
Intention-Based Diagnosis of Programming Errors

W. Lewis Johnson - Elliot Soloway

Yale University Computer Science Department

New Haven, Ct. 06520

Abstract

PROUST is a system which identifies the non-syntactic bugs in
novices’ programs and provides novices with help as to the
misconceptions under which they were laboring that caused the
bugs. In this paper we will discuss the methods which PROUST
uses to identify and diagnose non-syntactic bugs. Key in this
enterprise is PROUST's ability to cope with the significant

variability exhibited by novices’ programs: novice programs are
designed and implemented in a variety of different ways, and
usually have numerous bugs. We argue that diagnostic
techniques that attempt to reason from faulty behavior to bugs
are not effective in the face of such variability. Rather,
PROUST'S approach is to construct a causal model of the
programmer’s intentions and their realization (or non-

realization) in the code. This model serves as a framework for
bug recognition, and allows PROUST to reason about the
consequences of the programmer’s decisions in order to

determine where errors were committed and why.

1. Introduction
We have been constructing a system, PROUST, that can

identify the non-syntactic bugs in novice’s programs and
provide students with help in resolving the misconceptions that
caused the bugs. In this paper we will discuss the principal
techniques PROUST uses to identify and explain non-syntactic
bugs.

PROUST's analysis techniques were designed to cope with the
key feature of our domain: the high degree of variability in

novice programs. Novice programmers often have

misconceptions about programming language syntax and
semantics, resulting in large numbers of seemingly bizarre bugs.
They also lack the expert’s knowledge about how to analyze
program specifications and design and implement algorithms.
The result is that the intentions underlying novice programs,
and the methods used for realizing these intentions, tend to
vary greatly. We present an approach to error diagnosis which
integrates identifying program errors with discovering the
programmer’s intentions. In this view, bug diagnosis involves

This work was co-sponsored by the Personnel and Training
Research Groups, Psychological Sciences Division, Office of
Naval Research and the Army Research Institute for the
Behavioral and Social Sciences, under Contract No. N00014-82-
K-0714, Contract Authority Identification Number, Nr 154-492.
Approved for public release; distribution unlimited.
Reproduction in whole or part is permitted for any purpose of
the United States Government.

reasoning in the space of intentions as well as in the space of
program behavior. This contrasts with conventional fault
diagnosis methods which do not take intentions into account, or
which fail to distinguish between intended program behavior
and actual program behavior. The intentional model that
PROUST constructs provides a framework for testing bug
hypotheses, and for comparing alternative hypotheses using
differential analysis. Causal reasoning about the programmer’s
intentions makes it possible to determine which of the
programmer’s intentions is faulty and why.

In what follows, we first present arguments in support of the
intention-based approach, followed by a more detailed
description of PROUST'S approach to error diagnosis. Results of
empirical tests of PROUST with novice programmers will then
be presented.

2. Three Approaches to Diagnosis

We can identify at least three types of diagnostic reasoning
techniques which might be applicable to bug diagnosis:
classificatory reasoning about symptoms, causal reasoning
about behavior;, and intention modeling.

l In classificatory reasoning about symptoms, the
diagnostician knows what classes of symptoms
different classes of faults exhibit. The diagnostician
extracts important facts from the findings, uses
t,hem to suggest types of faults which might explain
the findings, and then does further analysis in order
to refine the diagnosis. The diagnostician’s
knowledge about the domain can thus be boiled
down to a collection of classificatory rules relating
symptoms to disease classes. Medic al diagnosis
systems tend to depend particularly heavily upon
classificatory reasoning [15, 31. Classificatory
approaches to program debugging have also been
attempted [6].

0 Causal reasoning about behavior uses an
understanding of the structure and function of a
system and its components to identify faults which
are responsible for faulty behavior (11, 4, 5, 141. In
program debugging the causal reasoning usually
takes the form of analysis of control and data flow.
Causal reasoning is useful for diagnosing errors in
domains involving a degree of complexity and
variability, where empirical associations between
faults and symptoms are unavailable or
inconclusive.

l Intention modeling is necessary, however, when the

162

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

programmer’s intentions are in odds with what the
programming problem requires. Here, the
programmer’s view of the problem must be
determined and then tied to the manner in which it
has/has not been realized. Knowledge of intentions
assists the diagnostic process in several ways.
Predict,ions derived from the intention model enable
top-down understanding of buggy code, so that
diagnosis is not thrown off when bugs obscure the
code’s intended behavior. The right fix for each
bug can be found (81. Finally, causal reasoning
about the implications of the implementor’s
intentions makes it possible to test bug hypotheses
by looking at other parts of the program and
verifying the implications of bug hypotheses.

We will argue that neither classificatory reasoning about
symptoms nor causal reasoning about behavior is adequate for
fault diagnosis in novice programs. Rather, accurate bug
diagnosis depends upon intention modeling.

3. Intention-Based Diagnosis vs. Qther
Approaches: An Example

We will first walk through an example of bug diagnosis in
order to contrast the intention-based approach to the other
diagnostic approaches. Further details of how intention-based
diagnosis works will be provided in subsequent sections.

Figure 1 shows a programming problem, to compute the
average of a series of inputs, and an actual buggy student
solution. Instead of reading a series of inputs and averaging
them, this program reads a single number New, and outputs the

average of all the values between New and 99999, i.e.,
(Neu+99999)/2. We believe that the error in this program is
that the student wrote New : = Neu+l at line 12 instead of
Read (New), as indicated by PROUST's output, which is shown in
the figure. This bug is probably the result of a programming
misconception: novices sometimes overgeneralize the counter
increment statement and use it as a general mechani. m for
getting the next value.

A symptom classification approach would make use of
general heuristic rules for relating symptoms to causes.
Example rules might be the following:

l If a program terminates before it has read enough
input, it may have an input loop with a faulty exit
test.

l If a program outputs a value which is too large,
check the line that computes the value and make
sure that it is correct.

Neither of these rules addresses the true cause of the bug;
instead of focusing on the way new values are generated, one
rule focuses on the exit test, and the other focuses on the
average computation. In general, many different program
faults can result in the same symptoms, so knowledge of the
symptoms alone is insufficient for distinguishing faults.

The principal diagnostic methods which employ causal
analysis of behavior are symbolic execution, canonicalization,
and troubleshooting. If we followed a symbolic execution
paradigm, as in PUDSY [lo], we would go through the following
sequence of steps: 1) use causal knowledge of program
semantics to derive a formula describing the output of the

Problem: Read in numbers, taking their sum, until the
number 99999 is seen. Report the average. Do not include
the final 99999 in the average.

1 PROGRAM Average(input, output 1;

2 VAR Sum. Count, Neu: INTEGER;

3 Avg: REAL;
4 BEGIN
5 sum := 0;
6 Count := 0;
7 Read(Neu) ;

8 YHILE Neuo99999 DO

9 BEGIN

10 Sum := Sum+Ner;
11 Count := Count*l;

12 Neu := Neu+l

13 END;

14 Avg := Sum/Count;

15 Uriteln(‘The average is ‘, avg 1;

16 END;

PROUST output:

It appears that you were trying to use line 12 to read the
next input value. Incrementing NEW will not cause the next
value to be read in. You need to use a READ statement
here, such as you use in line 7.

Figure 1: Example of analysis of a buggy program

program, 2) compare it against a description of what the
program is supposed to do, in order to identify errors, and then
3) trace the erroneous results back to the code which generated
them. In the example in Figure 1, we would determine that the
program computes New/2+49999.5, compare this against what
it should compute, namely (CNew)/count(New), then examine
the parts of the program which compute the erroneous parts of
the formula. The main problem here is that it is hard to
compare these two expressions and determine which parts are
wrong. This requires knowledge of which components of the
first expression correspond to which components of the second
expression. Expression components correspond only if their
underlying intentions correspond. Thus some knowledge of the
programmer’s intentions is necessary in order for the symbolic
execution approach to generate reliable results.

Canonicalization tee hniques [I] translate the student’s
program into a canonical dataflow representation and compare
it against an idenlized correct program model. Again the aim is
to determine intentions by comparison. Such comparisons are
easier to make, but only if the student’s intended algorithm is
the same as the model algorithm. Non-trivial programming
problems can be solved in any of a number of ways. Thus an
approach which compares against a single model solution
cannot cope with the variability inherent in programming.

Troubleshooting approaches suffer from similar difficulties as
symbolic execution. In program troubleshooting, the user is
expected to describe the specific symptoms of t,he fault, rather
than give a description of the intended output. The system
then traces the flow of information in the program to determine
what might have caused the symptoms. In this example the
symptom is that the program computes New/2+49999.5. We
have already seen in the case of symbolic execution that this
information alone is not sufficient to pinpoint the bug.

Because of
behavior pose

the problems
in debugging,

that analysis of symptoms
a number of implementors of

and

bug

163

diagnosis systems have augmented these techniques with

recognizers for stereotypic programming plans [13, 12, 161.
This is an attempt at determining the intentions underlying the
code; by recognizing a plan we can infer the intended function
of the code which realizes the plan, which in turn helps in
localizing bugs. Unfortunately plan recognition by itself is not
adequate for inferring intentions. First, bugs can lead to plan
recognition confusions. In the example, the loop looks like a
counter-controlled iteration; diagnosing the bug requires the
realization that the loop was not intended to be counter
controlled. Second, bugs may arise not in plans themselves, but
in the way that they interact or in the manner that the
programmer has employed them. To a certain extent one can
determine the interactions of plans in a program by analyzing
the flow of information among the plans. However, we will
consider examples in the next section where the intended plan
interactions and the actual plan interactions are different. In
such cases a better understanding of the programmer’s
intentions is needed than what plan recognition alone can
provide.

In contrast to these other approaches, the intention-based
approach attempts to construct a coherent model of what the
programmer’s intentions were and how they were realized in
the program. Instead of simply listing the plans which occur in
the program, one must build a goal structure for the program;
i.e., one must determine what the programmer’s goals were,
and how he/she went about realizing those goals, using plans or
some other means. This is accomplished in PROUST as fo!!ows.
PROUST is given an informal description of what the program is
supposed to do. It then makes use of a knowledge base of
relations between goals and plans, on one hand, and rules about

how goals combine and interact, on the other hand, to suggest
possible goal structures for the program. The goal structure
that fits the best suggests that the Read at line 7 satisfies the
goal of initializing the YHILE loop; the loop is organized to
process each value and then read the next value at the bottom
of the loop, in a process-n-read-nextn fashion. Lines 5 and 10
are responsible for totaling the inputs, lines 6 and 11 are
responsible for counting them, and line 14 computes the
average. Given this model, there is no role for the New :=
New+1 to serve other than as a means to read the next value
inside the loop. This leads directly to the conclusion that the
student has overgeneralized the use of counter increment
statements.

4. Examples of Intention-Based Diagnosis
Program analysis in PROUST involves a combination of

shallow reasoning for recognizing plans and bugs, and causal
reasoning about intentions. The relative importance of each
kind of reasoning depends upon the complexity of the
program’s goal structure and the extent to which PROUST must
analyze the implications of the programmer’s design decisions
and misconceptions to determine what bugs they cause. We
will show how PROUST reasons about programs and bugs by
way of a series of examples. The first program example has no
bugs, and has a simple goal structure; accordingly, the
reasoning processes involved in understanding it are primarily
shallow. The next example has bugs, and the goal structure is
somewhat more complex; although the bugs are discovered via
shallow recognition tactics, a greater amount of reasoning
about intentions is required to construct the right goal structure
and test the bug hypothesis. In the third example the

programmer’s intentions are not reflected directly in the code,
so PROUST must use knowledge about goal interactions to
hypothesize and differentiate possible intention models for the
program.

4.1. Shallow reasoning about correct programs
Figure 2 shows a typical introductory programming problem.

Figure 3 shows the plan analysis of a straightforwardly correct
solution, i.e., one in which the intentions are correct and the
program is implemented in accordance with rules of
programming discourse [17]. PROUST is supplied wit.h a
description of the programming problem, shown in Figure 4,
which reflects the problem statement which the students are
given. This description is incomplete, in that details are
omitted and terms are used which must be defined by reference
to PROUST'S knowledge base of domain concepts. PROUST
derives from the problem description an agenda of goals which
must, be satisfied by the program. PROUST must go through a
process of building hypothetical goal structures using these
goals, and re:ating them to the code. We call this process
constructing interpretations of the code.

The goal structure for a given program is built by selecting
goals to be processed, determining what plans might be used to
implement these goals, and then matching them against the
code. Let us consider what happens to the Sentinel-Controlled
Input Sequence goal. This goal specifies that input should be
read and processed until a specific sentinel value is read.
PROUST must determine what plans might be used to realize
this goal. PROUST has a knowledge base of typical
programming plans, and another knowledge base of
programming goals. Each plan is indexed according t.o the

goals it can be--used to implement, end each goal linked to
plans and/or collections of subgoals which implement it.
PROUST retrieves from these databases several plans which
implement the goal. One of these, the SENTINEL-CONTROLLED
PROCESSREAD WHILE PLAN, is shown in Figure 3. This plan
specifies that there should be a UHILE loop which reads and
processes input in a process-n-read-next-n fashion; we saw a
buggy instance of this plan in the program in Figure 1.

Noah needs to keep track of rainfall in the New Haven area
in order to determine when to launch his ark. Write a
program which he can use to do this. Your program should
read the rainfall for each day, stopping when Noah types
“99999”, which is not a data value, but a sentinel indicating
the end of input. If the user types in a negative value the
program should reject it, since negative rainfall is not
possible. Your program should print out the number of
valid days typed in, the number of rainy days, the average
rainfall per day over the period, and the maximum amount
of rainfall that fell on any one day.

Figure 2: The Rainfall Problem

Each plan consists of a combination of statements in the
target language, Pascal, and subgoals. The syntax and
semantics of plans, and the methods used for matching them,
are discussed in detail in 171. Matching the plan against the
code involves 1) finding statements which match the Pascal
part of the plan, and 2) selecting and matching additional plans
to implement the plan’s subgoals. For example, the WHILE loop
at line 4 matches the Pascal pak of the plan. This plan also
has two subgoals, both Input goals. The plans for
implementing these goals which match the code are both READ

GOALS

Sentinel-contrdled Input Sepaenee(?Ra I nfa I I, 99999)
Olrtprt(Average(?RaInfalI))
Smm(i’Rainfall)

Constants: %top
Variables: ?Mev Variables:
Template: ?Total, ?Neu

Template:
rabpal Inprt(?Neu) hit:

hfain loop : ?TotaI = Of-
WHILE ?Newc>7Stop DO Update:

7TotaI = ?Total*PNeu
(in rcgment hxese: of goal

Nezt: subgoal Input(?Neu) Read d proceacr) I

10
11
12
13
14

END
MAX =0, COUNT =O. RAINY =O.
READLN.
READ(N)
WHILE N<,STOP DO

BEGIN
IF N>=O THEN

BEGIN
SUM =SUM*N.
COUNT =COUNT+l.
IF N>MAX THEN

MAX =N.
IF N>O THEN

RAINY =RAINY+l,
END

15 ELSE WRITELNCN 0 2,' IS NOT POSSIBLE, REENTER').
16 WRITELNC'ENTER RAINFALL'),

+ :;
READLN,
READ(N)

+ 19 END,

Figure 3: Plan Recognition

SINGLE VALUE plans, i.e., READ statements which read single
values. The SENTINEL-CONTROLLED PROCESSREAD PLAN thus

matches- ;he program exactly, so this plan is incorporated into
the goal structure.

DefProgram Rainfall,

DefObJect ?Ratnfall.DatlyRain Type Scaladeasurement;

Sentinel-Controlled Input Sequence(?Ra i nfa I

Input Vulidation(?Ratnfall’DaclyRaln,
I.DailyRain. 99999),

?Ralnfall.DailyRaln<O)
Output(Aoerage(?Rainfall:DallyRaln)).

Output(Count(7Rainfall.DailyRain));

Outputt Count(?Ralnfall,DailyRain

s t ?RainfalI DailyRain>O));

Outputf hf~~imum(?RainfalI .Dai IyRain));

Figure 4: Representation of the Rainfall Problem

PROL’ST continues ae!ecting goals from the agenda and

map ping them to the code, until every goal has been accounted
for. This involves some analysis of implications of plans. For
example, the choice of plan for computing the Average goal
implies that a Sum goal be added to the goal agenda. This is
in turn implemented using a RUNNING TOTAL PLAN, shown in
the figure. - However, in a-program such as this relatively little
work 7s involved in manipulat&g the goal agenda; most-of the
work in understanding this program is in the plan recognition.

PROUST is thus able to analyze straightforwardly correct
programs primarily using shallow plan recognition techniques.
This is not a surprising result. We have argued elsewhere 1171
that programmers make extensive use of stereotypic plans when
writing and understanding programs. Furthermore, we have
evidence that novice programmers acquire plans early on [2].

We encourage this by including plans in our introductory
programming curriculum. We can therefore assume that plans
will play a major role in the construction of the programs that
PROUST analyzes. We assume furthermore that if a
programmer uses plans correctly, and if they fit together into a
coherent design, then the functionality of the plans corresponds
closely to the programmer’s intentions.

4.2. Differentiating program interpretations
We will now look at an example which involves integrating

bug recognition into the process of constructing program
interpretations. Recall that the problem statement in Figure
2 requires that all non-negative input other than 99999 should
be processed. However, the program in Figure 5 goes into an
infinite loop as soon as a non-negative value other than 99999
is read. The reason is that the YHILE statement at line 13
should really be an IF statement. The programmer is probably
confused about the semantics of nested WHILE statements, a
common difficulty for novice Pascal programmers [Q].
Otherwise the the loop is constructed properly. Apparently
programmer understands how YHILE loops work when the body
of the loop is straight-line code, but is confused about how
multiple tests are integrated into a single loop. We will show
how PROUST develops this interpretation for the program.

The bug in this example is encountered while PROUST is
processing the Sentinel-controlled input aequcncc goal. Two
plans implementing this goal match the code: the SENTINEL
PROCESSREAD WHILE PLAN, which we saw in the previous
example, and the SENTINEL READ-PROCESSREPEXTPLAN. The
WHILE loop plan matches the loop starting at line 13, while the
REPEAT loop plan matches the loop starting at line 3.

PROCESSREAD WHILE
Constants: %top
Variables: 7Neu
Template:
Initinpt:

READ-PROCESS REPEAT

constants: xtop
variables: 7Neu
Template:

4 WRITELN ('ENTER RAINFALL').
5 READLN,
6 READ (RAIN),
7 WHILE RAIN < 0 DO
8 BEGIN
9 WRITELN (RAIN 0 2,'NOT P SIBLE, REENTER'!,

:0 READLN.
11 READ (RAIN)
12 END

* 13 WHILE RAIN <) 99999 DO
p

14 BEGIN
15 DAYS * DAYS l 1,
16 TOTALRAIN = TOTALRAIN l RAIN,
17 IF RAIN > 0 THEN
18 RAINDAYS = RAINDAYS l 1,
19 IF HICHRAIN < RAIN THEN
20 HIGHRAIN - RAIN
21 END
22 UNTIL RAIN = 99999,

Figure 6: Program Requiring Shallow Bug Reasoning

Although the Pascal portions of these plans match fairly
closely, difficulties arise when the subgoals are matched against
the program. Consider first the REPEAT loop plan. It indicates

that there should be an Input subgoal at the top of the loop,
and the remainder of the loop should be enclosed in a Sentinel
Guard, i.e., a test to see if the sentinel value has been read.
There is in fact a READ statement at line 6 which could satisfy
the Input goal. However, the code which follows, at line 7, is
not a sentinel guard; instead, it is a loop that performs more
input. This indicates that there is a flaw in this model of the
code. A similar problem arises when PROUST tries to match the
WHILE loop plan. The problem there is that the plan indicates
that there should be an Input goal above the loop, but PROUST
finds the loop at line 7 interposed between the initial read and
the apparent main loop at line 13.

Mismatches between plans and codes are called plan
differences; whenever a plan fails to match exactly a plan
difference description is constructed describing the mismatches.
There are two mechanisms which are used for resolving plan
differences. One is to look for some other way of structuring
the subgoals of the plans to match the code better. The other
is to come up with an explanation of the plan mismatch in
terms of bugs or plan transformations. Both mechanisms are
needed in this example.

The first step in resolving the plan differences associated with
the looping plans is to restructure the subgoals in order to
reduce the differences, Besides the READ SINGLE VALUE plans,
PROUST has other plans which can be used for input. One plan
is a WHILE loop which tests the input for validity as it is being
read, and rereads it if the data is not valid. This plan satisfies
two goals simultaneously, Input and Input Validation.
However, Input Validation is also on the goal agenda, so
PROUST combines the two goals and matches the plan. The

result is that in the case of the SENTINEL-CONTROLLED
PROCESS-READ WHILE PLAN lines 6 through 12 is viewed as
performing the initial input, and in the case of the REPEAT plan
these same lines of code are viewed as the main input inside the
loop.

Given t,hese interpretations of the subgoals, the main loop
plans still do not quite match. The remaining differences are
camp:;: I’r J against PROUST's bug catalog. This catalog has been
built via empirical analyses of the bugs in hundreds of novice
programs 191. It consists of production rules which are triggered
by plan differences and which chain, if necessary, in order to
account for all the plan differences. In the case of the REPEAT
loop plan, the plan difference is that a UHILE statement is
found instead of an IF statement; this is listed in the bug
catalog, along with the probable associated misconception. In
the case of the WHILE loop plan, there are two plan differences:
the Input subgoal is missing from inside the loop, and the
entire loop is enclosed inside of another loop. The missing
input is fisted in the bug catalog; novices sometimes have the
misconception that a READ statement is unnecessary in the loop
if there is a READ statement elsewhere in the program. The
enclosing loop bug is not listed in the catalog; that does not
mean that this is an impossible bug, only that there is no
canned explanation for this kind of plan difference.

We have thus constructed two different interpretations of the
implementation of the Sentinel-Controlled Input Sequence in
this program. There are others which we have not listed here.
It is necessary to construct all these different interpretations,
instead of just picking the first one that appears reasonable,
because there is no absolute criterion for when a plan should be

considered to match buggy code. The only way to interpret
code when bugs are present is to consider the possible
interpretations and pick one which appears to be better than
the others. In other words, PROUST must perform differential
diagnosis in order to pick the right interpretation. The

intention model makes it possible to construct such a
differential; PROUST uses it to predict possible plans and
subgoal structures which might be present, thus enumerating
hypotheses to consider.

Choosing from among the possible interpretations proceeds as
follows. If there is an interpretation which is reasonably
complete, and which is superior to competing interpretations,
PROUST picks it, and saves the alternatives, in case evidence
comes up later which might invalidate the decision. Here the
REPEAT loop interpretation is superior, because each part of the
plan has been accounted for, albeit with bugs. The YHILE loop
interpretation is not as good, because the embedded loop plan
difference is unexplained, and because the Input subgoal inside
the loop was never found. PROUST therefore adopts the REPEAT
loop interpretation, and adds the “while-forif” bug to the
current diagnosis for this program.

We see in this example that although shallow reasoning is
used to recognize plans and bugs, this works only because
causal reasoning about the programmer’s intentions provides a
framework for performing plan and bug recognition, and for
interpreting the results. The intention model makes it possible

to employ differential diagnosis techniques, which helps PROUST
arrive at the correct interpretation of the program even when
bugs make it difficult to determine what plans the programmer
was trying to use. In contrast, analysis methods which analyze

the program behavior would probably be fooled by this
program, because they would treat the WHILE statement at line
13 as a loop, rather than as an IF statement. Such a system
might be able to determine that the program goes into an
infinite loop, but it would not be able to explain to the
programmer why his/her intentions were not realized.

4.3. Differentiating intention models
Figure 6 shows a program which requires deeper analysis of

the programmer’s intentions. This example illustrates how
programming goals are sometimes realized indirectly in a
program, by interacting with the implementation of other goals.
Debugging such programs requires the ability to reason about
goal interactions in order to differentiate models of the
programmer’s intentions. Causal reasoning about intentions is
essential in this enterprise.

Let us examine how PROUST maps the goal Input Validation
onto this program, i.e., how it determines how bad input is
filtered from the input stream. One plan which implements
this goa! is the BAD INPUT SKIP GUARD, which encloses the
computations in the loop with an IF-THEN-ELSE statement
which tests for bad input. PROUST discovers plan differences
when it tries to match this plan against the program. PROUST
can find a test for bad input in the loop, but it is too far down
in the loop, and it does not have an ELSE branch. It also
contains an unexpected counter decrement statement, NUMBER
:= NUMBER-l. It turns out that these plan differences are
explained not by postulating a bug in the BAD INPUT s~.rp
GUARD plan, but by inferring an altogether different goal
structure for the program.

166

Input Validation(?RainfaI I :Dsi IyRsir. ?Roinfol I :Doi lyroin<O)

BAD INPUT SKIP GUARD

Variables: 'Val. ?Pred Errors
Template: 1) Test part mtsplaced
(in uegmen t FPocess: of Read d process) (should be at top of

spanned by Process part of

Teet : loop)
IF 7Pred THEN

'2) ELSE branch mtsslng

subgoal Output diagnostic(j
3) Unexpected counter

decrement
ELSE

Proceee : ?*

YHILE RAINFALL 0 99999 W BEGIN

NUNBER ‘= NUMBER + 1;
IF RAINFALL > 0 THEN

DAYS := DAYS + 1;
IF RAINFALL) HIGHEST THEN

HICHEST = RAINFALL;

TOTAL := TOTAL + RAINFALL; - satisjies hypothesis 2
IF RAINFALL < 0 THEN

BEGIN

YRITELN (*BAD INPUT');

NUNBER .= NUHBER - 1; 3 satisfies hypothea’r 1
END. conclusion: hypothesis f

READLN; is satisfied

READ (RAINFALL)

END;

Hypothesis 1:

conttngent goal present
Hypotheses 2:
contingent goal absent

Contingency(E/Jetted-by(?Plan. (?RainfalI :DailyRain<O)
Compensate(?Plan. (?Rainfal I.DoilyRain<O) 1 1

Figure 6: Differentiating Intention Models

PROUST assumed that a single plan would be used to
implement the Input Validation goal. Instead, two plans are
used in this program: one prints out a message when bad input

is read in, and the other decrements the counter NUMBER when
bad input is read in. In fact, for this design to be correct, there
would have to be a third plan, which subtracts bad input from
the running total, TOTAL. We must therefore reformulate the

Input Validation as a contingent goal: Contingency(

Effected-by(?Plan, (?Rainfal I:DailyRain<O) >,

Compensate{ ?P I an, (?Rainfal I :Doi lyRain<O) 1 1. This

goal states that whenever a plan is effected by the rainfall
variable being less than zero, a goal of compensating for this

effect must be added to the goal agenda. If we assume that
bad input was being filtered in a contingent fashion, then input
will be tested when it might effect the result; it would not be
tested when the maximum, HIGHEST, is computed, for example.
This hypothesis is generated by a bug rule which fires when
PROUST tries to explain the plan differences listed in the
previous paragraph. This rule stipulates that whenever a guard
plan only guards part of the code that is supposed to guard, a
new goal structure should be created in which the guard goal is
reformulated as a contingent goal.

Testing a contingent goal hypothesis is difficult, because it
depends upon what plans are used to implement the other goals
in the agenda, and PROUST does not yet know what those plans
are. PROUST must construct a differential of two goa! structure
hypotheses: hypothesis 1 holds that Input Validation has been
reformulated as a contingent goal, and hypothesis 2 holds that
the programmer neglected Input Validation altogether, and the
code which appears to guard against bad input really serves
another purpose. In order to test these hypotheses, PROUST

activates two demons. The first demon tests hypothesis 1, by
looking for plans which satisfy the contingency test and
checking to see that bad input has been accounted for. The
other demon tests hypothesis 2, by looking for cases where bad
input should have been checked for but was not, and for
alternative explanations for the code which is attributed to the
contingent goal. Each demon finds one case supporting its
respective hypothesis. The program compensates for the effect
of bad input on the counter, NUMBER, which serves as evidence
for the contingent goal hypothesis. However, the program does
not compensate for the effect of bad input on the running total,
TOTAL; this serves as evidence that the Input Validation goal
was not implemented at all. This does not mean that the
hypotheses are equally good, however. Hypothesis 1 can
account for the running total being unguarded if we presume
that the programmer left that case out by mistake. Hypothesis
2 cannot account for NUMBER := NUMBER-1 line at a!!; it would
have to be dismissed as spurious code. PROUST avoids program
interpretations which cannot account for portions of the code.
Therefore PROUST can assume that the programmer has the
contingent input validation goal in mind.

Knowledge about how a goal structure was derived by the
student makes it possible for PROUST to help the student
iru prove his programming style. This program can be fixed by
adding a line TOTAL := TOTAL-RAINFALL next to the NUMBER :=
NUMBER-1 line. This is not the right correction to suggest: it
was a mistake for the programmer to validate the input in a
contingent fashion in the first place. A single plan could have
implemented the input validation directly, and the fact that the
programmer overlooked one of the contingencies demonstrates
that indirect goal implementations are harder to perform

correctly. As we see in the output which PROUST generates for
this bug, shown in Figure 7, PROUST suggests to the student
that he re-implement the Input Validation goal. Thus causal
reasoning about intentions not only makes it possible to find
bugs in complex programs, it makes it possible to correct the
reasoning that led to the occurrence of the bugs.

6.

The sum is not shielded against invalid input. If the user
types in a bad value it will be included in the sum. I noticed
that you do test for bad input elsewhere. Your program
would really be simpler if it tested the input in one place,
before it is used, so bugs like this would not crop up.

Figure 7: PROUST output for the program in Figure 6

Results
To t,est PROUST, we performed off-line analysis of the first

syntactically correct versions of 200 different solutions to the
Rainfall Problem. A team of graders debugged the same
programs by hand, to determine the actual number of bugs
present. The results are shown in Figure 8, labeled “Test 1”.
For each program PROUST generates one of three kinds of
analyses.

l Complete annlysis: the mapping between goal
structure and code is complete enough that PROUST
regards it to be fully reliable.

l Partial analysis: significant portions of the
program were understood, but parts of the program
could not be analyzed. PROUST deletes from its bug
report any bugs whose analysis might be effected by
the unanalyzable code.

167

l No analysie: PROUST's analysis of the program
was very fragmentary, and unreliable, and was
therefore not presented to the student.

In Test 1, 75% of the programs received complete analyses;
PROUST found 95% of the bugs in these programs, including
many that the graders missed. 20% of the programs were
partially analyzed, and 5% got no analysis.

lest 1 lest 2 lest 2 Repeated

Total number of programs: 206 76 76

Number analyzed completely. 155 (75%) 30 (39%) 53 (70%)
Total number of bugs: 531 133 252
Bugs recognized correctly: 502 (95%) 131 (98%) 247 (98%)
Bugs not recognized 29 (5%) 2 (2%) 5 (2%)
False alarms 46 5 18

Number analyzed partially' 40 (20%) 33 (43%) 19 (25%)
Total number of bugs 220 163 105
Bugs recognized correctly. 79 (36%) 65 (40%) 42 (40%)
Bugs deleted from bug report: 80 (36%) 58 (36%) 36 (34%)
Bugs not recognized 61 (28%) 40 (25%) 27 (26%)
False alarms 36 20 17

Number unanalyzed. 11 (5%) 13 (17%) 4 (5%)

Figure 8: Results of running PROUST

We have recently made on-line tests of PROUST in an
introductory programming course. The column labeled uTest
2” summarizrs PROUST’s performance. Unfortunately the
percentage of complete analyses went down. This turned out
to be because of problems in transporting PROUST from the
research environment to the classroom environment, and were
not due to essential flaws in PROUST itself. We corrected these
problems and re-ran PROUST on the same set of data; this time
PROUST’S performance was comparable to what it was in Test
1. We also ran PROUST on another programming problem; the
results of that test have yet to be tabulated.

6. Concluding Remarks
We have argued that intention-based understanding is

needed in order to diaqntise errors effectively in novice
programs. Knowledge of intentions makes it p3ssib!e for
PROUST to grapple with the high degree of variability in novice
programs and novice programming errors, and achieve a high
level of performance. Intention-based diagnosis is complex, but
our results suggest that it is tractable for non-trivia! programs.
This gives us optimism that the remaining obstacles to
achieving high performance over a wide range of student
populations and programming problems can be overcome in due
course.

References

1. Adam, A. and Laurent, J. “LAURA, A System to Debug
Student Programs.” Artificial Intelligence 15 (1980), 75-122.

2. Bonar, J. and Soloway, E. Uncovering Principles of Novice
Programming. SIGPLAN-SIGACT Tenth Symposium on the
Principles of Programming Languages, 1983.

3. Chandrasekaran, B. and Mittal, S. Deep Versus Compiled
Knowledge Approaches to Diagnostic Problem-Solving. Proc.
of the Nat. Conf. on Artificial Intelligence, AAAI,
August, 1982, pp. 349-354.

4. Davis, R. Diagnosis via Causal Reasoning: Paths of
!nteract,ion and the Locality Principle. Proc. of the Nat. Conf.
on Artifical Intelligence, AAAI, August, 1983, pp. 88-94.

5. Geneseret h, M. Diagnosis Using Hierarchical Design
hilodels. Proc. of the Nat. Conf. on Art. Intelligence, 1982, PP.
278-283.

6. Harandi, hi,T. Knowledge-Baaed Program Debugging: a
Heuristic Mode!. Proceedings of the 1983 SOFTFAIR,
SoftFair, 1983.

7. Johnson, \Y.L. Intention-Based Diagnosis of Programming
Errors. Tech. Rept. forthcoming, Yale University Department
of Computer Sci., 1984.

8. Johnson, L., Draper, S., and Soloway, E. Classifying Bugs
is a Tricky Business. Proc. NASA Workshop on Soft. Eng.,
1983.

9. Johnson, W.L., Soloway, E., Cutler, B., and Draper, S. Bug
Collection: I. Tech. Rept. 296, Dept. of Computer Science, Yale
University, October, 1983.

10. Lukey, F.J. ‘Understanding and Debugging Programs.”
ht. J. of Man-A4achine Studiea 12 (ISgO), 189-202.

11. Pople, H. E. Heuristic Methods for Imposing Structure on
I!! Structured Problems: The Structuring of Medical
Diagnostics. In Szolovits, P., Ed., Artificial Intelligence in
Medicine, West View Press, 1982.

12. Sedlmeyer, R. L. and Johnson, P. E. Diagnostic
Reasoning in Software Fault Localization. Proceedings of the
SIGSOFT Workshop on High-Level Debugging, SIGSOFT,
Asilomar, Calif., 1983.

13. Shapiro, D. G. Sniffer: a System that Understands Bugs.
Tech. Rept. Al Memo 638, MIT Artificial Intelligence
Laboratory, June, 1981.

14. Shapiro, E.. Algorithmic Program Debugping. MIT Press,
Cambridge, Mass., 1982.

15. Shortliffe, E.H.. Computer-Baaed Medical Consultationa:
MYCIN. American Elsevier Publishing Co., New York, 1978.

16. Soloway, E., Rubin, E., Woolf, B., Bonar, J., and Johnson,
W. L. “MENO-II: An Al-Based Programming Tutor.”
Journal of Computer-Baaed Instruction IO, 1 (1983).

17. Soloway, E. and Ehrlich, K. “Empirical Investigations of
Programming Knowledge.” IEEE Tran8actions of Software
Engineering SE-IO, In press (1984).

168

