
SYNTAX PROGRAMMING

Stefan Feyock
Department of Computer Science
College of William and Mary
Williamsburg, Virginia 23185

ABSTRACT

This paper describes a new programming tech-
nology that is to syntax analysis as formal logic
is to logic programming, and which we have accord-
ingly named syntax programming. The table-driven
nature of bottom-up parsers provides this approach
with a number of attractive features, among which
are compactness, portability, and introspective
capability. Syntax programming has been success-
fully used for a number of applications, including
expert system construction and robot control as
well as non-AI problems.

1. - Introduction

This paper describes a new programming tech-
nology that is to syntax analysis and parser con-
struction as formal logic is to logic programming
(LP), and which we have accordingly named syntax
programming (SP). This approach is made plausible
by the strong formal similarity of BNF (Backus-
Naur Form) productions to Horn clauses, and
attractive by the power and elegance of present-
day parser construction technology.

Investigation of the syntax programming/logic
programming analogy has led to results which we
have found intriguing as well as encouraging. Like
logic programming, SP provides a production-
oriented programming framework similar to LP's
Horn clauses, with the attendant inducements to
orderly task composition and hierarchical program
structure. More interesting, however, are the
aspects of SP that differ from LP. SP programs are
inherently table-driven, handle information propa-
gation differently, and do not backtrack automati-
cally. It thus appears that LP and SP are not
direct competitors, but rather represent tailored
approaches to specific types of problems. We will
describe some of the strengths of SP, particu-
larly its efficiency and capability for self-
reference, and discuss work in progress toward a
synthesis of SP and LP.

2. Overview of parser technology - --

Our development of SP has been concerned with
bottom-up parsing techniques using some version of
LR parsing. Top-down techniques were considered
in the early phases of this project, and quickly
rejected: most grammars occurring "naturally" are
not parsable by the top-down approach, and must
undergo various transformations to make them
acceptable to such a parser. These transforma-
tions, which are usually acceptable in programming
language parsing, are not feasible in many AI
applications. Expert systems, for example, are
frequently required to display their rules to the
user in order to explain their reasoning. If these
rules have been distorted for the benefit of the
parser, they may no longer be comprehensible to
the user. We have found no instances, on the other
hand, where such distortions were necessary when
using the more powerful LR (specifically LALR)
parsing technique as a basis for SP.

We begin with a brief overview of the parser
construction technology underlying our work. We
will assume that the reader is familiar with BNF
notation, and that this overview constitutes a
review rather than an introduction to the basic
concepts of compiler construction for him; if not,
[l] is an appropriate source.

2.1. The MYSTRO Parser Generator -- ---

Our research has been performed using the
MYSTRO parser generation system developed at the
College of William and Mary [6]. This system is
written in Pascal, and was therefore easily modi-
fied as required for this project. Since MYSTRO's
basic organization is typical of the operation of
parser generators, our exposition will consist of
a description of this system.

As shown in Fig. 1, MYSTRO is a program
development tool that takes as input the BNF
specification of the language to be processed,
along with code specifying the semantics, i.e. the
operations to be performed when a particular syn-
tactic construct is encountered.

The input to MYSTRO consists of a series of
BNF productions and their associated semantics, as
shown in Fig. 2.

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

MYSTRO analyzes this grammar and, if no
errors are detected, produces a set of parse
tables which are subsequently utilized by the
parser to process its input. This parser is con-
structed by MYSTRO by inserting declarations,
scanner routines, and the semantics for each pro-
duction into a preexisting skeleton parser pro-
gram.

An LR parser reads and stacks input text
until the parse stack contains the right-hand side
(rhs) of the appropriate production, as determined
by the parse tables. At that time the semantics
associated with that production are executed. The
semantics stack referred to above is a parallel
stack to the parse stack. The semantics stack ele-
ments are typically records containing a field for

+------- ---- -- ---- -+
input grammar --> MYSTRO

parser generator
parser skeleton--> 1

+------------------+

I
parse tables

+---a-----+

user interaction <--> 1 parser 1
+---------+

The operation of MYSTRO

Fig. 1

* Lines with * in column 1 are comments.
* A < in column 1 signifies the beginning
* of the left-hand side (lhs)
* of a BNF production.
*
<declaration> ::= DECLARE <id> INTEGER;
* Here come the semantics,
* denoted by a blank in column 1.

<declaration>.location := get-free-word;
* The notation <symbol>.attribute
* occurring in the semantics is translated
* by MYSTRO into a semantics stack reference:
* sem stack[stack ptr].location := get free word;

<declaration>.type := integer; - -
<declaration>.value := <id>.value;

Typical BNF Production and associated semantics

Fig. 2

each item of interest, such as location, type9
value, etc. Upon completion of the semantics code
the rhs on the parse stack is replaced by the lhs
of the production.

2.2. Ambiguity Resolution --

It frequently happens that the grammar that
is given to the parser generator is not acceptable
to the parsing scheme used by the parser (MYSTRO
is a LALR narser generator). MYSTRO allows the
use of disambiguating predicates to deal with such
contingencies. When the parser reaches a parse
table entry corresponding to a shift/reduce con-
flict the decision is always to shift; this has
worked well in practice. Upon encountering a
reduce/reduce conflict, the disambiguating predi-
cates associated with the conflicting productions
are evaluated in order, and the first one whose
predicate evaluates to true is used. (If none of
the predicates evaluates to true, the last produc-
tion in sequence, which must not have a predicate
associated with it, is used.) The robot controller
given in the Appendix makes extensive use of such
disambiguating predicates, which are denoted by a
/ in column 1.

It should be noted that the disambiguating
predicates play the role of metarules: when more
than one rule "fires", these predicates are used
to establish priority. They have access to the
entire parsing environment, including the parse
stack, present parse state, and the parse tables
themselves, and thus can be used to do extensive
introspection if desired.

3. A Syntax Programming Example - --

3.1. Optimizer Expert System -- --

It is important to note that syntax program-
ming, like logic programming, is a general-purpose
software construction methodology rather than an
AI-specific tool. Like LP, however, SP appears
particularly I suited to the requirements of a
variety of AI problems. Our first example is
accordingly the SP version of an expert system
currently under development by J. Rogers at
NASA/Langley Research Center. It represents a con-
sultation system to be sent to prospective users
of the ADS-l General Purpose Optimization Program
[Ill, a large package of FORTRAN-based optimizer
programs for structural optimization. To use this
package the user must make a number of decisions
that depend on the nature of his optimization
problem. In particular, he must decide on the
strategy, optimizer, and type of one-dimensional
search to be used. These decisions can require
considerable expertise; the SP of Fig. 3 is an
excerpt from an SP expert system that provides
consultation to aid the user in making this deci-
sion.

This example serves to illustrate a number of
points regarding syntax programming. Perhaps the
most obvious is the extreme simplicity of this
program. While many of the productions that con-
stitute the actual system have been omitted, that
system differs from our excerpt only in the number
of productions. It should be emphasized that this
system is an actual application that is to be sent
out to ADS-l users, not a contrived toy problem.

111

It is interesting to note that much of the
simplicity results from the fact that an LR parser
maintains a large amount of information relevant
to the problem automatically in its states and
parse tables. Consider, for example, the item set
corresponding to state 3, depicted in Fig. 4.
(Readers not familiar with item sets: back to
[l]!) As can be seen, this state automatically
records the fact that "problem is gradient" is
known, as well as indicating clearly the facts yet
to be established. This automatically engendered
knowledge maintainance facility explains the scar-
city of explicit semantics associated with most of
the productions.

The s econd import ant point of this example is
that it is typical of applic ations that require

two of the fundamental advantages of syntax pro-
grams: compactness and portability. If an expert
consultant system is to be sent to a user commun-
ity accustomed to FORTRAN packages, it is not usu-
ally feasible to write the expert system in, say,
INTERLISP or one of the expert system generators
based on it, and then send the resulting system,
which is apt to be quite large, to the user along
with the blythe directive "Just put this system up
on your machine and you'll be all set." On the
other hand, the arguments against writing an
expert system ad hoc in FORTRAN or other algo-
rithmic languages are well known.

Syntax programs bypass both sets of difficul-
ties in an elegant manner. As depicted in Fig. 1,
the output of the parser generator is a set of

? AMBIGUOUS+ XREF- MAXIMA- SCAN- ECHO+
<answer> ::= <optimizer choice>

writeln(' END OF SESSTON. ');
<optimizer choice> ::= <strat:2,opt:2,ld_search:4>
* MYSTRO attaches no special significance to most special characters
* such as underscore, comma, or colon.
writeln(' STRATEGY IS 2, OPTIMIZER IS 2, AND lD-SEARCH IS 4. ')

*
<optimizer-choice> ::= <strat:2,opt:4,ld search:4>
writeln(' STRATEGY IS 2, OPTIMIZER IS 4, AND lD-SEARCH IS 4. ')

*
* (*** etc. --- other <optimizer choice> alternatives not shown ***) -
*
<strat:2,opt:2,ld_search:4> ::= <strat:2> <opt:2> <search:4>

<strat:2> ::= <?ask,problem,is,lst-order> <strat:2 or 4> - -

<strat:2 or 4> ::=
+ <?ask';prcblem,is,unconstrained>
+ <?ask,problem,has,more,than,5O,design,variables>
+ <?ask,problem,is,gradient>
+ <?ask,no,feasible,starting,points,can,be,found>
* + in column 1 denotes continuation of production

.
,

* (*** etc. --- remaining productions not shown ***)

Typical Productions from SP Optimizer Expert System

Fig. 3

State 3 <?ask,problem,is,gradient>
shift [71 <opt:3> ::=

<?ask,problem,is,gradient> . <?ask,problem,is,large,or,very,large>
shift [91 <opt:5> **=

<?ask,problem,is,g;adient> . <?ask,problem,is,medium,or,small>
.

Portion of Typical Item Set

Fig. 4

tables, which are plugged into a parser skeleton
to produce a running parser that embodies the
expert system. This parser skeleton can be in
whatever language is desired; we currently have a
parser skeleton in Pascal, one in LISP, and are
working on a FORTRAN version. Moreover, these
parser skeletons are quite compact: the Pascal
skeleton has fewer than 800 lines, while the LISP
skeleton is less than half as large.

3.2. Turning a Parser into an SP Processor -- -- ----

We now turn to an important technical aspect
of this example. Consider the production

<strat:2> ::=
<?ask,problem,is,lst-order> <strat:2 or 4> - -

Recall that entities enclosed in < -- > are con-
sidered to be single (nonterminal or pseudotermi-
nal) symbols, regardless of their length. The
symbol <strat:2 or 4> is a nonterminal defined on
the right-hand sTdeof a separate production. The
symbol <?ask,problem,is,lst-order>, on the other
hand, is a pseudoterminal of a kind unique to SP.
The scanner that is part of the parser skeleton
has been modified to give pseudoterminals begin-
ning with the character sequence "<?" special
treatment: such pseudoterminals are deemed to be
procedure calls to the (boolean) procedure named
after the "?". The pseudoterminal

<?ask,problem,is,lst-order>

is thus handled by the scanner as if it were the
procedure call

ask('problem is lst-order');

The procedure ask simply queries the user regard-
ing its inpuKtring; in this case it would gen-
erate

IS IT TRUE THAT problem is lst-order ?

If the user's response is "yes", the effect is as
if the pseudoterminal had indeed been encountered
as head-of-input, and the parser proceeds accord-
ingly; if not, the scanner seeks to establish the
presence (truth) of alternate pseudoterminals, as
directed by its tables. The pseudoterminals are
read in as part of these tables.

The parser/scanner modification we have just
described is critical to SP. It effectively
transforms the parsing environment from

input text --> scanner --> tokens --> parser
to

data base <--> scanner --> tokens --> parser

It is this generalization of the scanning mechan-
ism that transforms a parser from a language pro-
cessing device to a powerful general-purpose pro-
gramming tool.

4. Argument passing and control flow - ~-~-

We now turn to a comparison of two important
aspects in which SP and LP differ: argument pass-
ing and flow of control.

Information in LP is propagated up and down
the "parse tree", i.e. the tree of subgoals at a
given point in the computation, by means of
instantiation of argument variables as forced by
unification. We assume the reader is familiar with
this mechanism; if not, [3] and [7] are the stan-
dard references.

We have experimented with two approaches to
argument manipulation and information propagation
in connection with SP. One is the methodology we
have described in our overview of parsing technol-
%Y 9 which involves associating with each produc-
tion certain semantic actions which consist of
essentially unrestricted code written in the
language of the parser (Pascal or LISP in our
case) performing
environment and

arbitrary manipulat ion of the
database at the time a reduction

is pending.

This information propagation scheme has
several disadvantages. One of these is the
aforementioned lack of discipline: the programming
environment is that of the semantics language. For
example, if the semantics language is Pascal, the
semantics consist of essentially arbitrary Pascal
code.

A second disadvantage lies in the fact that
information residing in the semantics of symbols
on the parse stack below the left-hand side of the
current production is not accessible in an orderly
fashion; in other words, all attributes are syn-
thesized attributes.

4.1. Affix Grammars -- -

These disadvantages have led us to investi-
gate the feasibilty of using affix grammars [9],
which promised to provide a highly disciplined
information propagation method that has strong
formal similarity to the arguments used for infor-
mation propagation in logic programs. This
approach has proven to be highly productive, and
has been used in a number of SP programs. The
Appendix contains an SP program with affix argu-
ments that implements a robot controller similar
to the one presented in [lo]. A similar program
has been used (after preprocessing as described in
[9]> to control one of the robot arms in
NASA/Langley Research Center's Intelligent Systems
Research Laboratory.

The theory underlying LR parsing of affix
grammars is far too extensive to present in this
space; we must confine ourselves to a very brief
overview. Consider the production

<puton>!object,support ::=
<getspace>!object,support -place
<putat>!object,place

is entered, and that the database consists of

mother(ann,john),
father(harry,john),
father(harry,jane)

4.2. Control Flow and Backtracking in SP -- ~-- --
Since, like most logic programmers, we had become

accustomed to thinking of backtracking as a way of
life, it was with some surprise that we noted that
SP's lack of backtracking caused no difficulties
in the problems we attacked. This was true even
though these problems had not been chosen for
their lack of backtracking requirements; rather,
they were research problems that were "in the air"
at NASA/Langley Research Center. Nonetheless there
are many problems for which a backtracking solu-
tion is natural, and it is desirable for SP pro-
grams to be able cope with them.

4.3. -- Semantic Backtracking
One obvious solution lies in the fact that the

semantics of an SP program can contain calls to
arbitrary procedures written in or callable from
the language in which the parser is written. As
indicated, we have implemented a parser skeleton
in LISP, as well as one in Pascal that can call
Lispkit LISP code [5]. Thus arbitrary LISP,
Lispkit, or Pascal functions can be invoked, in
particular functions that implement Prolog-like
capabilities. PiL [8] provides such a function in
(full) LISP, while [2] describes a purely applica-
tive version suitable for a Lispkit LISP implemen-
tation. By this means backtracking can be con-
fined to situations where it is necessary for
searching the solution space, and need not be used
in roles which are more aptly filled by other con-
trol structures.

4.4. Transforming Backtracking into Database --
Queries
There is a further class of situations which are

implemented by means of backtracking in LP, but
which turn out to be easily implementable as
straightforward database searches. Consider this
example:

sibling(x,y) :- parent(z,x),parent(z,y).
/* sibling here actually refers to

sibling or half-sibling */
parent(z,x) :- mother(z,x).
parent(z,x) :- father(z,x).

Suppose the query

sibling(john,jane)?

(in that order). Then the subgoal parent(ann,john)
will be tried first, but will have to be
retracted, since parent(ann,jane) cannot be esta-
blished. An LR parser-driver SP program cannot
perform such a backup. A query such as this would
be handled by expressing it in terms of a database
query. In relational terms, the given query is
equivalent to the retrieval (in an idealized rela-
tional query language)

parent john intersect parent jane
where-parent john = {z father(z,john) }

union {z mother(z,john) }
and parent jane = (2 father(z,jane> } -

union {z 1 mother(z,jane) }

A retrieval such as this (or its equivalent in the
semantics language) would then appear as part of
the semantics of the SP program. We have found
that it is frequently possible to eliminate backup
by means of such a transformation.

5. - Discussion

Having presented the concepts underlying syntax
programming, we now examine some of the implica-
tions of this method of programming. These derive
largely from the fact that the behavior of an LR-
parser based syntax program is driven by the parse
tables it reads in. We have already discussed the
fact that SP programs thus inherit the compactness
and high speed exhibited by LR parsers in general.
We have not yet emphasized, however, one of the
most important implications of this fact: since an
SP program's behavior is determined by its parse
tables, and since these parse tables can form part
of the data base accesssed by the program, any SP
program has the potential for extensive introspec-
tion into its own operation. In particular it
appears straightforward to provide the user with
the capability to to ask questions such as " what
is your present state?" and "what are the
presently legal inputs?", and have the responses
generated automatically on the basis of the parse
tables and parse stack. ([4] discusses the imple-
mentation of a similar capability for transition
diagrams.) We consider this capability to be one
of the most exciting consequences of our method,
and are actively pursuing this aspect of SP.

5.1. Explanation of reasoning process --
The ability to explain its reasoning to the user

is an indispensable feature of expert systems.
SP-based expert systems achieve this effect very
neatly: since their mode of operation is based on
parsing, it is trivial for them to display their
parse tree, which is a representation of their
"reasoning process" so far.

114

6. Conclusion 4. Feyock, S., Transition Diagram-based CAI/HELP -
Systems, International Journal of Man-Machine Stu-

Syntax programming has been successfully applied dies 9, pp. 399-413, 1977.
to a number of problems in addition to those
presented in this paper. These problems include 5. Henderson, P, Functional Programming,
the Tower-of-Hanoi problem, a graph manipulator, Prentice-Hall, 1980.
an expert system to diagnose robot end effector
malfunctions, as well as a NASA-funded project to 6. Noonan, R., and R. Collins, The MYSTRO Parser

apply SP to the construction of an in-flight pilot Generator PARGEN User's Manual, Internal Report,

aid system to provide malfunction consultation. Dept. of Computer Science, College of William and

This last project is currently in progress and Mary, Willimamsburg, VA.
typifies the sort of problem for which SP is well
suited: the construction of rule-based expert sys- 7. Kowalski, R., Logic for Problem Solving, P-P
terns that feature the compact size and high execu- North-Holland, 1979.

tion speed inherent in table-driven LR parsing
technology. 8. Wallace, R., An Easy Implementation of PiL

(Prolog in LISP), SIGART Newsletter, No. 85, pp.
29-32, July 1983.

REFERENCES
9. Watt, D. The Parsing Problem for Affix Gram-
mars, Acta Informatica, v. 8, pp. l-20 (1977).

1. Aho, A., and J. Ullman, Principles of Compiler
Construction, Addison-Wesley, 1977. - 10. Winston, P., and B. Horn, LISP, Addison-

Wesley, 1981.

2. Carlsson, M., On Implementing Prolog in Func-
tional Programming, Proc. of the 1984 Interna-
tional Symposium on Logic Programming, pp. 154-159
Atlantic City, NJ, February 1984.

11. Vanderplaats, G., et al., ADS-l: A New
General-Purpose Optimization Program, Proceedings
of the AIAA/ASME/ASCE/AHS 24th Structures, Struc-
tural Dynamics, and Materials Conference, pp.

3. Clocksin, W., and C. Mellish, Programming in
117-123, Lake Tahoe, Nevada, May 1983.

-
Prolog, Springer-Verlag, 1981.

Appendix

<goal> ::= <readconds>^object,support
(apop 2) ; clear the affix stack

* This syntax program uses the LISP s
*
<readconds>^object,support ::=
(terpri) (print "object to move?,")
(terpri) (print "support?,") (apush

*
<puton>!object,support ::=

<getspace>!object,support "place
(apop 3) ;

*

<puton> b!obje ct , support

keleton.

(apush (read)
(read) > (terp

<putat>! objet t, place

(terpri)
ri

<eof>

<putat>!object,place ::=
<grasp>!object
<moveobject>!object,place
<ungrasp>!object

(apop 3) ;
*
***** Several productions have been omitted here for brevity
*
<notsupported> ::=
* epsilon productions often cause ambiguity (usually intentional)
! (! notsupported)
* If (! notsupported) returns true, this production fires.

***** Remaining productions have been omitted
***** Complete program avai lable upon request

for brevity.

115

