
Hardware and Software Architectures for Efficient AI

Michael F. Doming

Fairchild Laboratory for Artificial Intelligence Research
Fairchild Camera and Instrument Corporation

4001 Miranda Avenue
Palo Alto, California 94304

Abstract

With recent advances in AI technology, there has been in-
creased interest in improving AI computational throughput
and reducing cost, as evidenced by a number of current pro-
jects. To obtain maximum benefit from these efforts, it is
necessary to scrutinize possible efficiency improvements at
every level, both hardware and software. Custom AI
machines, better AI language compilers, and massively paral-
lel machines can all contribute to efficient AI computations.
However, little information is available concerning how to
achieve these efficiences. A systematic study was undertaken
to fill this gap. This paper describes the main results of that
study, and points out specific improvements that can be made.
The areas covered include: AI language semantics, AI
language compilers, machine instruction set design, parallel-
ism, and important functional candidates for VLSI implemen-
tation such as matching, associative memories, and signal to
symbol processing for vision and speech.

1 Introduction

As AI software grows in complexity, and as AI applica-
tions move from laboratories to the real world, computational
throughput and cost are increasingly important concerns.

In general, there are two motives for increasing the
efficiency of computations. One is the need to obtain faster
computation, regardless of cost. This may be due to explicit
real-time constraints. It may also be due to current methods
being taxed well beyond the limit of complexity or timely
response. The other is when increases in computational
efficiency are part of an overall effort to obtain a better
cost/performance ratio. Both these motives arise within AI,
and causes for each will be examined. Behind both, however,
is usually the imperative of real world market pressures.

Opportunities for increased efficiencies in AI computa-
tions exist at every level. Improved instruction set designs
combined with improved AI language semantics allow more
powerful compiler optimixations to be performed. Con-
current machines allow parallel execution of Lisp and
declarative constructs, raising issues of Md, or and szreum
parallelism. Custom VLSI implementations for current AI
performance bottlenecks are also possible, via devices such as
hardware unifiers, associative memory, and communication
hardware for coordinating parallel search. Many of these
speed-ups are orthogonal and can potentially lead to multipli-
cative performance enhancements of several orders of magni-
tude. However, this is not always the case, as the optimiza-
tions can sometimes interfere. For example, some language
optimixations may tend to serialize the computation, negating
parallelism gains.

As part of an effort to design a massively concurrent
architecture for AI computation (the Fairchild FAIM-1 prc+
ject), a comprehensive study was done to determine potential
throughput increases at various levels and their interactions.
This paper will examine several results of this study.

2 Misconception

There are several misconceptions of what needs to be
done to improve computational throughput for AI. Since
most AI is done in Lisp, many believe the key is simply to
make Lisp a few orders of magnitude faster. However this
approach ignores potential speed-ups that may be easier to
obtain elsewhere. Others see no reason to concentrate upon
anything other than the fundamental problem of parallelism.
This approach presumes routine solution of a very difficult
problem: decomposing arbitrary AI computations to
effectively use thousands of parallel processors. A problem
with this is that most programs, even ones with a high degree
of inherent parallelism, almost always have several serial
bottlenecks. As an example, most parallel programs need to
gather the result of one batch of parallel computations for
reflection before generating the next batch. In many cases
these serial sections will dominate the running time of the
entire program. So one cannot ignore the issue of how to
extract as much serial speed as possible from languages and
machines. Otherwise it might be the case that, having built
an expensive parallel machine hundreds of times faster than
existing machines, a new compiler and/or microcode may
make some existing serial machine even faster1 The machine
coded unifier in the Crystal AI language, for instance, is two
orders of magnitude faster than the Lisp coded unifier in the
predecessor PEARL AI language [Deering 81a].

3 Software: What can be done to help
AI language implementations

3.1 Compile the language directly to machine code
Most “AI languages” per se are not complete computer

languages, but packages of routines on top of an existing
language (usually Lisp.) While this is a great way of rapidly
prototyping a language, and results in an order of magnitude
savings in development costs over a traditional full compiler,
it does not lead to very efficient implementations. If to
increase the speed of AI applications the extreme of building
custom parallel processors is being considered, it is silly not to
compile AI languages directly onto these processors. There is
a large body of computer science knowledge on compilation
that can be brought to bear, and great potential for

73

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

performance increase. (Consider the 100x plus speed
difference between most Lisp based Prolog interpreters and
Warren’s DEE-20 Prolog compiler [Warren 771.)

3.2 Make sure that the language is compilable
Because most AI language implementations have been

interpreters, issues of compilability generally have not been
thought through. Language features that seemed efficient in
an interpreted environment may be very slow when compiled,
if they are compilable at all. A proper choice of features in
light of a compiled environment will lead to more efficient
program execution.

3.3 Add extensive libraries of useful routines
Another problem with many AI languages is the lack of

general tools to support common applications. While it is
argued that this allows the user to write his own customized
tools (that may be very efficient), most users will do a much
worse job than the language implementor could. For exam-
ple, PEARL did not directly support any particular theorem
proving or search system (such as forward and backward
chaining), leaving the user to his own devices. But the MRS
system [Genesereth 831, while it provides a convenient meta-
level control for users to write their own search systems in,
also provides a range of built-in search strategies, from back-
ward chaining to full resolution theorem proving. The point
is that an extensive library of well written routines of general
use will speed the operation of typical user programs (not to
mention their development).

4 Hardware: What can be done to help
conventional computer instruction sets

It is often said that conventional computer instruction
sets are not well suited for AI software, but there has been
few attempts to quantify the reasons why. For older genera-
tion machines, severe address space limitations and lack of
flexible pointer manipulation facilities are easy to point to
[Fateman 781. But what of the new more modem machines,
such as the VAX, 68000,166ooo and RISC machines, and how
do they compare with the custom Lisp machines? (Such as
[Knight 811 and [Lampson SO].) To obtain insights into instruc-
tion set design, several Lisp systems and the fine details of
their implementation were examined [Deering 841. Several
things were learned. It is very important to identify how rich
of an environment one wishes to support. For example, con-
trary to many people’s expectations, on a large application
program, Franz Lisp [Foderaro 831 on a VAX-U/780 was not
significantly slower than Zetalisp on a Symbolics 3600. The
difference was that most all type checking and generic func-
tion capabilities were either turned off (by the programmer)
or missing in Franz, and the overall environment was much
poorer. Assuming that such things are not frills, the expense
of providing them on different architectures was examined.

Flexible Lisp processing depends upon dynamic type
checking and generic operations. Associating the data type
directly with the data object means that the data type will
always be at hand during processing, and this is the reason
that tagged memory architectures are well suited to lisp pro-
cessing. Because of this, the speed of various processors upon
the generic Lisp task was dependent upon how fast they
could effectively emulate a tagged memory architecture.

A number of experiments were performed to compare
Lisp systems and processor instruction sets. As a representa-
tive sample, the timing results for a simple aggregate function
incorporating some of the most common Lisp primitives (car,
cdr, plus, function call/return) is shown in the table below:

Lisos vs. Processors on: 1

More extensive benchmarks have borne out (very) roughly
the same speed ratios. The variance exceeded 50%, but this
was not unexpected. Slight modifications of the compilers or
instruction sets produced similarly large changes in the speeds.

Existing Franz and PSL [Griss 821 compilers for the
VAX and 68000’9 were used to compile foo. Type checking
was turned off to obtain the fastest speeds. (Both PSL and
Franz were told not to verify that the arguments of + were
small integers, Franz did and PSL did not check for numeric
overflow .) The timings figures were generated by examination
of the assembly code produced and some actual machine tim-
ings. The timings of Zetalisp for the 3600 and CADR was
taken by running existing systems. Zetalisp-like operations
for the VAX and 68000’s were hand coded, and the timings
produced in the same way as those for PSL and Franz. The
68000 and 68010 were 10MHx no wait-state machines. The
68000 used 24 bit addresses, leaving the upper 8 data bit free
for tag values. The 68010 used 32 bit addresses, and required
the tags to be anded off before addresses could be used.
The 68020 timings are estimates based upon the best available
(but sketchy) preliminary performance data for a full 32 bit
16MHx machine with a small instruction cache.

Other experiments examined the architectural require-
ments for fast computation of some AI operations not
directly supported by Lisp, in particular unification and asso-
ciative search. When AI languages are fully compiled, these
two functions many times become the computational
bottlenecks. For traditional microprocessor instruction sets,
the requirements of these operations turned out to be the
same as for Lisp primatives: fast simulation of tagged archi-
tectures. More specifically, the instructions and capabilities
that would make a conventional microprocessor better suited
for Lisp (and Prolog, Krypton, MRS, PEARL, etc.) are:
0 “Extract bit field and dispatch”, an instruction to extract

a sequence of bits from an operand, then add these bits
to a dispatch table address, and jump indirect. This is
necessary for rapid handling of tag values in generic
operations, type checking, and for helping with
unification.

0 “Extract two bit fields, concat, and dispatch*‘, an instruc-
tion for dispatching upon the context of zwo operands.
(needed for the same reasons as the single argument ver-
sion.)

0 The memory address system of the processor should
ignore the upper address bits of data addresses that are
not otherwise in use. This allows the wasted space in 32
bit pointers to be used as a tag field.
In the Zetalisplike code, more than 30% of the time on

the 68000’s was spent in emulating the bit field dispatch
instructions. Stripping off the tag bits accounted for another
approximately another 10%. It is therefore estimated that if
the existing microprocessors had hardware support for these
features, full type checking Lisps (like Zetalisp) could run
almost twice as fast. These percentages come from hand
implementing several Zetalisp primatives on current
microprocessors. As an example, below the 68010 assembler
code is shown for CAR. The number of processor clock

74

cycles per instruction is shown in the left hand column. The
boxed code will later be replaced by a single instruction.

ZUalisp car for Ml0

; To take the car we do a few lines of in line code and
; then index jump to a subroutine. (Space for time.)
; The cons cell to take the car of is assumed in a0.

; dispatch to CAR subr baaed upon the tag in upper bits of a0
4 move1 aO,d2 ;putacopyoftheargintod2

24 Ml #t&d2 ; first 8 of: shift copy over by 9 bits
10 lsll r&d2 ; last 1 of: shift copy over by 9 bits
14 andl #QlFO,d2 ; and off non-tag (shifted over)
18 ig CAR(d2) ; branch to car table indexed by type

; At return. the car of the obicct is in a2

; The CAR subroutine.
CAR + DTP-CONS: ; CAR procedure entry point

$or normal cons cell.
; We will arrive here if the argument passed to car was of type
; *inter to cons cell”. Other objects passed to car => error

; dispatch to TRANSPORT subr based upon the tag
; in the upper bits of a2
4 move1 a2,d2 ; put a copy into d2

24 lall #8,d2 ; first 8 of: shift copy over by 9 bits
10 lsll r&d2 ; last 1 of: shift copy over by 9 bits
14 andl #oxlFO,d2 ; and off non-tag (shifted over)
10 jmp TRANSPORT(d2) ; branch to car table

; indexed by type.
; The reason for this jump is to check

; for possible invisible pointers, unbound, etc.

TRANSPORT + NORMAL: ; jump entry point for normal
son8 cell contents

8 ru ; We’re all done, return

174 clocks, @lOMHz = 17&r

Now CAR for the 68010 will be recoded assuming two archi-
tectural refinements. First assume t&t the upper 7 bits of all
addresses be ignored by the (virtual) memory system.
Second, assume one additional instruction “extract bit field
and dispatch”. This instruction takes the bit field out of the
second argument, as specified by the first argument (format:
< #starting-bit, field-width>), adds it to the third argument
(the jump table base address), and jump indirect through this
address.

; N<rr the car routine is recoded using the new instructions:
; index jump to a subroutine.
; dispatch to CAR subr based upon the tag in upper bits of a0
22 extractdispatch < #26,#6> ,aO,CAR

; The CAR subroutine.
CAR + DTP-CONS: ; CAR procedure entry point for

; normal cons cell.
; follow the pointer to the car
l2 moveal (aO)& ; the upper 6 bits of a0 are ignored.
; dispatch to TRANSPORT subr based upon the tag
;intheuppcrbitsofa2
22 extractdispatch < #26,#6> &DISPATCH

TRANSPORT + NORMAL: ; jump entry point for normal
; cons cell contents

8 rts ; We’re all done, return

64 clocks, @lOMHz = 6&s, 2.7 rdes ftzua

For new, fully custom machine designs which are
tailored specifically for AI, such features can all be built in.
With a tagged architecture, many generic operations, such as
“add”, do not need to be dispatch subroutine calls. Rather
the processor can examine the tags of the arguments to an
add instruction, and if they are simple integers, directly per-
form the add. If the arguments are of a more exotic numeric
type, the processor can generate a software interrupt to an
appropriate routine. Further, for such designs it is very help
ful to have a “smart” memory subsystem capable of rapidly
chasing down indirect pointers (as on the PDP-10 and the cus-
tom Lisp machines). Additional customizations of a special
AI instruction set design generally fall into the category of
complete attached processors rather than just another instruc-
tion. This tactic has already been taken by many micropre
cessors whose floating point instructions are handled by what
could be viewed as attached processors. The specific
categories of important attached processors include: pipelined
unifiers, associative memory sub-systems, multiprocessor com-
munication packet switchers, and special signal processing
chips for vision and speech.

Studies of a custom instruction set for the FAIM-1
machine indicate that not only can a single processor be
designed that is memory bound by DRAM access delays, but
that this is the case even when a large cache is employed.
This is an important fact. It means that parallel machines
sharing a single large common memory are a bad idea, there
is not enough memory bandwidth to go around.

5 Parallelism: The great hope

Traditionally, concurrency has been viewed as a great
method of obtaining increased computational power. In prac-
tice, however, designers continue to concentrate upon making
single processor machines faster and faster. However, now
that hard technological limits have been hit for serial proces-
sors, parallelism has become recognized as perhaps the only
hope for further orders of magnitude performance increases.
Unfortunately concurrency is not free as it brings new sy+
terns organizational problems to the fore.

The first conceptual problem with parallelism is the con-
fusion between multi-processing and multi-processors. There
are algorithms that are very elegantly expressed in terms of a
set of cooperating processes (e.g. writers and readers), but
these same algorithms have little or no inherent puraflelism
that can be exploited by parallel computers. Just because an
algorithm can be expressed in concurrent terms is no guaran-
tee that, when run on many parallel processors, it will run
significantly faster than as separate processes on a single
sequential machine.

The true measure of parallelism is how much faster a
given program will run on n simple parallel processors com-
pared to how fast it would run on a single simple processor,
and for what ranges of n this is valid. The best one can hope
for in principle is a factor of n speedup, but in practice this is
rarely reached (due to overheads and communication conten-
tion). The maximum amount of speedup attained for a given
program upon any number of parallel processors indicates the
inherent parallelism of that program. Unfortunately, for
most existing programs written in traditional computer

75

languages, the maximum parallelism seems to be about 4
(Gajski 821. This surprisingly low number is due to the style
of programming enforced by the traditional languages. There
are special purpose exceptions to this rule, and the hope is
that non-traditional parallel languages will encourage more
concurrent algorithms. Compilers for parallel machines can
take advantage of techniques such as Md, or, and stream
parallelism if AI languages support concurrent control struc-
tures that will gives rise to them. But the jury is still out as to
the amount of speed up such techniques can deliver.

Another problem in parallelism is failure to take the
entire systems context into account. Before building a paral-
lel machine one must not only simulate the machine but
determine how to write large programs for it. This will reveal
potential flaws in the machine before commencing with time
consuming hardware development. If however the simulation
does not properly take scheduling and technologically realistic
hardware communication overhead into account, the timings
produced will have little or no connection to reality.

Good examples of software systems that have not taken
realistic hardware considerations into account are some of the
parallel Lisps that have been proposed, such as [Gabriel 841.
These proposals point out places in Lisp-like processing where
multiple processors could be exploited, but they do not
analyze the overheads incurred. They usually assume that
multiple processors are sharing a single large main memory
where cons cells and other lisp objects are being stored. This
is equivalent to assuming that memory is infinitely fast, which
is just as un-realistic as assuming that processors are infinitely
fast. The problem is that with current technology a single
well designed Lisp processor could run faster than current
mass memory technology could service it. Adding additional
processors would thus not result in any throughput increase.
There are several reasons why designers of parallel Lisps may
have missed this fact. Perhaps one is that current 68000 Lisps
are not memory bound. Another is the potential use of
caches to reduce the required memory bandwidth to each
processor. However even with caching, the number of pro-
cessors that can be added is not unlimited; a 90% hit rate
cache would allow only ten processors. What about the
thousand processor architectures desired? Finally, experimen-
tal data shows that a single processor can run signi6cantly fas-
ter than memory can service it: one must employ a cache just
to keep a single processor running full tilt! The lesson is that
processors are still much faster than (bulk) memories, and
any sharing of data between multiple processors (beyond a
few) must be done with special communication channels. In
other words, MIMD machines with a single shared memory
are a bad parallel architecture. This has important implica-
tions for some AI paradigms, such as Blackboard systems and
Production systems that (in their current forms) rely upon
memory for communication between tasks.

This is not to say that there are not opportunities for
spreading Lisp like processing across hundreds of processors.
There are many techniques other than a single shared
memory system for connecting processors. More realistic
areas of research are the spreading of parallel inference com-
putation via techniques of und, or, and streum parallelhun.
The point is that all of these techniques incur some overhead,
and one cannot simply solve the parallel computation prob
lem by saying that arguments to functions should be
evaluated in parallel. One must first study hardware teclmol-
ogy to determine what at what grain sixes parallelism is fess-
able, and then figure out how to make AI language compilers
decompose programs into the appropriate size pieces.

6 Generic AI problems for custom VLSI

One of the main hopes for more efficient computation
in the future is the use of custom VLSI to accelerate particu-
lar functions. The ideal functions for silicon implementation
should currently be bottlenecks in AI systems, and generic to
many AI tasks. Four classes of operations were identified
that fit this description: symbolic matching of abstract objects,
semantic associative memory, parallel processor communica-
tion, and signal to symbol processing. Each will now be
examined in detail.

6.1 Matching and Fctdbg
The concept of matching two objects is a general and

pervasive operation. Most AI languages define one or more
match functions on their structured data types (such as
frames.) Some of these match functions are very ad-hoc
(thus supposedly flexible), but others are sub- or super-sets of
unification. If significant support for matching is to be pro-
vided in hardware, the match function must have well defined
semantics.

When a match function is applied to a data base of
objects, the operation is called fetching. In this case matching
becomes the inner loop operation, and this is a context in
which matching should be optimized. An ideal solution
would integrate matching circuitry in with memory circuitry,
so that fetching would become a memory access of a content
addressable memory (CAM). The choice of match function
is critical. To obtain reasonable memory densities, the rela-
tive silicon area of match circuitry cannot overwhelm that of
the memory circuitry. Unfortunately, full unification and
more complex match functions require too much circuitry to
be built into memory cells. But if a formal subset of
unification could be built in, then the CAM could act as a
pre-filter function for unification.

The primary source of unification complexity is the
maintenance of the binding environment. The match func-
tion of muck un+xtbn resembles full unification, except that
all variables are treated as “don’t cares”, and no binding list is
formed. It is the most powerful subset of unification that is
state-free. Because of this, mock unification is a suitable can-
didate for integration into VLSI memory. We name associa-
tive memory systems that utilixe mock unification as their
match function CxAM’s: Context Addressable Memories.

From a hardware point of view, designing associative
memory architectures involves a resource tradeoff between
processing and memory: the more hardware devoted to
“matching” the more data that can be examined in parallel,
leading to faster search time per bit of storage. But con-
versely, the more matching hardware there is, the smaller the
amount of hardware that can be devoted to data memory,
and the lower the density of the associative memory. The
data path widths of the match hardware is also a factor in
making these tradoffs. Therefore associative memories can
be rated by their storage density (bits stored per unit silicon
area) and search throughput (bits searched per unit time per
unit silicon area).

We examined two classes of associative memory in
which the match function is mock unification. One
integrated the matching circuitry in with memory circuitry,
the other was hash based. Hashing was considered because in
many applications in the past software hashing has dominated
CAM technology [Feldman 691. In more detail the two
classes are:

76

Brute force search. The contents of a memory is exhaus-
tively searched by some number of parallel match units.
For this class of search a custom VLSI mock uni6cation
memory architecture was designed.
Hashing. Objects to be fetched are hashed, and then the
collision list is serially searched by a match unit. A pro-
posed VLSI implementation of PEARL’s hashing scheme
(called the HCP: Hash Co-Processor) served as an embo-
diment of hash based searching. In this system the bit
storage is conventional DRAM.

Bits EQed/(nanosecondWu&)
4 T
3 --

CxAM-3: HCF’ 15K bits/mm2

1 2 3 4

Figure 1

Minimum System Configuration in Bits
1OOM -

Hash Based CxAM

100K --

10K -- Search Based CxAH

1K --/

4 8 12 16

Figure 2

Figures 1 and 2 display graphs of CxAM design space
trade offs. In figure 1 the range of bit and search power den-
sities are displayed. The hash based CxAM has a single
operating point because the fetch time is essentially indepcn-
dent of memory size, as is the density. The search based
CxAM has a variable range because one can vary the relative
proportions of storage and processing in such architectures.
The two lines represent two different search based architcc-
tures. One has inherently better bit density, but over most of
the design space this advantage is negated by an inherently
worse search throughput. However neither design completely
dominates the other, a choice between the two will depend
upon the relative storage density - match throughput balance
desired. In figure 2 the defect of the hashing CxAM is
displayed. The minimum usable size system is too large for
some applications.

Thus the trade-offs between these two schemes turn out
to be in density and minimum usable size. As a representa-
tive data point, both techniques could perform a mock-
unification of their entire local memory contents for an aver-
age query (an S-expression of length 16) in 5+. The density

of the search based CxAM was about eight times worse than
that of conventional single transistor DRAM. The hashing
scheme utilized conventional DRAMS, and so had high den-
sity. But the minimum configuration of a hash based CxAM
memory system utilizing standard 256K DRAMS is 10 mega-
bits, where as the search based CxAM can be configured for
much smaller system storage sizes.

This extreme high speed of 5~s portends very efficient
systems for those bottlenecked by data base fetch time. But
which technique should be used is very dependent upon grain
size. If one were constructing a large non-parallel machine, a
bank of HCP’s and conventional DRAMS would work well.
But for an array of small grain processors with onchip
memories, the search based CxAM approach is more tract-
able.

By combining a CxAM with software based routines, a
range of tailored matching services can be provided, with slid-
ing power-price/throughput trade-offs. The design of the
FAIM-1 machine provides an example of this. For each of
thousands of processors, there is parallel CxAM hardware for
mock unification, a single (pipelined) serial hard-wired full
unifier, and software support for post-unification matching
features (attached predicates and demons). With such a
hardware/software hierarchy, simple matches (like Lisp’s
equal) will run fast, whereas more complex matching services
(such as KRL’s [Bobrow 77D would cost more in time due to
the software component.

In summary, matching is a common operation ripe for
VLSI implementation, but the complexity of match functions
varies by orders of magnitude. Below a simple list of match
operations and data types are arranged in order of complex-
ity. Successful high performance AI machines will have to
carefully decompose these function into hardware and
cloftware components.

I Match Hierarchy I

Match Operation Object Type

CornDare Instructioa 32 bit data object

Lisp EQ Function Atomic Lisp Objecti

Lisa EOUAL Function s-E!xDressioIls

Mock Unification S-Exprcsaion with don’t cares

Unification S-Exprtion with Matching Variables

Unification 4% Prcdicatcn S-Exprcsaion with VariablcafF’rcdicatcs

Arbitrary User Code 1 Arbitrary Uacr Representation Objects

63 PoralleJ Proassa r Communicatfons
As mentioned several times previously, when utilizing a

number of processors in parallel, they cannot communicate
objects and messages by sharing a large common memory.
Some sort of special message passing (and forwarding)
hardware is absolutely essential for efficient handling of the
traffic. In many general purpose parallel processors, interpro-
cessor communication is rhe computational bottleneck.

6.3 Signal to Symbol processing
Despite all attention given to speeding up high level sym-

bolic computation, within some AI applications the main pro-
cessing bottleneck has been in the very low level processing
of raw sensory data. Within many vision systems 90% or
more of the run time may be incurred in the initial segmenta-
tion of the visual scene from pixels to low level symbolic con-
structs [Perkins 781. Moreover limitations of the higher level
vision processing usually are traceable to an inadequate initial
segmentation peering 81bJ Similar problems arise in many
speech systems. In such cases one should look to special pur-

77

pose VLSI processors to directly attack the problem. Exam-
ples include special image processing chips, such as
(Kurokawa 831, and speech chips, such as [Burleson 831. As
array processors have shown us, for these special processors
to be usable by programmers, they need to be very well
integrated with the other hardware and software components
of the system, and as transparent as possible to the program-
mer. As most AI programmers are not good microcode
hackers, one is in trouble if this is the only interface with a
special device.

7 Conclusion

Feldman 691 J. Feldman and P. Rovner, “An Algol
Based Associative Language,” Commun.
ACM, Vol. X2, No. 8, Aug. 1969.

[Foderaro 831 J. Foderaro, “The Franz Lisp System,’
unpublished memo in Be&fey 42 UNIX
Distribution, Sept. 1983.

[Gabriel 841 R. Gabriel and J. McCarthy, “Queue-based
Multi-processing Lisp”, preprint, 1984.

[Gajski 821 D. Gajski, D. Pradua, D. Kuck and R.
Kuhn, “A Second Opinion on Data Flow
Machines and Languages,” IEEE Computer,
Vol. IS, No. 2, Feb. 1982, pp. 5869.

[Genesereth 831 M. Genesereth, “An overview of Meta-
Level Architecture,” in Proc. AAAI83,
Washington, DC., 1983. Opportunities for increased efficiency are present at all

levels of AI systems if we only look, but to obtain the orders
of magnitude throughput increases desired all these potential
improvements must be made. We must make hard trade offs
between traditional AI programming practices and the discip-
line necessary to construct algorithms than can make effective
use of large multiprocessors. We must compile our AI
languages, and these compilers must influence instruction set
design. Key computational bottlenecks in AI processing must
be attacked with custom silicon. There is a real need to use
concurrency at all levels where it makes sense, but the over-
head must be analyzed realistically.

Acknowledgments

The author would like to acknowledge the contributions
of members of the FAIM-1 project: Ken Olum for his colla-
boration on the instruction set benchmarks, Ian Robinson and
Erik Brunvand for their VLSI CxAM designs, and Al Davis
for overall architectural discussions.

[Bobrow 771

[Burleson 831

[Deering ala]

[Deering 81b]

[De-h w

[Fateman 781

REFERENCES

D. Bobrow and T. Winograd, “An overview
of KRL-O, a knowledge representation
language,” Cognitive Science, Vol. 1, No. 1,
1977.
“A Programmable Bit-Serial Signal Process-
ing Chip,” SM Thesis, MIT Dept. of Electri-
cal Engineering and Computer Science,
1983.
M. Deering, J. Faletti and R. Wilensky,

“PEARL - A Package for Efficient
Access for Representations in LISP,” in
Proc. NCM81, Vancouver, B.C., Canada,
Aug. 1981, pp. 930-932.
M. Deering and C. Collins, “Real-Time

Natural Scene Analysis for a Blind
Prosthesis,” in Proc. IJCAI81, Vancouver,
B.C., Canada, Aug. 1981, pp. 704-709.
M. Deering and K. Olum, “Lisp and Proces
sor Benchmarks,’ unpublished FLAIR
Technical Report, March 1984.
R. Fateman, “Is a Lisp Machine different
from a Fortran Machine?,” SIGSAM Vol.
12, No. 3, Aug. 1978, pp. 8-11.

[Griss 821

[Knight 811

[Kurokawa 831

[Lampson 801

[Perkins 781

[Warren 771

M. Griss and E. Benson, “Current Status of
a Portable Lisp Compiler,” SIGPLAN, Vol.
17, No. 6, in Proc. SIGPLAN ‘82 Symposium
on Compiler Construction, Boston, Mass.,
June. 1982, pp. 276283.
T. Knight, Jr., D. Moon, J. Holloway and
G. Steele, Jr., “CADR”, MIT AI Memo
528, March 1981.
H. Kurokawa, K. Matsumoto, M Iwashita
and T. Nukiyama, ‘The architecture and
performance of Image Pipeline Processor,”
in Proc. VLSI ‘83, Trondheim, Norway,
Aug. 1983, pp. 275284.
B. Lampson and K. Pier, “A Processor for a
High-Performance Personal Computer,”
Proc. 7th Symposium on Computer Architec-
ture, SigArcMEEE, La Baule, May 1980,
pp. 146160.
W. Perkins, “A model based vision system
for industrial parts,” IEEE Trans. Comput.,
Vol. C-27,1978, pp. 126-143.
D. H. Warren, “Applied Logic - Its Uses
and Implementation as a Programming
Tool,’ PhD. Dissertation, University of
Edinburgh, 1977, Available as Technical
Note 290, Artificial Intelligence Center, SRI
International.

78

