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ABSTRACT 

This paper describes a new programming tech- 
nology that is to syntax analysis as formal logic 
is to logic programming, and which we have accord- 
ingly named syntax programming. The table-driven 
nature of bottom-up parsers provides this approach 
with a number of attractive features, among which 
are compactness, portability, and introspective 
capability. Syntax programming has been success- 
fully used for a number of applications, including 
expert system construction and robot control as 
well as non-AI problems. 

1. - Introduction 

This paper describes a new programming tech- 
nology that is to syntax analysis and parser con- 
struction as formal logic is to logic programming 
(LP), and which we have accordingly named syntax 
programming (SP). This approach is made plausible 
by the strong formal similarity of BNF (Backus- 
Naur Form) productions to Horn clauses, and 
attractive by the power and elegance of present- 
day parser construction technology. 

Investigation of the syntax programming/logic 
programming analogy has led to results which we 
have found intriguing as well as encouraging. Like 
logic programming, SP provides a production- 
oriented programming framework similar to LP's 
Horn clauses, with the attendant inducements to 
orderly task composition and hierarchical program 
structure. More interesting, however, are the 
aspects of SP that differ from LP. SP programs are 
inherently table-driven, handle information propa- 
gation differently, and do not backtrack automati- 
cally. It thus appears that LP and SP are not 
direct competitors, but rather represent tailored 
approaches to specific types of problems. We will 
describe some of the strengths of SP, particu- 
larly its efficiency and capability for self- 
reference, and discuss work in progress toward a 
synthesis of SP and LP. 

2. Overview of parser technology - -- 

Our development of SP has been concerned with 
bottom-up parsing techniques using some version of 
LR parsing. Top-down techniques were considered 
in the early phases of this project, and quickly 
rejected: most grammars occurring "naturally" are 
not parsable by the top-down approach, and must 
undergo various transformations to make them 
acceptable to such a parser. These transforma- 
tions, which are usually acceptable in programming 
language parsing, are not feasible in many AI 
applications. Expert systems, for example, are 
frequently required to display their rules to the 
user in order to explain their reasoning. If these 
rules have been distorted for the benefit of the 
parser, they may no longer be comprehensible to 
the user. We have found no instances, on the other 
hand, where such distortions were necessary when 
using the more powerful LR (specifically LALR) 
parsing technique as a basis for SP. 

We begin with a brief overview of the parser 
construction technology underlying our work. We 
will assume that the reader is familiar with BNF 
notation, and that this overview constitutes a 
review rather than an introduction to the basic 
concepts of compiler construction for him; if not, 
[l] is an appropriate source. 

2.1. The MYSTRO Parser Generator -- --- 

Our research has been performed using the 
MYSTRO parser generation system developed at the 
College of William and Mary [6]. This system is 
written in Pascal, and was therefore easily modi- 
fied as required for this project. Since MYSTRO's 
basic organization is typical of the operation of 
parser generators, our exposition will consist of 
a description of this system. 

As shown in Fig. 1, MYSTRO is a program 
development tool that takes as input the BNF 
specification of the language to be processed, 
along with code specifying the semantics, i.e. the 
operations to be performed when a particular syn- 
tactic construct is encountered. 

The input to MYSTRO consists of a series of 
BNF productions and their associated semantics, as 
shown in Fig. 2. 
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MYSTRO analyzes this grammar and, if no 
errors are detected, produces a set of parse 
tables which are subsequently utilized by the 
parser to process its input. This parser is con- 
structed by MYSTRO by inserting declarations, 
scanner routines, and the semantics for each pro- 
duction into a preexisting skeleton parser pro- 
gram. 

An LR parser reads and stacks input text 
until the parse stack contains the right-hand side 
(rhs) of the appropriate production, as determined 
by the parse tables. At that time the semantics 
associated with that production are executed. The 
semantics stack referred to above is a parallel 
stack to the parse stack. The semantics stack ele- 
ments are typically records containing a field for 

+------- ---- -- ---- -+ 
input grammar --> MYSTRO 

parser generator 
parser skeleton--> 1 

+------------------+ 

I 
parse tables 

+---a-----+ 

user interaction <--> 1 parser 1 
+---------+ 

The operation of MYSTRO 

Fig. 1 

* Lines with * in column 1 are comments. 
* A < in column 1 signifies the beginning 
* of the left-hand side (lhs) 
* of a BNF production. 
* 
<declaration> ::= DECLARE <id> INTEGER; 
* Here come the semantics, 
* denoted by a blank in column 1. 

<declaration>.location := get-free-word; 
* The notation <symbol>.attribute 
* occurring in the semantics is translated 
* by MYSTRO into a semantics stack reference: 
* sem stack[stack ptr].location := get free word; 

<declaration>.type := integer; - - 
<declaration>.value := <id>.value; 

Typical BNF Production and associated semantics 

Fig. 2 

each item of interest, such as location, type9 
value, etc. Upon completion of the semantics code 
the rhs on the parse stack is replaced by the lhs 
of the production. 

2.2. Ambiguity Resolution -- 

It frequently happens that the grammar that 
is given to the parser generator is not acceptable 
to the parsing scheme used by the parser (MYSTRO 
is a LALR narser generator). MYSTRO allows the 
use of disambiguating predicates to deal with such 
contingencies. When the parser reaches a parse 
table entry corresponding to a shift/reduce con- 
flict the decision is always to shift; this has 
worked well in practice. Upon encountering a 
reduce/reduce conflict, the disambiguating predi- 
cates associated with the conflicting productions 
are evaluated in order, and the first one whose 
predicate evaluates to true is used. (If none of 
the predicates evaluates to true, the last produc- 
tion in sequence, which must not have a predicate 
associated with it, is used.) The robot controller 
given in the Appendix makes extensive use of such 
disambiguating predicates, which are denoted by a 
/ in column 1. 

It should be noted that the disambiguating 
predicates play the role of metarules: when more 
than one rule "fires", these predicates are used 
to establish priority. They have access to the 
entire parsing environment, including the parse 
stack, present parse state, and the parse tables 
themselves, and thus can be used to do extensive 
introspection if desired. 

3. A Syntax Programming Example - -- 

3.1. Optimizer Expert System -- -- 

It is important to note that syntax program- 
ming, like logic programming, is a general-purpose 
software construction methodology rather than an 
AI-specific tool. Like LP, however, SP appears 
particularly I suited to the requirements of a 
variety of AI problems. Our first example is 
accordingly the SP version of an expert system 
currently under development by J. Rogers at 
NASA/Langley Research Center. It represents a con- 
sultation system to be sent to prospective users 
of the ADS-l General Purpose Optimization Program 
[Ill, a large package of FORTRAN-based optimizer 
programs for structural optimization. To use this 
package the user must make a number of decisions 
that depend on the nature of his optimization 
problem. In particular, he must decide on the 
strategy, optimizer, and type of one-dimensional 
search to be used. These decisions can require 
considerable expertise; the SP of Fig. 3 is an 
excerpt from an SP expert system that provides 
consultation to aid the user in making this deci- 
sion. 

This example serves to illustrate a number of 
points regarding syntax programming. Perhaps the 
most obvious is the extreme simplicity of this 
program. While many of the productions that con- 
stitute the actual system have been omitted, that 
system differs from our excerpt only in the number 
of productions. It should be emphasized that this 
system is an actual application that is to be sent 
out to ADS-l users, not a contrived toy problem. 
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It is interesting to note that much of the 
simplicity results from the fact that an LR parser 
maintains a large amount of information relevant 
to the problem automatically in its states and 
parse tables. Consider, for example, the item set 
corresponding to state 3, depicted in Fig. 4. 
(Readers not familiar with item sets: back to 
[l]!) As can be seen, this state automatically 
records the fact that "problem is gradient" is 
known, as well as indicating clearly the facts yet 
to be established. This automatically engendered 
knowledge maintainance facility explains the scar- 
city of explicit semantics associated with most of 
the productions. 

The s econd import ant point of this example is 
that it is typical of applic ations that require 

two of the fundamental advantages of syntax pro- 
grams: compactness and portability. If an expert 
consultant system is to be sent to a user commun- 
ity accustomed to FORTRAN packages, it is not usu- 
ally feasible to write the expert system in, say, 
INTERLISP or one of the expert system generators 
based on it, and then send the resulting system, 
which is apt to be quite large, to the user along 
with the blythe directive "Just put this system up 
on your machine and you'll be all set." On the 
other hand, the arguments against writing an 
expert system ad hoc in FORTRAN or other algo- 
rithmic languages are well known. 

Syntax programs bypass both sets of difficul- 
ties in an elegant manner. As depicted in Fig. 1, 
the output of the parser generator is a set of 

? AMBIGUOUS+ XREF- MAXIMA- SCAN- ECHO+ 
<answer> ::= <optimizer choice> 

writeln(' END OF SESSTON. '); 
<optimizer choice> ::= <strat:2,opt:2,ld_search:4> 
* MYSTRO attaches no special significance to most special characters 
* such as underscore, comma, or colon. 
writeln(' STRATEGY IS 2, OPTIMIZER IS 2, AND lD-SEARCH IS 4. ') 

* 
<optimizer-choice> ::= <strat:2,opt:4,ld search:4> 
writeln(' STRATEGY IS 2, OPTIMIZER IS 4, AND lD-SEARCH IS 4. ') 

* 
* (*** etc. --- other <optimizer choice> alternatives not shown ***) - 
* 
<strat:2,opt:2,ld_search:4> ::= <strat:2> <opt:2> <search:4> 

<strat:2> ::= <?ask,problem,is,lst-order> <strat:2 or 4> - - 

<strat:2 or 4> ::= 
+ <?ask';prcblem,is,unconstrained> 
+ <?ask,problem,has,more,than,5O,design,variables> 
+ <?ask,problem,is,gradient> 
+ <?ask,no,feasible,starting,points,can,be,found> 
* + in column 1 denotes continuation of production 

. 
, 

* (*** etc. --- remaining productions not shown ***) 

Typical Productions from SP Optimizer Expert System 

Fig. 3 

State 3 <?ask,problem,is,gradient> 
shift [ 71 <opt:3> ::= 

<?ask,problem,is,gradient> . <?ask,problem,is,large,or,very,large> 
shift [ 91 <opt:5> **= 

<?ask,problem,is,g;adient> . <?ask,problem,is,medium,or,small> 
. . . . . . . 

Portion of Typical Item Set 

Fig. 4 



tables, which are plugged into a parser skeleton 
to produce a running parser that embodies the 
expert system. This parser skeleton can be in 
whatever language is desired; we currently have a 
parser skeleton in Pascal, one in LISP, and are 
working on a FORTRAN version. Moreover, these 
parser skeletons are quite compact: the Pascal 
skeleton has fewer than 800 lines, while the LISP 
skeleton is less than half as large. 

3.2. Turning a Parser into an SP Processor -- -- ---- 

We now turn to an important technical aspect 
of this example. Consider the production 

<strat:2> ::= 
<?ask,problem,is,lst-order> <strat:2 or 4> - - 

Recall that entities enclosed in < -- > are con- 
sidered to be single (nonterminal or pseudotermi- 
nal) symbols, regardless of their length. The 
symbol <strat:2 or 4> is a nonterminal defined on 
the right-hand sTdeof a separate production. The 
symbol <?ask,problem,is,lst-order>, on the other 
hand, is a pseudoterminal of a kind unique to SP. 
The scanner that is part of the parser skeleton 
has been modified to give pseudoterminals begin- 
ning with the character sequence "<?" special 
treatment: such pseudoterminals are deemed to be 
procedure calls to the (boolean) procedure named 
after the "?". The pseudoterminal 

<?ask,problem,is,lst-order> 

is thus handled by the scanner as if it were the 
procedure call 

ask('problem is lst-order'); 

The procedure ask simply queries the user regard- 
ing its inpuKtring; in this case it would gen- 
erate 

IS IT TRUE THAT problem is lst-order ? 

If the user's response is "yes", the effect is as 
if the pseudoterminal had indeed been encountered 
as head-of-input, and the parser proceeds accord- 
ingly; if not, the scanner seeks to establish the 
presence (truth) of alternate pseudoterminals, as 
directed by its tables. The pseudoterminals are 
read in as part of these tables. 

The parser/scanner modification we have just 
described is critical to SP. It effectively 
transforms the parsing environment from 

input text --> scanner --> tokens --> parser 
to 

data base <--> scanner --> tokens --> parser 

It is this generalization of the scanning mechan- 
ism that transforms a parser from a language pro- 
cessing device to a powerful general-purpose pro- 
gramming tool. 

4. Argument passing and control flow - ~-~- 

We now turn to a comparison of two important 
aspects in which SP and LP differ: argument pass- 
ing and flow of control. 

Information in LP is propagated up and down 
the "parse tree", i.e. the tree of subgoals at a 
given point in the computation, by means of 
instantiation of argument variables as forced by 
unification. We assume the reader is familiar with 
this mechanism; if not, [3] and [7] are the stan- 
dard references. 

We have experimented with two approaches to 
argument manipulation and information propagation 
in connection with SP. One is the methodology we 
have described in our overview of parsing technol- 
%Y 9 which involves associating with each produc- 
tion certain semantic actions which consist of 
essentially unrestricted code written in the 
language of the parser (Pascal or LISP in our 
case) performing 
environment and 

arbitrary manipulat ion of the 
database at the time a reduction 

is pending. 

This information propagation scheme has 
several disadvantages. One of these is the 
aforementioned lack of discipline: the programming 
environment is that of the semantics language. For 
example, if the semantics language is Pascal, the 
semantics consist of essentially arbitrary Pascal 
code. 

A second disadvantage lies in the fact that 
information residing in the semantics of symbols 
on the parse stack below the left-hand side of the 
current production is not accessible in an orderly 
fashion; in other words, all attributes are syn- 
thesized attributes. 

4.1. Affix Grammars -- - 

These disadvantages have led us to investi- 
gate the feasibilty of using affix grammars [9], 
which promised to provide a highly disciplined 
information propagation method that has strong 
formal similarity to the arguments used for infor- 
mation propagation in logic programs. This 
approach has proven to be highly productive, and 
has been used in a number of SP programs. The 
Appendix contains an SP program with affix argu- 
ments that implements a robot controller similar 
to the one presented in [lo]. A similar program 
has been used (after preprocessing as described in 
[9]> to control one of the robot arms in 
NASA/Langley Research Center's Intelligent Systems 
Research Laboratory. 

The theory underlying LR parsing of affix 
grammars is far too extensive to present in this 
space; we must confine ourselves to a very brief 
overview. Consider the production 

<puton>!object,support ::= 
<getspace>!object,support -place 
<putat>!object,place 



is entered, and that the database consists of 

mother(ann,john), 
father(harry,john), 
father(harry,jane) 

4.2. Control Flow and Backtracking in SP -- ~-- -- 
Since, like most logic programmers, we had become 

accustomed to thinking of backtracking as a way of 
life, it was with some surprise that we noted that 
SP's lack of backtracking caused no difficulties 
in the problems we attacked. This was true even 
though these problems had not been chosen for 
their lack of backtracking requirements; rather, 
they were research problems that were "in the air" 
at NASA/Langley Research Center. Nonetheless there 
are many problems for which a backtracking solu- 
tion is natural, and it is desirable for SP pro- 
grams to be able cope with them. 

4.3. -- Semantic Backtracking 
One obvious solution lies in the fact that the 

semantics of an SP program can contain calls to 
arbitrary procedures written in or callable from 
the language in which the parser is written. As 
indicated, we have implemented a parser skeleton 
in LISP, as well as one in Pascal that can call 
Lispkit LISP code [5]. Thus arbitrary LISP, 
Lispkit, or Pascal functions can be invoked, in 
particular functions that implement Prolog-like 
capabilities. PiL [8] provides such a function in 
(full) LISP, while [2] describes a purely applica- 
tive version suitable for a Lispkit LISP implemen- 
tation. By this means backtracking can be con- 
fined to situations where it is necessary for 
searching the solution space, and need not be used 
in roles which are more aptly filled by other con- 
trol structures. 

4.4. Transforming Backtracking into Database -- 
Queries 
There is a further class of situations which are 

implemented by means of backtracking in LP, but 
which turn out to be easily implementable as 
straightforward database searches. Consider this 
example: 

sibling(x,y) :- parent(z,x),parent(z,y). 
/* sibling here actually refers to 

sibling or half-sibling */ 
parent(z,x) :- mother(z,x). 
parent(z,x) :- father(z,x). 

Suppose the query 

sibling(john,jane)? 

(in that order). Then the subgoal parent(ann,john) 
will be tried first, but will have to be 
retracted, since parent(ann,jane) cannot be esta- 
blished. An LR parser-driver SP program cannot 
perform such a backup. A query such as this would 
be handled by expressing it in terms of a database 
query. In relational terms, the given query is 
equivalent to the retrieval (in an idealized rela- 
tional query language) 

parent john intersect parent jane 
where-parent john = {z father(z,john) } 

union {z mother(z,john) } 
and parent jane = (2 father(z,jane> } - 

union {z 1 mother(z,jane) } 

A retrieval such as this (or its equivalent in the 
semantics language) would then appear as part of 
the semantics of the SP program. We have found 
that it is frequently possible to eliminate backup 
by means of such a transformation. 

5. - Discussion 

Having presented the concepts underlying syntax 
programming, we now examine some of the implica- 
tions of this method of programming. These derive 
largely from the fact that the behavior of an LR- 
parser based syntax program is driven by the parse 
tables it reads in. We have already discussed the 
fact that SP programs thus inherit the compactness 
and high speed exhibited by LR parsers in general. 
We have not yet emphasized, however, one of the 
most important implications of this fact: since an 
SP program's behavior is determined by its parse 
tables, and since these parse tables can form part 
of the data base accesssed by the program, any SP 
program has the potential for extensive introspec- 
tion into its own operation. In particular it 
appears straightforward to provide the user with 
the capability to to ask questions such as " what 
is your present state?" and "what are the 
presently legal inputs?", and have the responses 
generated automatically on the basis of the parse 
tables and parse stack. ([4] discusses the imple- 
mentation of a similar capability for transition 
diagrams.) We consider this capability to be one 
of the most exciting consequences of our method, 
and are actively pursuing this aspect of SP. 

5.1. Explanation of reasoning process -- 
The ability to explain its reasoning to the user 

is an indispensable feature of expert systems. 
SP-based expert systems achieve this effect very 
neatly: since their mode of operation is based on 
parsing, it is trivial for them to display their 
parse tree, which is a representation of their 
"reasoning process" so far. 
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6. Conclusion 4. Feyock, S., Transition Diagram-based CAI/HELP - 
Systems, International Journal of Man-Machine Stu- 

Syntax programming has been successfully applied dies 9, pp. 399-413, 1977. 
to a number of problems in addition to those 
presented in this paper. These problems include 5. Henderson, P, Functional Programming, 
the Tower-of-Hanoi problem, a graph manipulator, Prentice-Hall, 1980. 
an expert system to diagnose robot end effector 
malfunctions, as well as a NASA-funded project to 6. Noonan, R., and R. Collins, The MYSTRO Parser 

apply SP to the construction of an in-flight pilot Generator PARGEN User's Manual, Internal Report, 

aid system to provide malfunction consultation. Dept. of Computer Science, College of William and 

This last project is currently in progress and Mary, Willimamsburg, VA. 
typifies the sort of problem for which SP is well 
suited: the construction of rule-based expert sys- 7. Kowalski, R., Logic for Problem Solving, P-P 
terns that feature the compact size and high execu- North-Holland, 1979. 

tion speed inherent in table-driven LR parsing 
technology. 8. Wallace, R., An Easy Implementation of PiL 

(Prolog in LISP), SIGART Newsletter, No. 85, pp. 
29-32, July 1983. 
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Appendix 

<goal> ::= <readconds>^object,support 
(apop 2) ; clear the affix stack 

* This syntax program uses the LISP s 
* 
<readconds>^object,support ::= 
(terpri) (print "object to move?,") 
(terpri) (print "support?,") (apush 

* 
<puton>!object,support ::= 

<getspace>!object,support "place 
(apop 3) ; 

* 

<puton> b!obje ct , support 

keleton. 

(apush ( read) 
(read) > (terp 

<putat>! objet t, place 

(terpri) 
ri 

<eof> 

<putat>!object,place ::= 
<grasp>!object 
<moveobject>!object,place 
<ungrasp>!object 

(apop 3) ; 
* 
***** Several productions have been omitted here for brevity 
* 
<notsupported> ::= 
* epsilon productions often cause ambiguity (usually intentional) 
! (! notsupported) 
* If (! notsupported) returns true, this production fires. 

***** Remaining productions have been omitted 
***** Complete program avai lable upon request 

for brevity. 
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