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Abstract 

PROUST is a system which identifies the non-syntactic bugs in 
novices’ programs and provides novices with help as to the 
misconceptions under which they were laboring that caused the 
bugs. In this paper we will discuss the methods which PROUST 
uses to identify and diagnose non-syntactic bugs. Key in this 
enterprise is PROUST's ability to cope with the significant 

variability exhibited by novices’ programs: novice programs are 
designed and implemented in a variety of different ways, and 
usually have numerous bugs. We argue that diagnostic 
techniques that attempt to reason from faulty behavior to bugs 
are not effective in the face of such variability. Rather, 
PROUST'S approach is to construct a causal model of the 
programmer’s intentions and their realization (or non- 

realization) in the code. This model serves as a framework for 
bug recognition, and allows PROUST to reason about the 
consequences of the programmer’s decisions in order to 

determine where errors were committed and why. 

1. Introduction 
We have been constructing a system, PROUST, that can 

identify the non-syntactic bugs in novice’s programs and 
provide students with help in resolving the misconceptions that 
caused the bugs. In this paper we will discuss the principal 
techniques PROUST uses to identify and explain non-syntactic 
bugs. 

PROUST's analysis techniques were designed to cope with the 
key feature of our domain: the high degree of variability in 

novice programs. Novice programmers often have 

misconceptions about programming language syntax and 
semantics, resulting in large numbers of seemingly bizarre bugs. 
They also lack the expert’s knowledge about how to analyze 
program specifications and design and implement algorithms. 
The result is that the intentions underlying novice programs, 
and the methods used for realizing these intentions, tend to 
vary greatly. We present an approach to error diagnosis which 
integrates identifying program errors with discovering the 
programmer’s intentions. In this view, bug diagnosis involves 
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reasoning in the space of intentions as well as in the space of 
program behavior. This contrasts with conventional fault 
diagnosis methods which do not take intentions into account, or 
which fail to distinguish between intended program behavior 
and actual program behavior. The intentional model that 
PROUST constructs provides a framework for testing bug 
hypotheses, and for comparing alternative hypotheses using 
differential analysis. Causal reasoning about the programmer’s 
intentions makes it possible to determine which of the 
programmer’s intentions is faulty and why. 

In what follows, we first present arguments in support of the 
intention-based approach, followed by a more detailed 
description of PROUST'S approach to error diagnosis. Results of 
empirical tests of PROUST with novice programmers will then 
be presented. 

2. Three Approaches to Diagnosis 

We can identify at least three types of diagnostic reasoning 
techniques which might be applicable to bug diagnosis: 
classificatory reasoning about symptoms, causal reasoning 
about behavior;, and intention modeling. 

l In classificatory reasoning about symptoms, the 
diagnostician knows what classes of symptoms 
different classes of faults exhibit. The diagnostician 
extracts important facts from the findings, uses 
t,hem to suggest types of faults which might explain 
the findings, and then does further analysis in order 
to refine the diagnosis. The diagnostician’s 
knowledge about the domain can thus be boiled 
down to a collection of classificatory rules relating 
symptoms to disease classes. Medic al diagnosis 
systems tend to depend particularly heavily upon 
classificatory reasoning [15, 31. Classificatory 
approaches to program debugging have also been 
attempted [6]. 

0 Causal reasoning about behavior uses an 
understanding of the structure and function of a 
system and its components to identify faults which 
are responsible for faulty behavior (11, 4, 5, 141. In 
program debugging the causal reasoning usually 
takes the form of analysis of control and data flow. 
Causal reasoning is useful for diagnosing errors in 
domains involving a degree of complexity and 
variability, where empirical associations between 
faults and symptoms are unavailable or 
inconclusive. 

l Intention modeling is necessary, however, when the 
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programmer’s intentions are in odds with what the 
programming problem requires. Here, the 
programmer’s view of the problem must be 
determined and then tied to the manner in which it 
has/has not been realized. Knowledge of intentions 
assists the diagnostic process in several ways. 
Predict,ions derived from the intention model enable 
top-down understanding of buggy code, so that 
diagnosis is not thrown off when bugs obscure the 
code’s intended behavior. The right fix for each 
bug can be found (81. Finally, causal reasoning 
about the implications of the implementor’s 
intentions makes it possible to test bug hypotheses 
by looking at other parts of the program and 
verifying the implications of bug hypotheses. 

We will argue that neither classificatory reasoning about 
symptoms nor causal reasoning about behavior is adequate for 
fault diagnosis in novice programs. Rather, accurate bug 
diagnosis depends upon intention modeling. 

3. Intention-Based Diagnosis vs. Qther 
Approaches: An Example 

We will first walk through an example of bug diagnosis in 
order to contrast the intention-based approach to the other 
diagnostic approaches. Further details of how intention-based 
diagnosis works will be provided in subsequent sections. 

Figure 1 shows a programming problem, to compute the 
average of a series of inputs, and an actual buggy student 
solution. Instead of reading a series of inputs and averaging 
them, this program reads a single number New, and outputs the 

average of all the values between New and 99999, i.e., 
(Neu+99999)/2. We believe that the error in this program is 
that the student wrote New : = Neu+l at line 12 instead of 
Read (New), as indicated by PROUST's output, which is shown in 
the figure. This bug is probably the result of a programming 
misconception: novices sometimes overgeneralize the counter 
increment statement and use it as a general mechani. m for 
getting the next value. 

A symptom classification approach would make use of 
general heuristic rules for relating symptoms to causes. 
Example rules might be the following: 

l If a program terminates before it has read enough 
input, it may have an input loop with a faulty exit 
test. 

l If a program outputs a value which is too large, 
check the line that computes the value and make 
sure that it is correct. 

Neither of these rules addresses the true cause of the bug; 
instead of focusing on the way new values are generated, one 
rule focuses on the exit test, and the other focuses on the 
average computation. In general, many different program 
faults can result in the same symptoms, so knowledge of the 
symptoms alone is insufficient for distinguishing faults. 

The principal diagnostic methods which employ causal 
analysis of behavior are symbolic execution, canonicalization, 
and troubleshooting. If we followed a symbolic execution 
paradigm, as in PUDSY [lo], we would go through the following 
sequence of steps: 1) use causal knowledge of program 
semantics to derive a formula describing the output of the 

Problem: Read in numbers, taking their sum, until the 
number 99999 is seen. Report the average. Do not include 
the final 99999 in the average. 

1 PROGRAM Average( input, output 1; 

2 VAR Sum. Count, Neu: INTEGER; 

3 Avg: REAL; 
4 BEGIN 
5 sum := 0; 
6 Count := 0; 
7 Read( Neu ) ; 

8 YHILE Neuo99999 DO 

9 BEGIN 

10 Sum := Sum+Ner; 
11 Count := Count*l; 

12 Neu := Neu+l 

13 END; 

14 Avg := Sum/Count; 

15 Uriteln( ‘The average is ‘, avg 1; 

16 END; 

PROUST output: 

It appears that you were trying to use line 12 to read the 
next input value. Incrementing NEW will not cause the next 
value to be read in. You need to use a READ statement 
here, such as you use in line 7. 

Figure 1: Example of analysis of a buggy program 

program, 2) compare it against a description of what the 
program is supposed to do, in order to identify errors, and then 
3) trace the erroneous results back to the code which generated 
them. In the example in Figure 1, we would determine that the 
program computes New/2+49999.5, compare this against what 
it should compute, namely (CNew)/count(New), then examine 
the parts of the program which compute the erroneous parts of 
the formula. The main problem here is that it is hard to 
compare these two expressions and determine which parts are 
wrong. This requires knowledge of which components of the 
first expression correspond to which components of the second 
expression. Expression components correspond only if their 
underlying intentions correspond. Thus some knowledge of the 
programmer’s intentions is necessary in order for the symbolic 
execution approach to generate reliable results. 

Canonicalization tee hniques [I] translate the student’s 
program into a canonical dataflow representation and compare 
it against an idenlized correct program model. Again the aim is 
to determine intentions by comparison. Such comparisons are 
easier to make, but only if the student’s intended algorithm is 
the same as the model algorithm. Non-trivial programming 
problems can be solved in any of a number of ways. Thus an 
approach which compares against a single model solution 
cannot cope with the variability inherent in programming. 

Troubleshooting approaches suffer from similar difficulties as 
symbolic execution. In program troubleshooting, the user is 
expected to describe the specific symptoms of t,he fault, rather 
than give a description of the intended output. The system 
then traces the flow of information in the program to determine 
what might have caused the symptoms. In this example the 
symptom is that the program computes New/2+49999.5. We 
have already seen in the case of symbolic execution that this 
information alone is not sufficient to pinpoint the bug. 

Because of 
behavior pose 

the problems 
in debugging, 

that analysis of symptoms 
a number of implementors of 

and 

bug 

163 



diagnosis systems have augmented these techniques with 

recognizers for stereotypic programming plans [13, 12, 161. 
This is an attempt at determining the intentions underlying the 
code; by recognizing a plan we can infer the intended function 
of the code which realizes the plan, which in turn helps in 
localizing bugs. Unfortunately plan recognition by itself is not 
adequate for inferring intentions. First, bugs can lead to plan 
recognition confusions. In the example, the loop looks like a 
counter-controlled iteration; diagnosing the bug requires the 
realization that the loop was not intended to be counter 
controlled. Second, bugs may arise not in plans themselves, but 
in the way that they interact or in the manner that the 
programmer has employed them. To a certain extent one can 
determine the interactions of plans in a program by analyzing 
the flow of information among the plans. However, we will 
consider examples in the next section where the intended plan 
interactions and the actual plan interactions are different. In 
such cases a better understanding of the programmer’s 
intentions is needed than what plan recognition alone can 
provide. 

In contrast to these other approaches, the intention-based 
approach attempts to construct a coherent model of what the 
programmer’s intentions were and how they were realized in 
the program. Instead of simply listing the plans which occur in 
the program, one must build a goal structure for the program; 
i.e., one must determine what the programmer’s goals were, 
and how he/she went about realizing those goals, using plans or 
some other means. This is accomplished in PROUST as fo!!ows. 
PROUST is given an informal description of what the program is 
supposed to do. It then makes use of a knowledge base of 
relations between goals and plans, on one hand, and rules about 

how goals combine and interact, on the other hand, to suggest 
possible goal structures for the program. The goal structure 
that fits the best suggests that the Read at line 7 satisfies the 
goal of initializing the YHILE loop; the loop is organized to 
process each value and then read the next value at the bottom 
of the loop, in a process-n-read-nextn fashion. Lines 5 and 10 
are responsible for totaling the inputs, lines 6 and 11 are 
responsible for counting them, and line 14 computes the 
average. Given this model, there is no role for the New := 
New+1 to serve other than as a means to read the next value 
inside the loop. This leads directly to the conclusion that the 
student has overgeneralized the use of counter increment 
statements. 

4. Examples of Intention-Based Diagnosis 
Program analysis in PROUST involves a combination of 

shallow reasoning for recognizing plans and bugs, and causal 
reasoning about intentions. The relative importance of each 
kind of reasoning depends upon the complexity of the 
program’s goal structure and the extent to which PROUST must 
analyze the implications of the programmer’s design decisions 
and misconceptions to determine what bugs they cause. We 
will show how PROUST reasons about programs and bugs by 
way of a series of examples. The first program example has no 
bugs, and has a simple goal structure; accordingly, the 
reasoning processes involved in understanding it are primarily 
shallow. The next example has bugs, and the goal structure is 
somewhat more complex; although the bugs are discovered via 
shallow recognition tactics, a greater amount of reasoning 
about intentions is required to construct the right goal structure 
and test the bug hypothesis. In the third example the 

programmer’s intentions are not reflected directly in the code, 
so PROUST must use knowledge about goal interactions to 
hypothesize and differentiate possible intention models for the 
program. 

4.1. Shallow reasoning about correct programs 
Figure 2 shows a typical introductory programming problem. 

Figure 3 shows the plan analysis of a straightforwardly correct 
solution, i.e., one in which the intentions are correct and the 
program is implemented in accordance with rules of 
programming discourse [17]. PROUST is supplied wit.h a 
description of the programming problem, shown in Figure 4, 
which reflects the problem statement which the students are 
given. This description is incomplete, in that details are 
omitted and terms are used which must be defined by reference 
to PROUST'S knowledge base of domain concepts. PROUST 
derives from the problem description an agenda of goals which 
must, be satisfied by the program. PROUST must go through a 
process of building hypothetical goal structures using these 
goals, and re:ating them to the code. We call this process 
constructing interpretations of the code. 

The goal structure for a given program is built by selecting 
goals to be processed, determining what plans might be used to 
implement these goals, and then matching them against the 
code. Let us consider what happens to the Sentinel-Controlled 
Input Sequence goal. This goal specifies that input should be 
read and processed until a specific sentinel value is read. 
PROUST must determine what plans might be used to realize 
this goal. PROUST has a knowledge base of typical 
programming plans, and another knowledge base of 
programming goals. Each plan is indexed according t.o the 

goals it can be--used to implement, end each goal linked to 
plans and/or collections of subgoals which implement it. 
PROUST retrieves from these databases several plans which 
implement the goal. One of these, the SENTINEL-CONTROLLED 
PROCESSREAD WHILE PLAN, is shown in Figure 3. This plan 
specifies that there should be a UHILE loop which reads and 
processes input in a process-n-read-next-n fashion; we saw a 
buggy instance of this plan in the program in Figure 1. 

Noah needs to keep track of rainfall in the New Haven area 
in order to determine when to launch his ark. Write a 
program which he can use to do this. Your program should 
read the rainfall for each day, stopping when Noah types 
“99999”, which is not a data value, but a sentinel indicating 
the end of input. If the user types in a negative value the 
program should reject it, since negative rainfall is not 
possible. Your program should print out the number of 
valid days typed in, the number of rainy days, the average 
rainfall per day over the period, and the maximum amount 
of rainfall that fell on any one day. 

Figure 2: The Rainfall Problem 

Each plan consists of a combination of statements in the 
target language, Pascal, and subgoals. The syntax and 
semantics of plans, and the methods used for matching them, 
are discussed in detail in 171. Matching the plan against the 
code involves 1) finding statements which match the Pascal 
part of the plan, and 2) selecting and matching additional plans 
to implement the plan’s subgoals. For example, the WHILE loop 
at line 4 matches the Pascal pak of the plan. This plan also 
has two subgoals, both Input goals. The plans for 
implementing these goals which match the code are both READ 



GOALS 

Sentinel-contrdled Input Sepaenee(?Ra I nfa I I, 99999) 
Olrtprt( Average(?RaInfalI) ) 
Smm(i’Rainfall) 

Constants: %top 
Variables: ?Mev Variables: 
Template: ?Total, ?Neu 

Template: 
rabpal Inprt(?Neu) hit: 

hfain loop : ?TotaI = Of- 
WHILE ?Newc>7Stop DO Update: 

7TotaI = ?Total*PNeu 
(in rcgment hxese: of goal 

Nezt: subgoal Input(?Neu) Read d proceacr) I 

10 
11 
12 
13 
14 

END 
MAX =0, COUNT =O. RAINY =O. 
READLN. 
READ(N) 
WHILE N<,STOP DO 

BEGIN 
IF N>=O THEN 

BEGIN 
SUM =SUM*N. 
COUNT =COUNT+l. 
IF N>MAX THEN 

MAX =N. 
IF N>O THEN 

RAINY =RAINY+l, 
END 

15 ELSE WRITELNCN 0 2,' IS NOT POSSIBLE, REENTER'). 
16 WRITELNC'ENTER RAINFALL'), 

+ :; 
READLN, 
READ(N) 

+ 19 END, 

Figure 3: Plan Recognition 

SINGLE VALUE plans, i.e., READ statements which read single 
values. The SENTINEL-CONTROLLED PROCESSREAD PLAN thus 

matches- ;he program exactly, so this plan is incorporated into 
the goal structure. 

DefProgram Rainfall, 

DefObJect ?Ratnfall.DatlyRain Type Scaladeasurement; 

Sentinel-Controlled Input Sequence( ?Ra i nfa I 

Input Vulidation( ?Ratnfall’DaclyRaln, 
I.DailyRain. 99999 ), 

?Ralnfall.DailyRaln<O ) 
Output( Aoerage( ?Rainfall:DallyRaln ) ). 

Output( Count( 7Rainfall.DailyRain ) ); 

Outputt Count( ?Ralnfall,DailyRain 

s t ?RainfalI DailyRain>O ) ); 

Outputf hf~~imum( ?RainfalI .Dai IyRain ) ); 

Figure 4: Representation of the Rainfall Problem 

PROL’ST continues ae!ecting goals from the agenda and 

map ping them to the code, until every goal has been accounted 
for. This involves some analysis of implications of plans. For 
example, the choice of plan for computing the Average goal 
implies that a Sum goal be added to the goal agenda. This is 
in turn implemented using a RUNNING TOTAL PLAN, shown in 
the figure. - However, in a-program such as this relatively little 
work 7s involved in manipulat&g the goal agenda; most-of the 
work in understanding this program is in the plan recognition. 

PROUST is thus able to analyze straightforwardly correct 
programs primarily using shallow plan recognition techniques. 
This is not a surprising result. We have argued elsewhere 1171 
that programmers make extensive use of stereotypic plans when 
writing and understanding programs. Furthermore, we have 
evidence that novice programmers acquire plans early on [2]. 

We encourage this by including plans in our introductory 
programming curriculum. We can therefore assume that plans 
will play a major role in the construction of the programs that 
PROUST analyzes. We assume furthermore that if a 
programmer uses plans correctly, and if they fit together into a 
coherent design, then the functionality of the plans corresponds 
closely to the programmer’s intentions. 

4.2. Differentiating program interpretations 
We will now look at an example which involves integrating 

bug recognition into the process of constructing program 
interpretations. Recall that the problem statement in Figure 
2 requires that all non-negative input other than 99999 should 
be processed. However, the program in Figure 5 goes into an 
infinite loop as soon as a non-negative value other than 99999 
is read. The reason is that the YHILE statement at line 13 
should really be an IF statement. The programmer is probably 
confused about the semantics of nested WHILE statements, a 
common difficulty for novice Pascal programmers [Q]. 
Otherwise the the loop is constructed properly. Apparently 
programmer understands how YHILE loops work when the body 
of the loop is straight-line code, but is confused about how 
multiple tests are integrated into a single loop. We will show 
how PROUST develops this interpretation for the program. 

The bug in this example is encountered while PROUST is 
processing the Sentinel-controlled input aequcncc goal. Two 
plans implementing this goal match the code: the SENTINEL 
PROCESSREAD WHILE PLAN, which we saw in the previous 
example, and the SENTINEL READ-PROCESSREPEXTPLAN. The 
WHILE loop plan matches the loop starting at line 13, while the 
REPEAT loop plan matches the loop starting at line 3. 

PROCESSREAD WHILE 
Constants: %top 
Variables: 7Neu 
Template: 
Initinpt: 

READ-PROCESS REPEAT 

constants: xtop 
variables: 7Neu 
Template: 

4 WRITELN ('ENTER RAINFALL'). 
5 READLN, 
6 READ (RAIN), 
7 WHILE RAIN < 0 DO 
8 BEGIN 
9 WRITELN ( RAIN 0 2,'NOT P SIBLE, REENTER'!, 

:0 READLN. 
11 READ ( RAIN ) 
12 END 

* 13 WHILE RAIN <) 99999 DO 
p 

14 BEGIN 
15 DAYS * DAYS l 1, 
16 TOTALRAIN = TOTALRAIN l RAIN, 
17 IF RAIN > 0 THEN 
18 RAINDAYS = RAINDAYS l 1, 
19 IF HICHRAIN < RAIN THEN 
20 HIGHRAIN - RAIN 
21 END 
22 UNTIL RAIN = 99999, 

Figure 6: Program Requiring Shallow Bug Reasoning 

Although the Pascal portions of these plans match fairly 
closely, difficulties arise when the subgoals are matched against 
the program. Consider first the REPEAT loop plan. It indicates 



that there should be an Input subgoal at the top of the loop, 
and the remainder of the loop should be enclosed in a Sentinel 
Guard, i.e., a test to see if the sentinel value has been read. 
There is in fact a READ statement at line 6 which could satisfy 
the Input goal. However, the code which follows, at line 7, is 
not a sentinel guard; instead, it is a loop that performs more 
input. This indicates that there is a flaw in this model of the 
code. A similar problem arises when PROUST tries to match the 
WHILE loop plan. The problem there is that the plan indicates 
that there should be an Input goal above the loop, but PROUST 
finds the loop at line 7 interposed between the initial read and 
the apparent main loop at line 13. 

Mismatches between plans and codes are called plan 
differences; whenever a plan fails to match exactly a plan 
difference description is constructed describing the mismatches. 
There are two mechanisms which are used for resolving plan 
differences. One is to look for some other way of structuring 
the subgoals of the plans to match the code better. The other 
is to come up with an explanation of the plan mismatch in 
terms of bugs or plan transformations. Both mechanisms are 
needed in this example. 

The first step in resolving the plan differences associated with 
the looping plans is to restructure the subgoals in order to 
reduce the differences, Besides the READ SINGLE VALUE plans, 
PROUST has other plans which can be used for input. One plan 
is a WHILE loop which tests the input for validity as it is being 
read, and rereads it if the data is not valid. This plan satisfies 
two goals simultaneously, Input and Input Validation. 
However, Input Validation is also on the goal agenda, so 
PROUST combines the two goals and matches the plan. The 

result is that in the case of the SENTINEL-CONTROLLED 
PROCESS-READ WHILE PLAN lines 6 through 12 is viewed as 
performing the initial input, and in the case of the REPEAT plan 
these same lines of code are viewed as the main input inside the 
loop. 

Given t,hese interpretations of the subgoals, the main loop 
plans still do not quite match. The remaining differences are 
camp:;: I’r J against PROUST's bug catalog. This catalog has been 
built via empirical analyses of the bugs in hundreds of novice 
programs 191. It consists of production rules which are triggered 
by plan differences and which chain, if necessary, in order to 
account for all the plan differences. In the case of the REPEAT 
loop plan, the plan difference is that a UHILE statement is 
found instead of an IF statement; this is listed in the bug 
catalog, along with the probable associated misconception. In 
the case of the WHILE loop plan, there are two plan differences: 
the Input subgoal is missing from inside the loop, and the 
entire loop is enclosed inside of another loop. The missing 
input is fisted in the bug catalog; novices sometimes have the 
misconception that a READ statement is unnecessary in the loop 
if there is a READ statement elsewhere in the program. The 
enclosing loop bug is not listed in the catalog; that does not 
mean that this is an impossible bug, only that there is no 
canned explanation for this kind of plan difference. 

We have thus constructed two different interpretations of the 
implementation of the Sentinel-Controlled Input Sequence in 
this program. There are others which we have not listed here. 
It is necessary to construct all these different interpretations, 
instead of just picking the first one that appears reasonable, 
because there is no absolute criterion for when a plan should be 

considered to match buggy code. The only way to interpret 
code when bugs are present is to consider the possible 
interpretations and pick one which appears to be better than 
the others. In other words, PROUST must perform differential 
diagnosis in order to pick the right interpretation. The 

intention model makes it possible to construct such a 
differential; PROUST uses it to predict possible plans and 
subgoal structures which might be present, thus enumerating 
hypotheses to consider. 

Choosing from among the possible interpretations proceeds as 
follows. If there is an interpretation which is reasonably 
complete, and which is superior to competing interpretations, 
PROUST picks it, and saves the alternatives, in case evidence 
comes up later which might invalidate the decision. Here the 
REPEAT loop interpretation is superior, because each part of the 
plan has been accounted for, albeit with bugs. The YHILE loop 
interpretation is not as good, because the embedded loop plan 
difference is unexplained, and because the Input subgoal inside 
the loop was never found. PROUST therefore adopts the REPEAT 
loop interpretation, and adds the “while-forif” bug to the 
current diagnosis for this program. 

We see in this example that although shallow reasoning is 
used to recognize plans and bugs, this works only because 
causal reasoning about the programmer’s intentions provides a 
framework for performing plan and bug recognition, and for 
interpreting the results. The intention model makes it possible 

to employ differential diagnosis techniques, which helps PROUST 
arrive at the correct interpretation of the program even when 
bugs make it difficult to determine what plans the programmer 
was trying to use. In contrast, analysis methods which analyze 

the program behavior would probably be fooled by this 
program, because they would treat the WHILE statement at line 
13 as a loop, rather than as an IF statement. Such a system 
might be able to determine that the program goes into an 
infinite loop, but it would not be able to explain to the 
programmer why his/her intentions were not realized. 

4.3. Differentiating intention models 
Figure 6 shows a program which requires deeper analysis of 

the programmer’s intentions. This example illustrates how 
programming goals are sometimes realized indirectly in a 
program, by interacting with the implementation of other goals. 
Debugging such programs requires the ability to reason about 
goal interactions in order to differentiate models of the 
programmer’s intentions. Causal reasoning about intentions is 
essential in this enterprise. 

Let us examine how PROUST maps the goal Input Validation 
onto this program, i.e., how it determines how bad input is 
filtered from the input stream. One plan which implements 
this goa! is the BAD INPUT SKIP GUARD, which encloses the 
computations in the loop with an IF-THEN-ELSE statement 
which tests for bad input. PROUST discovers plan differences 
when it tries to match this plan against the program. PROUST 
can find a test for bad input in the loop, but it is too far down 
in the loop, and it does not have an ELSE branch. It also 
contains an unexpected counter decrement statement, NUMBER 
:= NUMBER-l. It turns out that these plan differences are 
explained not by postulating a bug in the BAD INPUT s~.rp 
GUARD plan, but by inferring an altogether different goal 
structure for the program. 
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Input Validation(?RainfaI I :Dsi IyRsir. ?Roinfol I :Doi lyroin<O) 

BAD INPUT SKIP GUARD 

Variables: 'Val. ?Pred Errors 
Template: 1) Test part mtsplaced 
(in uegmen t FPocess: of Read d process) (should be at top of 

spanned by Process part of 

Teet : loop) 
IF 7Pred THEN 

'2) ELSE branch mtsslng 

subgoal Output diagnostic(j 
3) Unexpected counter 

decrement 
ELSE 

Proceee : ?* 

YHILE RAINFALL 0 99999 W BEGIN 

NUNBER ‘= NUMBER + 1; 
IF RAINFALL > 0 THEN 

DAYS := DAYS + 1; 
IF RAINFALL ) HIGHEST THEN 

HICHEST = RAINFALL; 

TOTAL := TOTAL + RAINFALL; - satisjies hypothesis 2 
IF RAINFALL < 0 THEN 

BEGIN 

YRITELN (*BAD INPUT'); 

NUNBER .= NUHBER - 1; 3 satisfies hypothea’r 1 
END. conclusion: hypothesis f 

READLN; is satisfied 

READ ( RAINFALL) 

END; 

Hypothesis 1: 

conttngent goal present 
Hypotheses 2: 
contingent goal absent 

Contingency( E/Jetted-by( ?Plan. (?RainfalI :DailyRain<O) 
Compensate( ?Plan. (?Rainfal I.DoilyRain<O) 1 1 

Figure 6: Differentiating Intention Models 

PROUST assumed that a single plan would be used to 
implement the Input Validation goal. Instead, two plans are 
used in this program: one prints out a message when bad input 

is read in, and the other decrements the counter NUMBER when 
bad input is read in. In fact, for this design to be correct, there 
would have to be a third plan, which subtracts bad input from 
the running total, TOTAL. We must therefore reformulate the 

Input Validation as a contingent goal: Contingency( 

Effected-by( ?Plan, (?Rainfal I:DailyRain<O) >, 

Compensate{ ?P I an, (?Rainfal I :Doi lyRain<O) 1 1. This 

goal states that whenever a plan is effected by the rainfall 
variable being less than zero, a goal of compensating for this 

effect must be added to the goal agenda. If we assume that 
bad input was being filtered in a contingent fashion, then input 
will be tested when it might effect the result; it would not be 
tested when the maximum, HIGHEST, is computed, for example. 
This hypothesis is generated by a bug rule which fires when 
PROUST tries to explain the plan differences listed in the 
previous paragraph. This rule stipulates that whenever a guard 
plan only guards part of the code that is supposed to guard, a 
new goal structure should be created in which the guard goal is 
reformulated as a contingent goal. 

Testing a contingent goal hypothesis is difficult, because it 
depends upon what plans are used to implement the other goals 
in the agenda, and PROUST does not yet know what those plans 
are. PROUST must construct a differential of two goa! structure 
hypotheses: hypothesis 1 holds that Input Validation has been 
reformulated as a contingent goal, and hypothesis 2 holds that 
the programmer neglected Input Validation altogether, and the 
code which appears to guard against bad input really serves 
another purpose. In order to test these hypotheses, PROUST 

activates two demons. The first demon tests hypothesis 1, by 
looking for plans which satisfy the contingency test and 
checking to see that bad input has been accounted for. The 
other demon tests hypothesis 2, by looking for cases where bad 
input should have been checked for but was not, and for 
alternative explanations for the code which is attributed to the 
contingent goal. Each demon finds one case supporting its 
respective hypothesis. The program compensates for the effect 
of bad input on the counter, NUMBER, which serves as evidence 
for the contingent goal hypothesis. However, the program does 
not compensate for the effect of bad input on the running total, 
TOTAL; this serves as evidence that the Input Validation goal 
was not implemented at all. This does not mean that the 
hypotheses are equally good, however. Hypothesis 1 can 
account for the running total being unguarded if we presume 
that the programmer left that case out by mistake. Hypothesis 
2 cannot account for NUMBER := NUMBER-1 line at a!!; it would 
have to be dismissed as spurious code. PROUST avoids program 
interpretations which cannot account for portions of the code. 
Therefore PROUST can assume that the programmer has the 
contingent input validation goal in mind. 

Knowledge about how a goal structure was derived by the 
student makes it possible for PROUST to help the student 
iru prove his programming style. This program can be fixed by 
adding a line TOTAL := TOTAL-RAINFALL next to the NUMBER := 
NUMBER-1 line. This is not the right correction to suggest: it 
was a mistake for the programmer to validate the input in a 
contingent fashion in the first place. A single plan could have 
implemented the input validation directly, and the fact that the 
programmer overlooked one of the contingencies demonstrates 
that indirect goal implementations are harder to perform 

correctly. As we see in the output which PROUST generates for 
this bug, shown in Figure 7, PROUST suggests to the student 
that he re-implement the Input Validation goal. Thus causal 
reasoning about intentions not only makes it possible to find 
bugs in complex programs, it makes it possible to correct the 
reasoning that led to the occurrence of the bugs. 

6. 

The sum is not shielded against invalid input. If the user 
types in a bad value it will be included in the sum. I noticed 
that you do test for bad input elsewhere. Your program 
would really be simpler if it tested the input in one place, 
before it is used, so bugs like this would not crop up. 

Figure 7: PROUST output for the program in Figure 6 

Results 
To t,est PROUST, we performed off-line analysis of the first 

syntactically correct versions of 200 different solutions to the 
Rainfall Problem. A team of graders debugged the same 
programs by hand, to determine the actual number of bugs 
present. The results are shown in Figure 8, labeled “Test 1”. 
For each program PROUST generates one of three kinds of 
analyses. 

l Complete annlysis: the mapping between goal 
structure and code is complete enough that PROUST 
regards it to be fully reliable. 

l Partial analysis: significant portions of the 
program were understood, but parts of the program 
could not be analyzed. PROUST deletes from its bug 
report any bugs whose analysis might be effected by 
the unanalyzable code. 

167 



l No analysie: PROUST's analysis of the program 
was very fragmentary, and unreliable, and was 
therefore not presented to the student. 

In Test 1, 75% of the programs received complete analyses; 
PROUST found 95% of the bugs in these programs, including 
many that the graders missed. 20% of the programs were 
partially analyzed, and 5% got no analysis. 

lest 1 lest 2 lest 2 Repeated 

Total number of programs: 206 76 76 

Number analyzed completely. 155 (75%) 30 (39%) 53 (70%) 
Total number of bugs: 531 133 252 
Bugs recognized correctly: 502 (95%) 131 (98%) 247 (98%) 
Bugs not recognized 29 (5%) 2 (2%) 5 (2%) 
False alarms 46 5 18 

Number analyzed partially' 40 (20%) 33 (43%) 19 (25%) 
Total number of bugs 220 163 105 
Bugs recognized correctly. 79 (36%) 65 (40%) 42 (40%) 
Bugs deleted from bug report: 80 (36%) 58 (36%) 36 (34%) 
Bugs not recognized 61 (28%) 40 (25%) 27 (26%) 
False alarms 36 20 17 

Number unanalyzed. 11 (5%) 13 (17%) 4 (5%) 

Figure 8: Results of running PROUST 

We have recently made on-line tests of PROUST in an 
introductory programming course. The column labeled uTest 
2” summarizrs PROUST’s performance. Unfortunately the 
percentage of complete analyses went down. This turned out 
to be because of problems in transporting PROUST from the 
research environment to the classroom environment, and were 
not due to essential flaws in PROUST itself. We corrected these 
problems and re-ran PROUST on the same set of data; this time 
PROUST’S performance was comparable to what it was in Test 
1. We also ran PROUST on another programming problem; the 
results of that test have yet to be tabulated. 

6. Concluding Remarks 
We have argued that intention-based understanding is 

needed in order to diaqntise errors effectively in novice 
programs. Knowledge of intentions makes it p3ssib!e for 
PROUST to grapple with the high degree of variability in novice 
programs and novice programming errors, and achieve a high 
level of performance. Intention-based diagnosis is complex, but 
our results suggest that it is tractable for non-trivia! programs. 
This gives us optimism that the remaining obstacles to 
achieving high performance over a wide range of student 
populations and programming problems can be overcome in due 
course. 
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