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Abstract 

With recent advances in AI technology, there has been in- 
creased interest in improving AI computational throughput 
and reducing cost, as evidenced by a number of current pro- 
jects. To obtain maximum benefit from these efforts, it is 
necessary to scrutinize possible efficiency improvements at 
every level, both hardware and software. Custom AI 
machines, better AI language compilers, and massively paral- 
lel machines can all contribute to efficient AI computations. 
However, little information is available concerning how to 
achieve these efficiences. A systematic study was undertaken 
to fill this gap. This paper describes the main results of that 
study, and points out specific improvements that can be made. 
The areas covered include: AI language semantics, AI 
language compilers, machine instruction set design, parallel- 
ism, and important functional candidates for VLSI implemen- 
tation such as matching, associative memories, and signal to 
symbol processing for vision and speech. 

1 Introduction 

As AI software grows in complexity, and as AI applica- 
tions move from laboratories to the real world, computational 
throughput and cost are increasingly important concerns. 

In general, there are two motives for increasing the 
efficiency of computations. One is the need to obtain faster 
computation, regardless of cost. This may be due to explicit 
real-time constraints. It may also be due to current methods 
being taxed well beyond the limit of complexity or timely 
response. The other is when increases in computational 
efficiency are part of an overall effort to obtain a better 
cost/performance ratio. Both these motives arise within AI, 
and causes for each will be examined. Behind both, however, 
is usually the imperative of real world market pressures. 

Opportunities for increased efficiencies in AI computa- 
tions exist at every level. Improved instruction set designs 
combined with improved AI language semantics allow more 
powerful compiler optimixations to be performed. Con- 
current machines allow parallel execution of Lisp and 
declarative constructs, raising issues of Md, or and szreum 
parallelism. Custom VLSI implementations for current AI 
performance bottlenecks are also possible, via devices such as 
hardware unifiers, associative memory, and communication 
hardware for coordinating parallel search. Many of these 
speed-ups are orthogonal and can potentially lead to multipli- 
cative performance enhancements of several orders of magni- 
tude. However, this is not always the case, as the optimiza- 
tions can sometimes interfere. For example, some language 
optimixations may tend to serialize the computation, negating 
parallelism gains. 

As part of an effort to design a massively concurrent 
architecture for AI computation (the Fairchild FAIM-1 prc+ 
ject), a comprehensive study was done to determine potential 
throughput increases at various levels and their interactions. 
This paper will examine several results of this study. 

2 Misconception 

There are several misconceptions of what needs to be 
done to improve computational throughput for AI. Since 
most AI is done in Lisp, many believe the key is simply to 
make Lisp a few orders of magnitude faster. However this 
approach ignores potential speed-ups that may be easier to 
obtain elsewhere. Others see no reason to concentrate upon 
anything other than the fundamental problem of parallelism. 
This approach presumes routine solution of a very difficult 
problem: decomposing arbitrary AI computations to 
effectively use thousands of parallel processors. A problem 
with this is that most programs, even ones with a high degree 
of inherent parallelism, almost always have several serial 
bottlenecks. As an example, most parallel programs need to 
gather the result of one batch of parallel computations for 
reflection before generating the next batch. In many cases 
these serial sections will dominate the running time of the 
entire program. So one cannot ignore the issue of how to 
extract as much serial speed as possible from languages and 
machines. Otherwise it might be the case that, having built 
an expensive parallel machine hundreds of times faster than 
existing machines, a new compiler and/or microcode may 
make some existing serial machine even faster1 The machine 
coded unifier in the Crystal AI language, for instance, is two 
orders of magnitude faster than the Lisp coded unifier in the 
predecessor PEARL AI language [Deering 81a]. 

3 Software: What can be done to help 
AI language implementations 

3.1 Compile the language directly to machine code 
Most “AI languages” per se are not complete computer 

languages, but packages of routines on top of an existing 
language (usually Lisp.) While this is a great way of rapidly 
prototyping a language, and results in an order of magnitude 
savings in development costs over a traditional full compiler, 
it does not lead to very efficient implementations. If to 
increase the speed of AI applications the extreme of building 
custom parallel processors is being considered, it is silly not to 
compile AI languages directly onto these processors. There is 
a large body of computer science knowledge on compilation 
that can be brought to bear, and great potential for 
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performance increase. (Consider the 100x plus speed 
difference between most Lisp based Prolog interpreters and 
Warren’s DEE-20 Prolog compiler [Warren 771.) 

3.2 Make sure that the language is compilable 
Because most AI language implementations have been 

interpreters, issues of compilability generally have not been 
thought through. Language features that seemed efficient in 
an interpreted environment may be very slow when compiled, 
if they are compilable at all. A proper choice of features in 
light of a compiled environment will lead to more efficient 
program execution. 

3.3 Add extensive libraries of useful routines 
Another problem with many AI languages is the lack of 

general tools to support common applications. While it is 
argued that this allows the user to write his own customized 
tools (that may be very efficient), most users will do a much 
worse job than the language implementor could. For exam- 
ple, PEARL did not directly support any particular theorem 
proving or search system (such as forward and backward 
chaining), leaving the user to his own devices. But the MRS 
system [Genesereth 831, while it provides a convenient meta- 
level control for users to write their own search systems in, 
also provides a range of built-in search strategies, from back- 
ward chaining to full resolution theorem proving. The point 
is that an extensive library of well written routines of general 
use will speed the operation of typical user programs (not to 
mention their development). 

4 Hardware: What can be done to help 
conventional computer instruction sets 

It is often said that conventional computer instruction 
sets are not well suited for AI software, but there has been 
few attempts to quantify the reasons why. For older genera- 
tion machines, severe address space limitations and lack of 
flexible pointer manipulation facilities are easy to point to 
[Fateman 781. But what of the new more modem machines, 
such as the VAX, 68000,166ooo and RISC machines, and how 
do they compare with the custom Lisp machines? (Such as 
[Knight 811 and [Lampson SO].) To obtain insights into instruc- 
tion set design, several Lisp systems and the fine details of 
their implementation were examined [Deering 841. Several 
things were learned. It is very important to identify how rich 
of an environment one wishes to support. For example, con- 
trary to many people’s expectations, on a large application 
program, Franz Lisp [Foderaro 831 on a VAX-U/780 was not 
significantly slower than Zetalisp on a Symbolics 3600. The 
difference was that most all type checking and generic func- 
tion capabilities were either turned off (by the programmer) 
or missing in Franz, and the overall environment was much 
poorer. Assuming that such things are not frills, the expense 
of providing them on different architectures was examined. 

Flexible Lisp processing depends upon dynamic type 
checking and generic operations. Associating the data type 
directly with the data object means that the data type will 
always be at hand during processing, and this is the reason 
that tagged memory architectures are well suited to lisp pro- 
cessing. Because of this, the speed of various processors upon 
the generic Lisp task was dependent upon how fast they 
could effectively emulate a tagged memory architecture. 

A number of experiments were performed to compare 
Lisp systems and processor instruction sets. As a representa- 
tive sample, the timing results for a simple aggregate function 
incorporating some of the most common Lisp primitives (car, 
cdr, plus, function call/return) is shown in the table below: 

Lisos vs. Processors on: 1 

More extensive benchmarks have borne out (very) roughly 
the same speed ratios. The variance exceeded 50%, but this 
was not unexpected. Slight modifications of the compilers or 
instruction sets produced similarly large changes in the speeds. 

Existing Franz and PSL [Griss 821 compilers for the 
VAX and 68000’9 were used to compile foo. Type checking 
was turned off to obtain the fastest speeds. (Both PSL and 
Franz were told not to verify that the arguments of + were 
small integers, Franz did and PSL did not check for numeric 
overflow .) The timings figures were generated by examination 
of the assembly code produced and some actual machine tim- 
ings. The timings of Zetalisp for the 3600 and CADR was 
taken by running existing systems. Zetalisp-like operations 
for the VAX and 68000’s were hand coded, and the timings 
produced in the same way as those for PSL and Franz. The 
68000 and 68010 were 10MHx no wait-state machines. The 
68000 used 24 bit addresses, leaving the upper 8 data bit free 
for tag values. The 68010 used 32 bit addresses, and required 
the tags to be anded off before addresses could be used. 
The 68020 timings are estimates based upon the best available 
(but sketchy) preliminary performance data for a full 32 bit 
16MHx machine with a small instruction cache. 

Other experiments examined the architectural require- 
ments for fast computation of some AI operations not 
directly supported by Lisp, in particular unification and asso- 
ciative search. When AI languages are fully compiled, these 
two functions many times become the computational 
bottlenecks. For traditional microprocessor instruction sets, 
the requirements of these operations turned out to be the 
same as for Lisp primatives: fast simulation of tagged archi- 
tectures. More specifically, the instructions and capabilities 
that would make a conventional microprocessor better suited 
for Lisp (and Prolog, Krypton, MRS, PEARL, etc.) are: 
0 “Extract bit field and dispatch”, an instruction to extract 

a sequence of bits from an operand, then add these bits 
to a dispatch table address, and jump indirect. This is 
necessary for rapid handling of tag values in generic 
operations, type checking, and for helping with 
unification. 

0 “Extract two bit fields, concat, and dispatch*‘, an instruc- 
tion for dispatching upon the context of zwo operands. 
(needed for the same reasons as the single argument ver- 
sion.) 

0 The memory address system of the processor should 
ignore the upper address bits of data addresses that are 
not otherwise in use. This allows the wasted space in 32 
bit pointers to be used as a tag field. 
In the Zetalisplike code, more than 30% of the time on 

the 68000’s was spent in emulating the bit field dispatch 
instructions. Stripping off the tag bits accounted for another 
approximately another 10%. It is therefore estimated that if 
the existing microprocessors had hardware support for these 
features, full type checking Lisps (like Zetalisp) could run 
almost twice as fast. These percentages come from hand 
implementing several Zetalisp primatives on current 
microprocessors. As an example, below the 68010 assembler 
code is shown for CAR. The number of processor clock 
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cycles per instruction is shown in the left hand column. The 
boxed code will later be replaced by a single instruction. 

ZUalisp car for Ml0 

; To take the car we do a few lines of in line code and 
; then index jump to a subroutine. (Space for time.) 
; The cons cell to take the car of is assumed in a0. 

; dispatch to CAR subr baaed upon the tag in upper bits of a0 
4 move1 aO,d2 ;putacopyoftheargintod2 

24 Ml #t&d2 ; first 8 of: shift copy over by 9 bits 
10 lsll r&d2 ; last 1 of: shift copy over by 9 bits 
14 andl #QlFO,d2 ; and off non-tag (shifted over) 
18 ig CAR(d2) ; branch to car table indexed by type 

; At return. the car of the obicct is in a2 

; The CAR subroutine. 
CAR + DTP-CONS: ; CAR procedure entry point 

$or normal cons cell. 
; We will arrive here if the argument passed to car was of type 
; *inter to cons cell”. Other objects passed to car => error 

; dispatch to TRANSPORT subr based upon the tag 
; in the upper bits of a2 
4 move1 a2,d2 ; put a copy into d2 

24 lall #8,d2 ; first 8 of: shift copy over by 9 bits 
10 lsll r&d2 ; last 1 of: shift copy over by 9 bits 
14 andl #oxlFO,d2 ; and off non-tag (shifted over) 
10 jmp TRANSPORT(d2) ; branch to car table 

; indexed by type. 
; The reason for this jump is to check 

; for possible invisible pointers, unbound, etc. 

TRANSPORT + NORMAL: ; jump entry point for normal 
son8 cell contents 

8 ru ; We’re all done, return 

174 clocks, @lOMHz = 17&r 

Now CAR for the 68010 will be recoded assuming two archi- 
tectural refinements. First assume t&t the upper 7 bits of all 
addresses be ignored by the (virtual) memory system. 
Second, assume one additional instruction “extract bit field 
and dispatch”. This instruction takes the bit field out of the 
second argument, as specified by the first argument (format: 
< #starting-bit, field-width>), adds it to the third argument 
(the jump table base address), and jump indirect through this 
address. 

; N<rr the car routine is recoded using the new instructions: 
; index jump to a subroutine. 
; dispatch to CAR subr based upon the tag in upper bits of a0 
22 extractdispatch < #26,#6> ,aO,CAR 

; The CAR subroutine. 
CAR + DTP-CONS: ; CAR procedure entry point for 

; normal cons cell. 
; follow the pointer to the car 
l2 moveal (aO)& ; the upper 6 bits of a0 are ignored. 
; dispatch to TRANSPORT subr based upon the tag 
;intheuppcrbitsofa2 
22 extractdispatch < #26,#6> &DISPATCH 

TRANSPORT + NORMAL: ; jump entry point for normal 
; cons cell contents 

8 rts ; We’re all done, return 

64 clocks, @lOMHz = 6&s, 2.7 rdes ftzua 

For new, fully custom machine designs which are 
tailored specifically for AI, such features can all be built in. 
With a tagged architecture, many generic operations, such as 
“add”, do not need to be dispatch subroutine calls. Rather 
the processor can examine the tags of the arguments to an 
add instruction, and if they are simple integers, directly per- 
form the add. If the arguments are of a more exotic numeric 
type, the processor can generate a software interrupt to an 
appropriate routine. Further, for such designs it is very help 
ful to have a “smart” memory subsystem capable of rapidly 
chasing down indirect pointers (as on the PDP-10 and the cus- 
tom Lisp machines). Additional customizations of a special 
AI instruction set design generally fall into the category of 
complete attached processors rather than just another instruc- 
tion. This tactic has already been taken by many micropre 
cessors whose floating point instructions are handled by what 
could be viewed as attached processors. The specific 
categories of important attached processors include: pipelined 
unifiers, associative memory sub-systems, multiprocessor com- 
munication packet switchers, and special signal processing 
chips for vision and speech. 

Studies of a custom instruction set for the FAIM-1 
machine indicate that not only can a single processor be 
designed that is memory bound by DRAM access delays, but 
that this is the case even when a large cache is employed. 
This is an important fact. It means that parallel machines 
sharing a single large common memory are a bad idea, there 
is not enough memory bandwidth to go around. 

5 Parallelism: The great hope 

Traditionally, concurrency has been viewed as a great 
method of obtaining increased computational power. In prac- 
tice, however, designers continue to concentrate upon making 
single processor machines faster and faster. However, now 
that hard technological limits have been hit for serial proces- 
sors, parallelism has become recognized as perhaps the only 
hope for further orders of magnitude performance increases. 
Unfortunately concurrency is not free as it brings new sy+ 
terns organizational problems to the fore. 

The first conceptual problem with parallelism is the con- 
fusion between multi-processing and multi-processors. There 
are algorithms that are very elegantly expressed in terms of a 
set of cooperating processes (e.g. writers and readers), but 
these same algorithms have little or no inherent puraflelism 
that can be exploited by parallel computers. Just because an 
algorithm can be expressed in concurrent terms is no guaran- 
tee that, when run on many parallel processors, it will run 
significantly faster than as separate processes on a single 
sequential machine. 

The true measure of parallelism is how much faster a 
given program will run on n simple parallel processors com- 
pared to how fast it would run on a single simple processor, 
and for what ranges of n this is valid. The best one can hope 
for in principle is a factor of n speedup, but in practice this is 
rarely reached (due to overheads and communication conten- 
tion). The maximum amount of speedup attained for a given 
program upon any number of parallel processors indicates the 
inherent parallelism of that program. Unfortunately, for 
most existing programs written in traditional computer 
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languages, the maximum parallelism seems to be about 4 
(Gajski 821. This surprisingly low number is due to the style 
of programming enforced by the traditional languages. There 
are special purpose exceptions to this rule, and the hope is 
that non-traditional parallel languages will encourage more 
concurrent algorithms. Compilers for parallel machines can 
take advantage of techniques such as Md, or, and stream 
parallelism if AI languages support concurrent control struc- 
tures that will gives rise to them. But the jury is still out as to 
the amount of speed up such techniques can deliver. 

Another problem in parallelism is failure to take the 
entire systems context into account. Before building a paral- 
lel machine one must not only simulate the machine but 
determine how to write large programs for it. This will reveal 
potential flaws in the machine before commencing with time 
consuming hardware development. If however the simulation 
does not properly take scheduling and technologically realistic 
hardware communication overhead into account, the timings 
produced will have little or no connection to reality. 

Good examples of software systems that have not taken 
realistic hardware considerations into account are some of the 
parallel Lisps that have been proposed, such as [Gabriel 841. 
These proposals point out places in Lisp-like processing where 
multiple processors could be exploited, but they do not 
analyze the overheads incurred. They usually assume that 
multiple processors are sharing a single large main memory 
where cons cells and other lisp objects are being stored. This 
is equivalent to assuming that memory is infinitely fast, which 
is just as un-realistic as assuming that processors are infinitely 
fast. The problem is that with current technology a single 
well designed Lisp processor could run faster than current 
mass memory technology could service it. Adding additional 
processors would thus not result in any throughput increase. 
There are several reasons why designers of parallel Lisps may 
have missed this fact. Perhaps one is that current 68000 Lisps 
are not memory bound. Another is the potential use of 
caches to reduce the required memory bandwidth to each 
processor. However even with caching, the number of pro- 
cessors that can be added is not unlimited; a 90% hit rate 
cache would allow only ten processors. What about the 
thousand processor architectures desired? Finally, experimen- 
tal data shows that a single processor can run signi6cantly fas- 
ter than memory can service it: one must employ a cache just 
to keep a single processor running full tilt! The lesson is that 
processors are still much faster than (bulk) memories, and 
any sharing of data between multiple processors (beyond a 
few) must be done with special communication channels. In 
other words, MIMD machines with a single shared memory 
are a bad parallel architecture. This has important implica- 
tions for some AI paradigms, such as Blackboard systems and 
Production systems that (in their current forms) rely upon 
memory for communication between tasks. 

This is not to say that there are not opportunities for 
spreading Lisp like processing across hundreds of processors. 
There are many techniques other than a single shared 
memory system for connecting processors. More realistic 
areas of research are the spreading of parallel inference com- 
putation via techniques of und, or, and streum parallelhun. 
The point is that all of these techniques incur some overhead, 
and one cannot simply solve the parallel computation prob 
lem by saying that arguments to functions should be 
evaluated in parallel. One must first study hardware teclmol- 
ogy to determine what at what grain sixes parallelism is fess- 
able, and then figure out how to make AI language compilers 
decompose programs into the appropriate size pieces. 

6 Generic AI problems for custom VLSI 

One of the main hopes for more efficient computation 
in the future is the use of custom VLSI to accelerate particu- 
lar functions. The ideal functions for silicon implementation 
should currently be bottlenecks in AI systems, and generic to 
many AI tasks. Four classes of operations were identified 
that fit this description: symbolic matching of abstract objects, 
semantic associative memory, parallel processor communica- 
tion, and signal to symbol processing. Each will now be 
examined in detail. 

6.1 Matching and Fctdbg 
The concept of matching two objects is a general and 

pervasive operation. Most AI languages define one or more 
match functions on their structured data types (such as 
frames.) Some of these match functions are very ad-hoc 
(thus supposedly flexible), but others are sub- or super-sets of 
unification. If significant support for matching is to be pro- 
vided in hardware, the match function must have well defined 
semantics. 

When a match function is applied to a data base of 
objects, the operation is called fetching. In this case matching 
becomes the inner loop operation, and this is a context in 
which matching should be optimized. An ideal solution 
would integrate matching circuitry in with memory circuitry, 
so that fetching would become a memory access of a content 
addressable memory (CAM). The choice of match function 
is critical. To obtain reasonable memory densities, the rela- 
tive silicon area of match circuitry cannot overwhelm that of 
the memory circuitry. Unfortunately, full unification and 
more complex match functions require too much circuitry to 
be built into memory cells. But if a formal subset of 
unification could be built in, then the CAM could act as a 
pre-filter function for unification. 

The primary source of unification complexity is the 
maintenance of the binding environment. The match func- 
tion of muck un+xtbn resembles full unification, except that 
all variables are treated as “don’t cares”, and no binding list is 
formed. It is the most powerful subset of unification that is 
state-free. Because of this, mock unification is a suitable can- 
didate for integration into VLSI memory. We name associa- 
tive memory systems that utilixe mock unification as their 
match function CxAM’s: Context Addressable Memories. 

From a hardware point of view, designing associative 
memory architectures involves a resource tradeoff between 
processing and memory: the more hardware devoted to 
“matching” the more data that can be examined in parallel, 
leading to faster search time per bit of storage. But con- 
versely, the more matching hardware there is, the smaller the 
amount of hardware that can be devoted to data memory, 
and the lower the density of the associative memory. The 
data path widths of the match hardware is also a factor in 
making these tradoffs. Therefore associative memories can 
be rated by their storage density (bits stored per unit silicon 
area) and search throughput (bits searched per unit time per 
unit silicon area). 

We examined two classes of associative memory in 
which the match function is mock unification. One 
integrated the matching circuitry in with memory circuitry, 
the other was hash based. Hashing was considered because in 
many applications in the past software hashing has dominated 
CAM technology [Feldman 691. In more detail the two 
classes are: 
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Brute force search. The contents of a memory is exhaus- 
tively searched by some number of parallel match units. 
For this class of search a custom VLSI mock uni6cation 
memory architecture was designed. 
Hashing. Objects to be fetched are hashed, and then the 
collision list is serially searched by a match unit. A pro- 
posed VLSI implementation of PEARL’s hashing scheme 
(called the HCP: Hash Co-Processor) served as an embo- 
diment of hash based searching. In this system the bit 
storage is conventional DRAM. 

Bits EQed/(nanosecondWu&) 
4 T 
3 -- 

CxAM-3: HCF’ 15K bits/mm2 

1 2 3 4 

Figure 1 

Minimum System Configuration in Bits 
1OOM - 

Hash Based CxAM 

100K -- 

10K -- Search Based CxAH 

1K --/ 

4 8 12 16 

Figure 2 

Figures 1 and 2 display graphs of CxAM design space 
trade offs. In figure 1 the range of bit and search power den- 
sities are displayed. The hash based CxAM has a single 
operating point because the fetch time is essentially indepcn- 
dent of memory size, as is the density. The search based 
CxAM has a variable range because one can vary the relative 
proportions of storage and processing in such architectures. 
The two lines represent two different search based architcc- 
tures. One has inherently better bit density, but over most of 
the design space this advantage is negated by an inherently 
worse search throughput. However neither design completely 
dominates the other, a choice between the two will depend 
upon the relative storage density - match throughput balance 
desired. In figure 2 the defect of the hashing CxAM is 
displayed. The minimum usable size system is too large for 
some applications. 

Thus the trade-offs between these two schemes turn out 
to be in density and minimum usable size. As a representa- 
tive data point, both techniques could perform a mock- 
unification of their entire local memory contents for an aver- 
age query (an S-expression of length 16) in 5+. The density 

of the search based CxAM was about eight times worse than 
that of conventional single transistor DRAM. The hashing 
scheme utilized conventional DRAMS, and so had high den- 
sity. But the minimum configuration of a hash based CxAM 
memory system utilizing standard 256K DRAMS is 10 mega- 
bits, where as the search based CxAM can be configured for 
much smaller system storage sizes. 

This extreme high speed of 5~s portends very efficient 
systems for those bottlenecked by data base fetch time. But 
which technique should be used is very dependent upon grain 
size. If one were constructing a large non-parallel machine, a 
bank of HCP’s and conventional DRAMS would work well. 
But for an array of small grain processors with onchip 
memories, the search based CxAM approach is more tract- 
able. 

By combining a CxAM with software based routines, a 
range of tailored matching services can be provided, with slid- 
ing power-price/throughput trade-offs. The design of the 
FAIM-1 machine provides an example of this. For each of 
thousands of processors, there is parallel CxAM hardware for 
mock unification, a single (pipelined) serial hard-wired full 
unifier, and software support for post-unification matching 
features (attached predicates and demons). With such a 
hardware/software hierarchy, simple matches (like Lisp’s 
equal) will run fast, whereas more complex matching services 
(such as KRL’s [Bobrow 77D would cost more in time due to 
the software component. 

In summary, matching is a common operation ripe for 
VLSI implementation, but the complexity of match functions 
varies by orders of magnitude. Below a simple list of match 
operations and data types are arranged in order of complex- 
ity. Successful high performance AI machines will have to 
carefully decompose these function into hardware and 
cloftware components. 

I Match Hierarchy I 

Match Operation Object Type 

CornDare Instructioa 32 bit data object 

Lisp EQ Function Atomic Lisp Objecti 

Lisa EOUAL Function s-E!xDressioIls 

Mock Unification S-Exprcsaion with don’t cares 

Unification S-Exprtion with Matching Variables 

Unification 4% Prcdicatcn S-Exprcsaion with VariablcafF’rcdicatcs 

Arbitrary User Code 1 Arbitrary Uacr Representation Objects 

63 PoralleJ Proassa r Communicatfons 
As mentioned several times previously, when utilizing a 

number of processors in parallel, they cannot communicate 
objects and messages by sharing a large common memory. 
Some sort of special message passing (and forwarding) 
hardware is absolutely essential for efficient handling of the 
traffic. In many general purpose parallel processors, interpro- 
cessor communication is rhe computational bottleneck. 

6.3 Signal to Symbol processing 
Despite all attention given to speeding up high level sym- 

bolic computation, within some AI applications the main pro- 
cessing bottleneck has been in the very low level processing 
of raw sensory data. Within many vision systems 90% or 
more of the run time may be incurred in the initial segmenta- 
tion of the visual scene from pixels to low level symbolic con- 
structs [Perkins 781. Moreover limitations of the higher level 
vision processing usually are traceable to an inadequate initial 
segmentation peering 81bJ Similar problems arise in many 
speech systems. In such cases one should look to special pur- 
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pose VLSI processors to directly attack the problem. Exam- 
ples include special image processing chips, such as 
(Kurokawa 831, and speech chips, such as [Burleson 831. As 
array processors have shown us, for these special processors 
to be usable by programmers, they need to be very well 
integrated with the other hardware and software components 
of the system, and as transparent as possible to the program- 
mer. As most AI programmers are not good microcode 
hackers, one is in trouble if this is the only interface with a 
special device. 

7 Conclusion 
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levels of AI systems if we only look, but to obtain the orders 
of magnitude throughput increases desired all these potential 
improvements must be made. We must make hard trade offs 
between traditional AI programming practices and the discip- 
line necessary to construct algorithms than can make effective 
use of large multiprocessors. We must compile our AI 
languages, and these compilers must influence instruction set 
design. Key computational bottlenecks in AI processing must 
be attacked with custom silicon. There is a real need to use 
concurrency at all levels where it makes sense, but the over- 
head must be analyzed realistically. 
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