad in this 
regard because data access is performed by function calls; thus, 
dependencies on particular storage structures are built into 
program code. In GLISP, when a procedure is inherited as the 
response to a message or property reference, the static types of 

the actual arguments are substituted for the types of the formal 
arguments of the procedure; the inherited procedure can be 
specialized for the actual argument types either by open 
compilation (analogous to macro expansion) within the 
referencing program or by specializing it as a closed procedure. 
The GLISP object descriptions provide a level of indirection 
between the names of properties and the representation of the 
properties. Since substructures and computed properties are 
referenced in the same way in GLISP program code, a procedure 
can reference a property that is stored in one use and computed 
in another. 

Additional compiler features are needed to achieve data- 
representation independence. Programs often write data as well 
as reading it. GLISP can “invert” an algebraic expression that 
ultimately involves only a single occurrence of stored data; this 
allows a program to “store” into a computed property so long as 
that property has a single “equivalent” property that is stored. For 
example, given a CIRCLE object whose RADIUS is stored, it is 
legitimate to assign a value to the AREA of the CIRCLE; the 
compiler produces code to store a RADIUS value corresponding 
to the specified AREA value. 

Programs also create new data objects. Vector addition, for 
example, involves the creation of a new vector whose elements 
are formed by adding the components of the input vectors. To 
create a new vector that is like the input vectors, it is necessary to 
be able to specify a type that is the same as the type of another 
datum. GLISP provides a TYPEOF operator, which returns the 

compile-time type of the expression that is its argument. Thus, a 
generic vector-addition function can be used for different kinds of 
vectors: 

(VECTORPLUS (GLAMBDA (U,V:VECTOR) 
(A (TYPEOF U) WITH X q  U:X + V:X 

Y = U:Y + V:Y))) 

A particular kind of vector, a FVECTOR, can be described as 
follows: 

(FVECTOR (CONS (Y BOOLEAN) (X STRING)) 
SUPERS (VECTOR)) 

Given an expression “F+G”, where F and G are FVECTORs, the 
compiler will produce the code: 

(CONS (OR (CAR F) (CAR G)) 
(CONCAT (CDR F) (CDR G))) 

The operator “+” is defined for VECTORS as the function 
VECTORPLUS; this definition is inherited by FVECTORs, so that 
the function VECTORPLUS is open-compiled with the type 
FVECTOR for its arguments. VECTORPLUS produces a new 
object whose type is the same as the type of its first argument; the 
“t” operators within VECTORPLUS are interpreted according to 
the types of the components of the FVECTOR type, so that the 
BOOLEAN components are ORed and the STRING components 
are concatenated. 

5.2. Multiple Views of Data 
Real program data are often not of a single, simple type but may 

be viewed in several different ways. GLISP provides mechanisms 
whereby features of objects may be inherited from multiple views. 
The first such mechanism is inheritance from multiple 
superclasses. When a property is inherited from a superclass, it is 
compiled recursively in the context of the original object; the 
references made by the definition of the inherited property may 
then involve inheritance from different superclasses. This feature 
allows the user to have a number of shallow inheritance 
hierarchies rather than one deep hierarchy; the shallow 
hierarchies tend to be “cleaner” because each deals with only a 
limited facet of behavior. 

In some cases, it is desirable to view an object as an object of 
another type without actually materializing the data involved in the 
view type. GLISP provides a virtual view mechanism that permits 
such views. For example, in the GEV editor, an item of the 
displayed data is viewed as containing areas on the display screen 
(the area around the item’s name and the area around its 
displayed value). Using virtual views of the item, these areas are 
defined in terms of computed quantities (e.g., the number of 
characters in the item’s name determines the width of the name 
area); the procedure that tests whether a point is inside an area 
can then be inherited to test whether the mouse pointer is 
selecting the item. The code that is produced by the compiler is 
written in terms of the data that is actually stored, so that an 
“area” datum does not need to be constructed in order to use the 
inherited generic procedure. 

5.3. Combination of Algorithms 
Real programs are typically composed of a number of smaller 

component algorithms that are combined and specialized for their 
particular use. For example, a number of iterative programs can 
be viewed as being composed of the following components: 



Iterator: Collection + Element* 

Filter: Element + Boolean 

Viewer: Element + View 

Collector: 

Initialize: nil + Aggregate 

Accumulate: Aggregate X View * Aggregate 

Report: Aggregate -+ Result 

The lterator enumerates the elements of the collection in temporal 
order; the Filter selects the elements to be processed; the Viewer 
views each element in the desired way; and the Collector collects 
the views of the element into some aggregate. For example, 
finding the average monthly salary of plumbers in a company 
might involve enumerating the employees of the company, 
selecting only the plumbers, viewing an employee record as 
“monthly salary”, and collecting the monthly salary data for the 
average. 

GLISP allows the operation of such an iterative program to be 
expressed as a single generic function; this function can then be 
instantiated for a given set of component functions to produce a 
single Lisp function that performs the desired task. Instantiation 
of generic functions is somewhat similar to instantiation of 
program plans in the Programmer’s Apprentice [8]; in GLISP, 
there is a single language for both generic and concrete 
programs, and instantiation occurs by recursive expansion of 
code at compile time. Such an approach allows programs to be 
constructed very quickly. The lterator for a collection is 
determined by the type of the collection, and the element type is 
likewise determined. A library of standard Collectors (average, 
sum, maximum, etc.) is easily assembled; each Collector 
constrains the type of View that it can take as input. The only 
remaining items necessary are the Filter and Viewer; these can 
easily be acquired by menu selection using knowledge of the 
element type (as is done in GEV, described below). 

6. Compiler Knowledge 
The GLISP compiler runs within a variety of Lisp systems; it 

embodies knowledge about the underlying Lisp system that helps 
make GLISP programs transportable. Implementors of Lisp 
systems have unfortunately introduced many variations in the 
names, syntax, and semantics of even the basic system functions 
of Lisp. GLISP performs the mapping from operations on various 
data types into the corresponding function calls in the host Lisp 
system; it also defines basic data types with GLISP object 
descriptions, so that standard properties of these data types are 
available in a dialect-independent manner. The compiler performs 
type inference for Lisp system functions, so that the types of their 
results will be known without requiring explicit declarations. 

GLISP encourages the development of abstract data-type 
packages that mediate the interaction between user programs and 
idiosyncratic system features. For example, the GEV system uses 
Window/Menu data-type packages that allow the same code to 
run on Lisp machines with bitmap displays and on time-sharing 
systems with ordinary terminals. 

The compiler performs symbolic simplification of the Lisp code 
it generates; this improves efficiency and allows the user to use 
the representational power of GLISP without paying a run-time 
penalty. Particular attention is paid to optimization of set 
operations and loops over sets to avoid unnecessary construction 
of intermediate sets. Symbolic simplification also provides 
conditional compilation in a clean form. The user may declare to 
the compiler that certain data have values that are considered to 
be compile-time constants. Compile-time execution of operations 
on constants can produce constant values for conditional tests; 
symbolic simplification of the resulting code causes unreachable 
program code to vanish. For large programs with many options, 
such as symbolic algebra packages, elimination of code for 
unwanted options can provide substantial savings in program 
space and execution time without changes to the original source 
code. 

7. GEV: Knowledge-based Data 
Inspection 

GEV (for GLISP Edit Value) is a program, written in GLISP, that 
interprets Lisp data according to its GLISP data-type descriptions 
and displays it in readable form in a window. The display contains 
three sections: the edit path that led to the current object, the data 
that are actually stored in the object, and computed properties of 
the object. Figure 7-1 shows an example. The user can “zoom 
in” on an item of interest, which will be displayed in greater detail 
according to its type description; this allows the user to browse 
quickly through a semantic network of related data. A data-type 
description can specify that certain computed properties should 

-lPP - HPP 
ZUNTRACTS - (Ad’+anced A, I , krchit- , , , > 
v4 - GLISP 
-EADER .-’ GSN 

B IRTHDATE - July 21, 1947 
P H 0 N E - (415) 497-4532 

QUIT 
PROP 

POP 

ADJ 

EDIT 
ISA 

PROGRAM 
MSG 

Figure 7- 1: A GEV window display. 
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be displayed automatically whenever an object of that type is 
displayed; other computed properties can be requested by menu 
selection. The SHORTVALUE property of an object is used to 
display the object when “seen from afar”; for example, the 
SHORTVALUE for a PERSON object could be defined to be the 
person’s initials. A tilde ( “a”) indicates that a SHORTVALUE is 
displayed rather than the actual Lisp value. 

GEV allows the user to write looping programs interactively by 
menu selection. When the “program” command is selected, GEV 
first displays a menu of operations that can be performed. Next, a 
menu of possible sets over which the program could iterate is 
displayed. Finally, successive menus are presented to allow the 
desired property of the object to be selected; this process 
terminates when the user gives a “done” command or when a 
terminal value is reached. From these selections, a GLISP 
program to perform the specified operations is written, compiled, 
and run; this process normally takes less than a second. The 
result is printed and added to the GEV window; Figure 
7-2 illustrates this process. The “program” feature allows the user 
to write significant programs rapidly without knowing the format of 
lhe data and without knowing any programming language. Since 
GEV interprets data according to GLISP object descriptions, it can 
be used for inspection of any Lisp data for which such 
descriptions are supplied. 

HPP - HPP 

TITLE - H eu r i st i c P r r~ cj r $3 ro ra i rl g P r oj - 
ABBREVIATI- HPP 
~DMIMISTRA- = TGR 
I;ilNTRAI:TS -. ( Al:lvanced A , I , Archi t- , , , ) 
EXECLIT IVES - (EAF L~F;I: 63~ TCR) 

BUUGET G59307.2 
&!IYERAGE LB- 540861.23 

AVERAGE BUDGET LABOR OF HPP CONTRACTS = 54000.28 

Figure 7-2: Menu programming in GEV. 

8. Summary 
GLISP is an integrated programming system that uses 

declarative knowledge of the implementations of objects t0 
generate code for operations on the objects. Recursive 
compilation relative to object types provides code efficiency 
comparable to ordinary Lisp with the representational power of 
object-centered programming. The GEV system interprets GLlSP 
object descriptions to provide intelligent inspection and editing of 
data and menu-driven interactive program generation. 

GLISP and GEV are fully implemented and are being used by a 
number of university and industrial research labs for 
implementation of Al systems. 

9. How to Obtain GLISP 
GLISP and GEV are avai!able without charge over the 

ARPANET. GLISP files are stored in the directory <GLISP> on the 
host computer SUMEX-AIM.3 At the time of writing, GLISP is 
available for lnterlisp, Maclisp, Franz Lisp, UCI Lisp, ELISP, and 
Portable Standard Lisp; Zetalisp and Common Lisp are planned. 
The manual is available as GLUSER. MSS (Scribe source form) and 
GLIJSER. LPT, and it tells how to obtain the files for the different 
Lisp dialects. The file GLISP. NEWS contains news on recent 
developments. 

3 
The login “anonymous guest” may be useJ for FTP transfers. 
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