
An Interactive Computer-based Tutor for LISP* 

Robert G. Farrell 
John R. Anderson 

Brian J. Reiser 
Advanced Computer Tutoring Project 

Department of Psychology, CMU 

Pittsburgh, PA 15273 USA 

recursion, and iteration. 
of this instruction. 

We have currently implemented 18 hours 

Abstract 

‘This paper describes an intelligent computer-based tutor for 
LISP tha? incorporates some of the Ingredients of good private 
tutoring. The tutor consists of a problem-solver that generates 
steps toward a solution and an advisor that compares the 
problem-solver’s steps to the student’s steps. Our system can 
interact with students in a number of different problem spaces for 
algorithm design and coding. The tutor reduces memory demands 
by displaying relevant contextual information and directs problem- 
solving by immediately intervening when a student generates an 
unacceptable partial answer. Initial experiments indicate that our 
tutor is approximately twice as effective as classroom instruction. 

Our tutor works through the problems with the student 
interactively. It consists of a problem-solver and an advisor. We 
first describe how the problem-solver helps to interactively model 
students as they learn to program. We then describe the advisor 
and its tutoring strategy. Finally. we discuss three features of the 
tutor which we feel contribute to its effectiveness: 

1. Use of different problem spaces to cover a broad 
range of programming behavior 

2. Use of the graphic reminders to reduce the amount of 
information that a student must remember while 
programming 

Int reduction 

Students have extreme difficulty learning their first 
programming language. This difficulty is magnified by the 
learning environment - a cold terminal, an unforgiving textbook, 
and an Inaccessible teacher. The student may be entirely lost until 
an experienced student or teaching assistant volunteers their 
expertise. We estimate that private instruction is between two and 
four times as effective as classroom instruction. Students taught 
by private tutors learn both more quickly and more deeply than 
students in classrooms (McKendree, Reiser & Anderson, 1984). 
Our goal is to capture private tutors’ expertise by constructing 
intelligent computer-based tutors that can interactively help 
students solve problems. We also want to test our theory of how 
people learn complex skills (Anderson, 1983) and more 
specifically how people learn to program (Anderson, Farrell, & 
Sauers, 1984). 

A good human tutor can follow a student’s problem solution, 
giving suggestions when the student makes an incorrect or non- 
optimal step or when the student is lost. Human tutors can give 
this type of tutorial assistance because they infer a model of the 
student’s knowledge. We follow students’ problem-solving 
through a similar process, called interactive studs: modelling. 
Our system continually monitors the student’s progress and tries 
to assess the knowledge that the student rnust have in order to 
produce the given behavior. This knowledge is represented in the 
form of GRAPES production rules and goals. In addition, the tutor 
has a set of common “buggy” rules (Brown & Burton, 1978) and 
“buggy” goals that it can recognize. Interactive student modelling 
is achieved by inferring which rules and goals in the tutor’s 
catalog could possibly produce the observed student behavior. 
Because of our detailed model, our system can convey the 
heuristic knowledge needed to solve a wide range of beginning 

3. Use of immediate feedback to direct problem solving 
and reduce learning time. 

Interactive Student Modelling 

In previous work (Anderson, Farrell, & Sauers, 1984; 
Anderson, Pirolli, & Farrell; in press) we outlined a detailed theory 
of how students learn to program in LISP. We used GRAPES 
(Sauers & Farrell, 1982), a Goal-Restricted Production System, to 
model students at many different levels of performance. Our 
current work incorporates these models into a tutoring system that 
can interactively assess a student’s knowledge during problem- 
solving. 

In this paper, we describe an initial version of a computer- 
based LISP tutor that incorporates some of the ingredients of 
good private tutoring (Anderson, Boyle, Farrell, and Reiser, 1984). 
Students learn LISP with our tutor by first reading some short 
instructional material and then working through a series of 
problems. We plan to use our tutor to teach a 30 hour course in 
LISP which covers the basic structures and functions of LISP, 
function definition, conditionals and predicates, helping functions, 

*his research was supported by grants NOOO14-61-C-0335 

and N00014-84-K-0064 from the Office of Naval Research 
programming problems. 

106 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



The Tutoring System Control Structure Using Different Problem Spaces 

The LISP tutoring system consists of two major 
components: the problem-solver and the advisor. The problem 
solver consists of the GRAPES interpreter, novice model rules, 
and buggy or “mal” rules (Sleeman, 1982). The advisor is a 
production system interpreter much like GRAPES; it also provides 
a tutorial strategy and many facilities for creating tutoring 
sessions including graphics, text generation, and parsing. The 
tutor interpreter executes tutoring rules (t-rules) (Clancey, 1982) 
which contain patterns for creating explanations and menu 
entries. 

Producing a program in any language consists of a medley 
of algorithm design, coding, and debugging (Brooks, 1977). A 
good human tutor can converse with the student in a variety of 
problem spaces. In this section we describe how our tutor 
communicates in the problem-spaces involved in algorithm 
design and coding. We are not concerned with debugging since 
the tutor never allows the student to produce a final solution that 
is incorrect. Our tutor currently utilizes three problem spaces for 
coding and algorithm design: a coding space, a means-ends 
analysis space, and a problem decomposition space. 

A problem input to the tutor consists of a small data base of The LISP Coding Problem Space 
facts and an initial goal. The problem-solver tries to decompose 
the initial goal into easier subgoals, using the novice model rules The LISP coding problem space is used in normal problem- 
and the facts in the data base. The student also tries to solving. The student enters LISP code in a syntax-based editor. 
decompose the goal using a goal description generated by the The hierarchical structure of the solution is represented by 
tutor and the facts that appeared in the instruction booklet given symbols to be expanded. The student’s plan for the solution is 
before each problem session. represented by the structure and name of the symbols. For 

example: 
The advisor matches the problem-solver’s next step against (defun subset (list1 llst2) 

the student’s next step and categorizes the student’s response. (cond <TERMINATING-CASE> 
Since there are many ways to solve any interesting programming <RECURSIVE-CASE> 
problem, the problem-solver must generate a list of possible 1 
correct and incorrect actions and the advisor matches all of them 1 
against the student’s answer. If the student generates a correct illustrates that the student is using CDR recursion to solve the 
step toward the solution, the advisor directs the problem-solver to subset problem. The student can choose to code either the 
execute the rule corresponding to the student’s step. If the terminating case or recursive case first. 
student displays a bug, the system generates text explaining why 
the answer was incorrect. If the student fails to produce a correct CDR recursion is a programming plan(Soloway, 1980; Rich 
answer after a number of trials, the system provides the best & Shrobe, 1978) well known to expert LISP programmers but 
answer and generates an explanation of why the answer was the difficult for novices to induce on their own. Part of the utility of a 
best choice. programming tutor is to introduce powerful programming 

techniques like CDR recursion during problem-solving 

Interacting with the System (Anderson, Boyle, Farrell, and Reiser, 1984). 

The tutor’s top window displays explanations, hints, and 
querys, the “code” window provides a structured editing 
environment for entering LISP code, and the bottom window 
displays the problem statement and any planning information or 
reminders. The tutor brings the student’s attention to new 
information by flashing the appropriate window. 

The tutor interprets each keystroke typed by the student 
and gives immediate feedback about correct and incorrect steps. 
At any time, the student can press a clarify key to get additional 
help about the problem or an info key to access a tree-structured 
help facility. 

When a student types a function name, place holders 
appear for the function arguments. The structured editor allows 
the student to code these arguments in any order. A spelling 
corrector and parentheses checker help the student enter code 
in a graceful manner, 

The Means-Ends Analysis Problem Space 

The means-ends analysis (Newell & Simon, 1972) space is 
used when the student is having trouble producing code for a 
problem that can be characterized by a set of successive 
operations on an example. In this problem space, the student 
can develop a solution by sclpplying LISP operators that reduce 
differences between the current state and the goal state in the 
example. 

Figure 1 illustrates a sample interaction with the tutor 
during means-ends analysis. The student is trying to produce 
some code to get all but the last element of a list. Menus list both 
correct and incorrect ways of performing an operation. The menu 
entries are generated from patterns associated with both good 
and buggy rules in the novice model. Once the student picks a 
correct entry, he or she must provide a function that will perform 
the operation described. The tutor separately assesses the 
student’s knowledge of what operations must be performed and 
their ability to irnplement those operations in LISP. 

107 



Problem Decomposition 

The problem decomposition space is used when the 
student is having trouble producing code for a problem that can 
be easily decomposed into pieces. The conceptual pieces of the 
problem may not correspond exactly to the form of the code. The 
system displays a menu of possible decompositions of the 
problem and the student must pick the correct answer. The tutor 
makes sure that the student actually implements their algorithm 
when finally producing the LISP code. Again, the tutor separately 
assesses the students’ ability to derive the algorithm from their 
ability to implement the algorithm. 

Reducing Memory Demands 

Solving programming problems requires holding a great 
deal of requisite information in a mental working memory. This 
requisite information consists of unsolved goals, partial products 
of calculations, and descriptions of LISP functions. We estimate 
that half of students’ time spent solving programming problems is 
spent recovering from working memory failures (Anderson, 
Farrell, & Sauers, 1984). Anderson and Jeffries (1984) 
demonstrated that working memory load in one part of a task 
causes students to err on other parts of the task, even if those 
parts are logically unrelated. Therefore, it is extremely important 
that tutors keep working memory load to a minimum. 

One way that the tutor keeps working memory load low is 
by displaying descriptions of the student’s goals on the terminal 
screen. The student’s goals are represented in GRAPES and the 
tutoring system uses this representation to generate english 
descriptions. The tutor displays the overall goal and the current 
goal as well as the goals along the shortest path between these 
two goals. For example, if the student is solving for the second 
argument to lessp in the following code: 

(defun lessoreqp (x y) 
(or (equal x y) 

(lessp x A)) 
then the system would display the following goal context: 

Write a function called lessoreqp. 
Test if x is less than or equal to y. 
Test if x Is less than y. 
Write code for the second argument to lessp, 

Students solving LISP problems also have trouble 
remembering partial results. In our LISP tutor, any calculations 
that the student performs on examples are displayed in a window 
for later reference. In addition, the partially-correct code is 
always displayed on the screen. 

Immediate Feedback 

Novices spend a large amount of time exploring incorrect 
solutions that result in little learning. A good human tutor directs 
the student toward correct answers, while still letting the student 
learn from mistakes. Lewis and Anderson (1984) have shown that 
students learn more slowly when they are given delayed feedback 
about their erroneous applications of operators. In our studies of 

LlSP learning (Anderson, Farrell, & Sauers, 1982), our subjects 
spent more than half of their time exploring wrong paths or 
recovering from erroneous steps. 

Our tutor monitors the student with every keystroke, giving 
immediate feedback when it detects an error. Since the student 
never strays more than one step off of a correct solution path, our 
tutor can model the student in great detail. When the student 
makes an error, an explanation is generated from a pattern stored 
with the buggy rule and a query is generated from the student’s 
current goal, directing the student toward a correct answer. 

Our tutor cannot generate immediate feedback when the 
student’s behavior does not disambiguate which goal he or she is 
pursuing. The tutor is silent until it can disambiguate the goal. If 
the student is generating an especially ambiguous piece of code, 
the tutor may display a menu of goals and ask the student to 
decide among them. Once the student’s goal is known, the tutor 
can then intervene with tutorial assistance. 

Conclusion 

Our computer-based tutor for LISP incorporates some 
abilities of good human tutors. Our system can interact with 
students in a number of different problem spaces for algorithm 
design and coding. The tutor reduces memory demands by 
displaying relevant contextual information and directs problem- 
solving by immediately intervening when a student generates an 
unacceptable partial answer. Our system interactively models the 
student by updating a set of production rules. These production 
rules also serve as a novice model that follows the student as he 
or she solves the problem. We performed an evaluation study on 
our tutor (McKendree, Reiser, & Anderson, 1984) which confirms 
our belief that it is about twice as effective as classroom 
instruction. We plan to further test the tutor’s pedagogical 
effectiveness by automating a 30 hour LISP course taught in the 
fall of 1984. 

References 

Anderson, JR. The Architecture of Cognition. Cambridge, MA: 
Harvard University Press 1983. 

Anderson, J.R., Farrell, R., and Sauers, R. Learning to program in 
LISP. Cognitive Science, 1984, , . in press. 

Anderson, JR., Pirolli, P. and Farrell, R. Learning recursive 
programming. In forthcoming book edited by Chi, Farr, & 
Glaser. 

Anderson, J.R., Boyle, C. F., Farrell, R.G., and Reiser, B.J. 
Cognitive Principles in the Design of Computer Tutors. 
Paper submitted to the CACM. 

Brooks, R.E. Towards a theory of the cognitive processes in 
computer programming. lnternafional Journal ol Man- 

Machine St!ldif?S, 1977, 9, 737-751. 

Brown, J.S. and Burton, R.R. Diagnostic models for procedural 
bugs in basic mathematical skills. Cognitive Science, 1978, 



2,155192. 

Clancey, W. J. Tutoring rules for guiding a case method dialogue. 
In D. Sleeman and J.S. Brown (Ed.%), intelligent Tutoring 

Systems, New York: Academic Press, 1982. 

Lewis, M. and Anderson, J.R. The role of feedback 
discriminating problem-solving operators. Submitted. 

in 

McKendree, J., Reiser, B.J., and Anderson, J.R. Tutorial goals 
and strategies in the instruction of programming skills. 
Paper submitted to the 1984 conference of the Cognitive 
Science Society. 

Newell, A. and Simon, H. Human Problem Solving. Englewood 
Cliffs, N.J.: Prentice-Hall 1972. 

Rich, C. and Shrobe, H. Initial report of a LISP programmers’ 
apprentice. IEEE Trans. Soft. Eng., 1978, , 456-466. 

Sauers, R., and Farrell, R. GRAPES user’s manual. ONR 
Technical Report ONR-82-3, Carnegie-Mellon University, 
1982. 

Sleeman, D. Assessing aspects of competence in basic algebra. 
In D. Sleeman and J.S. Brown (Eds.), lntelligcnt Tutoring 
Systems, New York: Academic Press, 1982. 

Sleeman, D. & Brown, J.S. (Eds.). Intelligent 
New York: Academic Press 1982. 

Tutoring Systems. 

Soloway, E.M. From problems to programs via plans: The context 
and structure of knowledge for introductory LISP 
programming. COINS Technical Report 80-19, University of 
Massachusetts at Amherst, 1980. 

Figure 1 

What can we do to change (a b c d) into (a b c)? 

PRESS: 
1 
2 

3 
4 

IF YOU WANTTO: 
removed from (a b c d) 
get each element and gather 
them into a list 
have the tutor choose 
get information about LISP 

Menu choice: 1 

Very Good. 

What function 

return the result? 

Will remove just 7 element from a list and 

Function name: I don’t know 

The function CDR will remove an element from a list. You 

will have to apply CDR to (a b c d) to remove d. Remember that in 
this case, d is the last element of the argument list. So, in order to 
apply CDR, you have to get d in the first position of the list. 

The LISP Tutor Teaching with Means-Ends Analysis 


