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Abstract 
Although production systems are appropriate for many applications in 

the artificial intelligence and expert systems areas, there are applications 
for which they are not fast enough to be used. If they are to be used for 
very large problems with severe time constraints, speed increases are 
essential. Recognizing that substantial further increases are not likely to 
be achieved through software techniques, the PSM project has begun 
investigating the use of hardware support for production system 
interpreters. The first task undertaken in the project was to attempt to 
understand the space of architectural possibilities and the trade-offs 
involved. This articlc presents the initial findings of the project. Briefly, 
the preliminary results indicate that the most attractive architecture for 
production systems is a machine containing a small number of very 
simple and very fast processors. 

1. Int reduction 
Forward-chaining production systems are used extensively in artificial 

intelligence today. They are especially popular for use in the 
construction of knowledge-based expert systems [9,11,13,14,17]. 
Unfortunately, production systems are rather slow compared to more 
conventional programming languages. Consequently some 
computationally intensive tasks that arc otherwise suitable for these 
systems cannot be implemcntcd as production systems. The Production 
System Machine (PSM) project was created to dcvclop hardware 
solutions to this problem. The first goal of the project is to understand 
the space of architectural possibilities for the PSM and the trade-offs 
involved. This article describes the initial results of the studies 
performed by the PSM project. 

The rest of the paper consists of the following sections. Section 2 
provides a brief description of the OPS production systems considered 
by the PSM project and includes a description of the Rctc algorithm that 
is used to implement them. The Rctc algorithm forms the basis for much 
of the later work. Section 3 elaborates on the need for hardware for 
production systems. It explains why WC do not cxpcct substantial further 
speed-ups from software tcchniqucs. Section 4 prcscncs the results of 
mcasurcmcnts of some existing production system programs. The 
mcasurcmcnts cnablc US to cxplorc the possibility of using parallelism in 
executing production system programs. Sections 5, 6, and 7 discuss three 
methods for speeding up the execution of production systems. Section 5 
considers the role of parallelism, Section 6 considers processor 
architectures. and Section 7 considers hardware technology issues. The 
conclusions arc presented in Section 8. 
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2. Background 
The PSM project is concerned with the OPS family of production 

systems [2,4, 61. These languages arc for writing pure forward-chaining 
systems. An OPS program consists of a collection of produclion rules (or 
just “productions”) and a global data base called working memory. Each 
production has a left-hand side which is a logical expression and a right- 
hand side consisting of zero or more executable statements. The logical 
expression in the left-hand side is composed of one or more con&ions. 
A condition is a pattern; the left-hand side of a production is considered 
satisfied when cvcry condition matches an element in working memory. 
The OPS interpreter executes a program by performing the following 
cycle of operations: 

1. Match: The left-hand sides of all the productions are 
matched against the contents of working memory. The set of 
satisfied productions is called the conflict set 

2. Conflict Resolution: One of the satisfied productions is 
selected from the conflict set If the conflict set is empty, the 
execution halts. 

3. Act: The statements in the selected production’s right-hand 
side are executed. The execution of these statements usually 
results in changes to the working memory. At the end of this 
step, the match step is executed again. 

In this paper WC arc primarily concerned with speeding up the match 
operation. This is because the match operation takes most of the run 
time of interpreters that are implemented in software on uniproccssors. 
Moreover, when OPS is run on a parallel machine (which the PSM will 
be) the three operations can be pipclined, and much of the time required 
for conflict resolution and act can be overlapped with the time taken for 
the match. The total run time will consist of tbc time for the match plus 
a small amount of start-up time for the other two operations. 

The algorithm that will be used in the production system machine is 
the Rcte match algorithm [I, 31. This algorithm has been used with 
variations in all the software implementations of OPS. It exploits two 
basic propertics of OPS production systems to reduce the amount of 
processing required in the match: 

l The slow r:ltc of change of working memory. It is common 
for working memory to contain from a few hundred to over a 
thousand clemcnts. Typically, cxccuting a production results 
in two to four of the clcmcnrs being changed. Thus on each 
cycle of the system, the vast majority of the information that 
the matcher needs is identical to the information it used on 
the previous cycle. Rcte matchers take advantage of this by 
saving state bctwcen cycles. 

l The similarities among the left-hand sides. The lcfi-hand 
sides of productions in a program always contain many 
common subcxprcssions. Rctc attempts to locate the 
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common subexprcssions. so that at run-time the matcher can 
evaluate each of thcsc expressions only once. 

The Rete interpreter processes the l&-hand sides of the productions 
prior to executing the system. It compiles the lcfi-hand sides into a 
network that specifies the computations that the matcher has to perform 
in order to effect the mapping from changes in working memory to 
changes in the conflict set. The network is a dataflow graph. The input 
to the network consists of changes to working memory encoded in data 
structures called tokens. Other tokens output from the network specify 
the changes that must be made to the conflict set. As the tokens flow 
through the network, they activate the nodes, causing them to perform 
the necessary operations, creating new tokens that pass on to subsequent 
nodes in the network. The network contains essentially four kinds of 
nodes: 

l Constant-test nodes: These nodes test constant features of 
working memory elements. They effectively implement a 
sorting network and process each element added to or 
deleted from working memory to determine which 
conditions the elcmcnt matches. 

l Memory nodes: These nodes maintain the matcher’s state. 
They store lists of tokens that match individual conditions or 
groups of conditions. 

l Two-input nodes: These nodes access the information stored 
by the memory nodes to determine whether groups of 
conditions are satisfied, For example, a two-input node 
might access the lists of tokens that have been determined to 
match two conditions of some production individually and 
determine whether there are any pairs of tokens that match 
the two conditions together. In general, not all pairs will 
match because the left-hand side may specify constraints 
such as consistency of variable bindings that have to hold 
bctwccn the two conditions. When a two-input node finds 
two tokens that match simultaneously, it builds a larger token 
indicating that fact and passes it to subsequent nodes in the 
network. 

l Terminal nodes: Terminal nodes arc concerned with changes 
to the conflict set. When one of these nodes is activated, it 
adds a production to or removes a production from the 
conflict set. The processing pcrformcd by the other nodes 
insures that these nodes arc activated only when conflict set 
changes arc required. 

3. The Need for Hardware 
The previous work on the cfftciency of OPS systems has conccntratcd 

on software techniques. Over the past several years, improvements in the 
software have brought about substantial speed incrcascs. The first LISP- 
based version of OPS was OPS2, which was implcmcntcd in 1978 (51. 
The widely-used I,lSP version OPSS was implcmcntcd about 1980 [2]. 
The improvements in software technology during that time made OPSS 
at least five to ten times faster than OPS2. OPSS/LISP has been 
followed by two major reimplemcntations: an intcrprctcr for OPS5 
written in BLISS (a systems programming language) and the OPS83 
interpreter [6]. OPSS/BLISS is at least six times faster than OPSS/LISP, 
and OPS83 is at lcast four times faster than OPS5/BLISS.3 The speed-up 
from OPS2 to OPSS/BLISS rcsultcd from a number of factors, including 
changing the rcprcsentations of the important data structures and putting 
in special code to handle common cases efficiently. The additional 

3 In absolute terms, a large production system with a large working memory and 
moderately complex left-hand sides (e.g.. Rl [13]) might be expected to tun at a rale of one 
to two production firings per second with OPWLISP running on a VAX U/780; at a rate 
of six to twelve firings per second with OPWI3LISS; and a rate of twenty-live to fifty 
firings per second with OPS83. 

speed-up of OPS83 rcsultcd primarily from a new method of compiling 
left-hand sides. In all earlier versions of OPS, the left-hand sides were 
compiled into an intcrmcdiate representation that had to be interpreted 
at run time; in OPS83, the left-hand sides are compiled into native 
machine code. 

It appears that with the advent of OPS83, further substantial 
improvements in software techniques have become difficult to achieve. 
Some amount of optimization of tbc compiled code is certainly possible, 
but this is expected to result in rather small increases in speed compared 
to what has occurred in recent years. The code that the OPS83 compiler 
products is fairly good already. A factor of two speed-up due to 
compiler optimi/ations might be achieved; a factor of five seems unlikely 
at this time. Since the importance of achieving further speed increases 
for OPS is so clearly indicated, we feel that it is essential to investigate 
hardware support for OPS interpreters4 

4. Measurements of Production Systems 
One of the first tasks undertaken by the PSM group was to perform 

cxtcnsive measurements of production systems running in OPS5. These 
measurements were necessary to evaluate the possibilities for speeding 
up Rete interpreters. Six systems were measured: R1[13], a program for 
configuring VAX computer systems; XSEL 1141, a program which acts as 
a salts assistant for VAX computer systems; PfRANS 191. a program for 
factory managcmcnt; HAUNT, an advcnturc-game program dcvclopcd 
by John I.aird; DAA [ll], a program for VlSl design; and SOAR [12], 
an cxpcrimcntal problem-solving architecture implcmcntcd as a 
production system. Ihc Rl, XSEL, and YI’RANS programs were chosen 
bccausc they arc three of the largest production systems cvcr written, and 
bccausc they arc actually being used as cxpcrt systems in industry. The 
DAA program was chosen because it rcprcscnts a computation-intensive 
task compared to the knowledge-intensive tasks pcrformcd by the 
previous programs. The SOAR program was chosen bccausc it embodies 
a new paradigm for the USC of production systems. Altogcthcr, the six 
programs represent a wide spectrum of applications and programming 
styles. The systems contain from 100 to 2000 productions and from 50 to 
1000 working memory elements. A few of the more important results are 
presented here; more detailed results can be found in [7]. 

The first set of measurements concern the surface characteristics of 
production system programs-that is, the characteristics of the programs 
that can be described without reference to the implementation 
techniques used in the intcrpretcr. Table 1 shows the results. The first 
line gives the number of productions in each of the measured programs5 
The second line gives the average number of conditions per production. 

The number of conditions in a production affects the complexity of the 
match for that production. The third line gives the average number of 
actions per production. The number of actions dctcrmincs how much 
working memory is changed when a typical production fires. Together 
these numbers give an indication of the size and complexity of the 
productions in the systems. They show that productions are typically 
simple, containing neither large numbers of conditions nor large 
numbers of actions. 

Feature R1 XSEL PTRANS HAUNT DAA SOAR 
1. Productions 1932 1443 1016 834 131 103 
2. Conds/Prod 5.6 3.8 3.1 2.4 3.9 5.8 
3. Actions/Prod 2.9 2.4 3.6 2.5 2.9 1.8 

Table 1: Summary of Surface Measurements 

4 
‘lhc DAD0 project at Columbia University is also investigating hardware support for 

production systems [8, 181. 

5 
In some WCS only a subset of the complete production system program was measured 

because of problems with the LISP garbage collector. ‘Ihc numbers given in the table 
indicate the number of productions in the subset of the program that was mcasurcd. 
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The second set of measurements relate to the run-time activity of the 
OPSS interpreter. Table 2 shows how many nodes are activated on 
average aI& each change to working memory. Line 1 shows the number 
of constant-test nodes activated. Although constant-test node activations 
constitute a large fraction (65%) of the total node activations, only a small 
fraction (10% to 30%) of the total match time is spent in processing them. 
This is bccausc the processing associated with constant-test nodes is very 
simple compared to the memory nodes and the two-input nodes. Line 2 
shows the number of memory nodes activated, and Line 3 the number of 
two-input nodes. Most of the matcher’s time is spent evaluating these 
two kinds of nodes. Lint 4 shows the number of terminal nodes 
activated. Since thcsc numbers are small, updating the conflict set is a 
comparatively inexpensive operation. Thcrc arc two major conclusions 
that can be drawn from this table. First, except for the constant-test 
nodes, the number of nodes activated is quite small. Second-and 
perhaps more significantly-except for the constant-test nodes, the 
numbers are csscntially indcpcndent of the number of productions in the 
system.6 This is important in the design of parallel production system 
interpreters (see the discussion of parallelism below). 

Tvne Node a XSEI, P’TRANS HAUNT DAA SOAR 
1. Constant-test 136.3 105.3 122.1 88.5 35.9 26.5 
2. Memory 12.3 8.7 10.7 12.5 4.0 11.1 
3. Two-input 47.1 32.4 35.0 36.8 22.2 39.5 
4. Terminal 1.0 1.7 1.7 1.5 2.0 4.0 

Table 2: Node Activations per Working Memory Change 

5. Parallelism 
On the surface, the production system model of computation appears 

to admit a large amount of parallelism. This is because it is possible to 
perform match for all productions in parallel. Even after the left-hand 
sides have been compiled into a Rctc network, the task still appears to 
admit a large amount of parallelism, because different paths through the 
network can be proccsscd in parallel. It is our current asscssmcnt, 
however, that the speed-up available from parallelism in production 
systems is much smaller than it initially appears. 

We are exploring three sources of parallelism for the match step in 
production system programs: production-level, condition-level, and 
action-level parallelism. In the following paragraphs we briefly describe 
each of these three sources, and where possible give the speed-up that we 
expect from that source. 

5.1. Production-level Parallelism 
In production-lcvcl parallelism, the productions in the system are 

divided into several groups and a separate process is constructed to 
perform match for each group. All the processes can execute in parallel. 
The extreme case for production-level parallelism is when the match for 
each production is performed in parallel. The major advantage of 
production-level parallelism is that no communication is required 
between the processes performing the match, although the changes to 
working memory must be communicated to all processes. Since the 
communications rcquircments are very limited, both shared memory and 
non-shared memory multiprocessor architectures can exploit production- 
level parallelism. 

The mcasurcmcnts dcscribcd in Section 4 arc useful in determining the 
amount of speed-up that is potentially available from production-lcvcl 
parallelism. Line 3 of Table 2 shows that on average each change to 
working memory causes about thirty-five two-input nodes to be 
activated. Since the sharing of nodes at this lcvcl of the network is 
limited, the number of two-input nodes activated is approximately equal 

6. Ihcrc are known methods of reducing the cffcct 
number of constant-test node activations (SW PI). 

of production system size on the 

to the number of productions containing conditions that match the 
working memory clcmcnt. Thus, on avcragc, when an clement is added 
to or dclctcd from working memory, the stored state for thirty-five 
productions must be updatcd.7 ’ l-he number of affected productions is 
significant because most of the match time is devoted to these 
productions. Thus the immcdiatcly apparent upper bound to the 
amount of speed-up from production-level parallelism is around thirty- 
five. However, it is easy to see that this is a very optimistic upper bound. 
Measurements show that it is common for a few of the affected 
productions to require five or more times as much processing as the 
average production. Thus in a machine that uses substantial amounts of 
production-level parallelism, the match would be characterized by a brief 
flurry of parallel activity followed by a long period when only a few 
processors are busy. The average concurrency would be much lower 
than the peak concurrency. 

5.2. Condition-level Paralle’lism 
In condition-level parallelism, the match for each condition in the left- 

hand side of a production is handled by a separate process. Condition- 
level parallelism involves more communication overhead than 
production-level parallelism. It is now necessary to communicate tokens 
matching one condition to processes that combine tokens, thus forming 
new tokens matching several conditions in the left-hand side. This 
increased communication makes shared-memory multiprocessors 
preferable to non-shared memory multicomputers. The speed-up 
expected from condition-level parallelism is quite limited. This is 
because productions tend to be simple, as Table 1 shows. Since the 
typical production contains only three to six conditions, even when all 
the conditions in an left-hand side have to be processed (a rare 
occurrence) only three to six parallel processes can be run. 

5.3. Action-level Parallelism 
In action-lcvcl parallelism, all the changes to working memory that 

occur when a production fires are processed in parallel. Action-level 
parallelism dots not require any more data communication overhead 
than the previous two sources of parallelism, but it dots involve a 
substantial amount of extra synchronization overhead. The speed-up 
possible from action-lcvcl parallelism is also quite limited. A typical 
production makes two to four working memory changes, so the amount 
of action-level parallelism available is at most two to four, 

5.4. Simulation Results 
To gain a more dctailcd evaluation of the potential for parallelism in 

the interpreter, a simulator has been constructed, and simulations of the 
execution of the XSFL, PI‘RANS, and DAh expert systems have been 
run. The cost model assumed for the simulation is based on the costs 
that have been computed for the OPS83 matcher. Since the OPS83 
matcher would have to be modified somewhat in order to run in parallel, 
the costs have been adjusted to take these modifications into account. 

The graph in Figure 1 indicates the speed-up that is achieved through 
the use of production-level, condition-level, and action-level parallelism. 
As the graph shows, the speed-up obtained is quite limited. This is a 
combined effect of the facts that (1) the processors must wait for all 
affected productions to finish match before proceeding to the next cycle, 
and (2) there is a large variance in the computational requirements of the 
affected productions. The graphs show that a speed-up of four to six 
times can be obtained with relatively good processor utilization, but to 
obtain a larger factor requires much more hardware. 

7Note that the number thirty-five is independent of the number of productions in the 
program. An intuitive explanation for this is that programmers divide problems into 
subproblems, and at any given time the program cxccution corresponds to solving only one 
of these subproblcms. The size of the subproblems is indcpcndcnt of the size of the overall 
problem and primarily dcpcnds on the complexity that an individual can deal with at the 
same time. 
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7. Device Technology 
Since the correct choice for the machine appears to be a RISC-like 

processor and rather modest levels of parallelism, we are exploring the 
USC of high-speed logic families in its implementation, such as ECL or 
GaAs. The difficulties inherent in the use of these technologies arc offset 
to a large dcgrce by the fact that the machine will use relatively little 
hardware. Certainly designing each component will be more dificult 
than designing a similar component in 1TL or MOS; however the 
machine will be fairly simple so the total design time will not be 
excessive. In addition, while the processors will be more expensive than 
processors implemented in slower tcchnologics, the machine will not 
contain large numbers of them, and the total cost will not be excessive. 
WC estimate an F,CL implementation of the machine would bc about 
four times faster than a ?TL implcmcntation, provided the processor did 
not spend too much time waiting on memory. 

8. Conclusions 
The PSM project is investigating rhc USC of hardware support for 

production system intcrprctcrs. WC cxpcct to obtain speed increases 
from three sources: parallelism, processor architccturc, and dcvicc 
technology. Our studies arc not complctc, but some initial results are 
available: 

l Parallelism: The task admits a modest amount of parallelism. 
WC expect parallelism to contribute a 5 to 10 fold incrcasc in 
speed. 

a Processor architecture: The most attractive architectures for 
this task arc the simple (or so-called RISC) processors. We 
estimate that a RISC machine would be 2 to 4 times faster 
than a complex instruction set machine. 

l Device technology: Since speed is of paramount importance 
in this task, and since very simple processors arc appropriate, 
it will be advantageous to use high-speed device technologies. 
We estimate that using ECL would provide a factor of 4 
increase in speed. 

In summary then, a machine built along the lines we suggest would be 
between 5 * 2 * 4 = 40 and 10 * 4 * 4 = 160 times faster than a complex 
uniproccssor irnplementcd in a slower speed technology. It should be 
emphasized that these arc preliminary results, and are subject to change 
as the work proceeds. 
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