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ABSTRACT 

This paper is concerned with the problem of general- 
izing theorems about recursively defined functions, so 
as to make these theorems amenable to proof by 
induction. Some generalization heuristics are 
presented for certain special forms of theorems about 
functions specified by certain recursive schemas. The 
heuristics are based upon the analysis of computa- 
tional sequences associated with the schemas. If 
applicable, the heuristics produce generalizations that 
are guaranteed to be theorems. 

INTRODUCTION 

This paper deals with the generalization of 
theorems arising from the analysis of recursive 
definitions. The theorems of concern here express 
the properties of functions computed by instances of 
certain recursive program w<hern&:: To prove these 
theorems, one usually needs to invoke some form of 
induction. However, one often encounters cases 
when induction fails. That is, it turns out that, as 
originally posed, a given theorem is too weak to be 
useable in the induction hypothesis for carrying out 
the induction step. In such cases, it is of interest to 
find a more general theorem for which induction 
would succeed. 

Manna and Waldinger [8] describe the theorem 
generalization problem, and mention the heuristic of 
replacing a constant by a variable and a variable by 
another variable. Aubin [l, 21 discusses in detail the 
method of attempting to replace some constant with 
an expression describing the possible values that the 
corresponding argument could assume. Another type 
of heuristics is exemplified by the method of Greif 
and Waldinger [5], in which the symbolic execution 
of the program for its first few terms is followed by 
pattern matching to find a closed form expression 
which generates the series so obtained. Much has 
been contributed to the generalization problem by 
Boyer and Moore [3, 4, lo]. In their work, expres- 
sions common to both sides of an equality are 
replaced with a new variable. This has turned out to 
be quite a powerful method in actual practice. Still 
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other types of generalization methods are implicit in 
the work on the synthesis of program loop invariants 
such as [9, 12, 131, because there is a duality between 
the problems of finding loop invariants and finding 
theorem generalizations. Indeed, it is shown in [ll] 
that for certain classes of functions and theorems, 
these problems are equivalent. Finally, the more 
recent work on rewrite rule-based methods for prov- 
ing properties of recursively (equationally) defined 
functions (e.g., [6]) makes use of unification which 
can also be looked upon as a kind of generalization. 

Two methods of theorem generalization are 
presented below. These are applicable to two special 
recursive schemas, and are based on an analysis of 
the computational sequence of these schemas. The 
use of these methods requires the existence (and 
discovery) of some functions that satisfy 
ditions dependent on the schemas. 

certain con- 

NOTATION 

To express programs and schemas, we use the 
notation for recursive schemas given in Manna[7, p. 
3191, with the following convention for letter usage: 
u-z for individual variables (input, output, and pro- 
gram variables), c for individual constants, 
F -H, f -h, and n for function variables, and p, q 
for predicate variables. Subscripts and primes may 
also be added to these letters. In general, these sym- 
bols stand for vectors rather than single items. Fol- 
lowing Moore [lo], we distinguish two classes of pro- 
gram variables: “recursion variables”, denoted by 
unsubscripted y or y subscripted with smaller 
integers, which are used in predicates (loop termina- 
tion tests), and “accumulators”, denoted by y sub- 
scripted with larger integers, which are used in form- 
ing results but not used in termination tests. 

GENERALIZATION SCHEME I 

Suppose we are given a recursive schema: 

Z =F(x,c),whcre (1) 
~(y~,yz)+ irp0,1)then~zelseFV0,1),g011,~2)) 
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Further suppose that for a given interpretation of c, 
p, f, g the schema computes a known function G. 
That is, for all x for which G(x) is defined, we would 
like to prove 

F(x, c) = G(x) (2) 

by 
7; (.$‘gj...)) 

f j(x), i > 0, the expression 
in which there are i successive 

applications of f. Further, we denote by 
y f.‘) , yp) , i > 0, the values of the variables yl, y2 on 
the i-th iteration of (l), taking yf’), y$‘) to mean x 
and c, respectively. If, for a given argument x, the 
value of F (X , c ) is defined, then there must exist an 
inte er such 
P(Y o’MYf4,....Pcyfi)) c 

that each of 
is false and p(yfL+l)) is 

true, and the following equalities hold: 

YP’ 'f'(x), 

YP = 8 v i -Yx I,8 cf i -2(x L 8 (f (x 198 (x ? c )).-1) 
for OSiSA, and 

F(x,c) =yi’+l) 

= scf w, scf ‘-1w,*.., scf w sh 4)“‘)) 

Note that the depth of recursion, that is the value of 
A, depends only on x and not on c. 

Suppose we can find two functions hl and h2 
with the property 

s(u, hlh 0 = hl(g(u, 4, h+, v, w))- (3) 

If we wish to generalize (2) by replacing c with 
h l(c, z ), then the final value of y2 will be 

8 cf k (x 198 cf k -‘(xl * - - - s g (x 9 MC 9 z ND* 

Using (3) repeatedly to move hl outwards across g, 
we can rewrite this as 

hlt#+‘), (4) 

h2Cf ‘(x), yjk), h2v ‘-l(x), #-‘) , . - . , 

hzV 2(x 1, Y i2) 9 hdf (x 138 (x 9 c ), h2b 9 c 9 z )))) 

The first argument of hl, ylk+*), is equal to 
F (X , c), and the second argument of hl is the itera- 
tion of h2 with the first and second arguments having 
the same values as they have during the evaluation of 
F. Using the definition of F, we can define a new 
function H so that H (x, c , z) equals the second argu- 
ment of hl in (4). This H is defined as follows: 

H6%Y2d3) + if Poll) then Y3 

else W h), gh, rz), h201, Y~,Y~)I 

The generalization of a theorem should be an 
expression (relation) which 

‘0 we believe is in fact a theorem 

b) has the original theorem as an instance 

4 is easier to prove. 

We propose 

F(x,hl(c,z)) =hl(G(x),H(x,c~)) (5) 

as a generalization of (2). The following result states 
that the condition (a) is satisfied, that is, (5) is indeed 
true. 

Theorem 1: Let f, g, G be some previously defined 
functions, and F, H be defined by the schemas 

FRY+ iIp011)theny2e~FVCy1),80,1,Y2)) 

HtYl* Y2,Y3) + ifdyWeny3 

eifie H cf hh 8 01, YZ), h2691, Y2, Y3N 

If 

F(x, c) = G(x) 

and there exist functions hl and h2 satisfying 

S(b hlh 4) =hl(g(u,v),h2(u,v,w)) 

then 

F(x, hl(c, z)) = hl(G(x),H(x, c, z)) 

holds. II 

This theorem can be proved by first showing that 
under its conditions and definitions, it is the case 
that 

F(x, h&w)) = hl(F(x, w), H(x, w, z))- 

The condition 

Au, hl(b 4) =hddu,v),h2(~,v,w)) 

does not guarantee that the original theorem is an 
instance of the generalized theorem. In general, it is 
difficult to state how to derive A, and h2 so that the 
original theorem is an instance of the more general 
equation (5). Nevertheless, we can state a sufficient 
condition for it: 

Theorem 2: Under the definitions and conditions of 
Theorem 1, a sufficient condition that 
F(x,c)=G(x) l an l 

F (X , h l(c , z)) = hl(G’[x ), H (x , c , z )p?tk they: 
exist an r such that 

h&, r) = u and h2(u,v,r)=r (6) 

for all u and v. Ii 
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Although (6) is not a necessary condition, 
experience suggests that it is a natural and easily 
satisfied requirement. Also, although at present 
there is no systematic way of finding hI and h2 (if 
they exist at all), there are often natural candidates 
for these functions, such as addition, multiplication 
or append for hl and projection functions for h2. 
Note also that while we have only considered 
theorems of the type F (x , c) = G (x) for simplicity, 
the method can be used for some more complicated 
cases such as F (m (x ), A (x)) = G (x ). 

A more restrictive heuristic than that given by 
Theorems 1 and 2, but one which is particularly sim- 
ple to use, is described by the following: 

Theorem 3: Let f, g, G be some previously defined 
functions, and F be defined by the schema 

F&,Y+ ~~011)theny2e~F~~1),g~1,~3). 

If 

F(x,c) =G(x) (7) 

and there exists a function h and a constant r such 
that 

sw+9w)) = h(g(u,v),w) 

h(u, r) = u, for all u, 

then it is the case that 

F(x, h(c, z)) = h@(x), z)’ (8) 

Furthermore, (7) is an instance of (8). II 

Example 1: Let the function rev(x) be defined by 

‘4Ylr Y3 - if null 0) *) then y2 

else rev w 64, co?ls (cm bl), Y2))* 

When we try to prove the property 

rev (x , nil ) = reverse (x ) (9 
by induction on x (reverse being the usual LISP func- 
tion), we find that the induction step cannot be car- 
ried through. To apply the generalization method 
given above, we observe that 

~6’1) = nul%), f (~1) = cdr0,1), 
ShY2) = coMcdYl)rY2). 

We now look for a function h satisfying 

s(Urh(v,w)) =h(g(u,v),w) 

that is, 

com(car(u), h(v, w)) = h(cons(car(u), v), W) 

and also, for some r and all II, 

h(u,r)=u. 

The simple choice h (u , v) = append (u , v ) (with nil 
for r) satisfies the above conditions. The generaliza- 
tion of property (9) is thus found to be 

rev (X , append (nil , z )) = append (reverse (x ), z ), 

that is, 

rev (x , z) = append (reverse(x), z)- 

This property is provable by induction on x with the 
usual definitions of append and reverse. 

Example 2: Let F (~1, ~2, ~3) be defined by 

F(yl&,Y+ x~l=")tbeny3dsc 

F (yl div 2, ~292, if odd(yl) then Y293 else Y3) 

Here, yl is the recursion variable, and ~2, ~3 are 
accumulators. We have 

f &, YZ) = <YI div 2, Y~*YP 

go’l, Y2r Y3) = if dd6’1) then Y2*Y3 ek YS- 

We look for a function h which satisfies 

g(u,v,h(w,z))=h(g(u,v,w),z), 

that is, 

ifodd(u)thenv*h(w,z)ebh(w,z) 

=h(ifodd(u)tb env*w dsew,z). 

Also, there must exist an r such that for all u, 
h(u,r) =u. To satisfy these requirements, we can 
simply take h(u) v) = u *v (with r=l). It is now easy 
to see that the property 

F (xl, x2, 1) = xf’ 

generalizes to the induction-provable property 

F (xl, x2, z) = (x;‘)*z. 

GENERALIZATION SCHEME II 

Suppose we have to prove 

F(x, c, c’) CC(X), where 

F h Y29 Y3) * if kY2) the” Y3 

e~wl~f (r2hcy29Y3)) 

(10) 

To prove this theorem, we need to carry out 
induction on y2. But this would be impossible 
because the initial value of y2 is constant. Therefore 
we must generalize (10) by replacing c with a more 
general term. In the previous heuristics, we replaced 
a constant c with a function h (c , z) and then tried to 
determine the influence of this change of initial value 
on the final result. It was easy to see how the change 
of initial value of an accumulator propagated through 
the entire computation, because of the limited role 
played by an accumulator in the function evaluation. 



It is harder to apply the same strategy to a recursion 
variable. The initial value of a recursion variable 
determines the depth of recursion, and at each level 
of recursion, the value of a recursion variable also 
affects the final result of computation. Conse- 
quently, the change in the initial value of a recursion 
variable has a much more complicated influence on 
the computation. So the function h must be chosen 
more carefully, and in fact our choice now is quite 
limited. A good strategy would be to replace c with 
an expression describing all possible values that this 
recursion variable can take on during the computa- 
tion of F (x , c , c ‘). Suppose we can derive the values 
of the recursion variable and the accumulator at the 
recursion depth z, say h (z ) and H (z), respectively. If 
(10) holds, then 

Fh h(z), H(z)) = G(x) 

would be a good generalization, likely provable by 
induction on z (that is, on the depth of recursion). 
To find suitable candidates for h(z) and H(z), we 
observe that 

F(x,c,c? =F(x,f(c),g(c,c?), if c#x, 
=F(x,f2(c),gV(c),g(c,c3)), if f(c)#x, 
= . . . = 

F (x , f i (c ), g cf i -‘(c ), 8 cf i -2(c ),m..,tt (c , c $.J)Xll) 
if iSid, = min u If i(c) =x}. 

Thus, H(i) =gui-1(c),g(fi-2(c), . . ., g(c,c?)). 
On the other hand, for is itin, we also have 

W’(x)) = W’(x), c, ~9))) = 

FCf'(c),f 'Cc), e&f'-'(c)r gV'-2(c),...~(c,.?)))g 

= g(fi-'(c),g(p-2(c) ,... &(C, c?...)) 

So H (i) can simply be replaced by G cf i (c )). We are 
thus led to the following 

Theorem 4: Let F be defined by (lo), G be some pre- 
viously defined function, and let 

. zmin=min~Ifj(c)=x), 

h (z ) + if z =0 then c else f (h (z -1)). 

Then 

F(x, h(z), G(h(z))) = G(x) for O~ZZZ;~~ (12) 

iff F(x, c, c? = G(x). 

Example 3: Let the definition of a function F be 
given as 

F 619 Y2r Y3) + if 6YYz) thea Y3 

else F tit, Y2+1, (Y2+l)*Y3) 

We define h by 

h(z) - if z=O then 0 else h(z-l)+l, 

obtaining, simply, h (z ) = z . Also in this case we 
have 

. 
‘mill = min (i I (i =x)} = x. 

So we can generalize 

F (x , 0,l) = x ! 

into 

F(x,z,z!)=x! for O<ZZX. 

In the above discussion, we have used the sim- 
plest case of the theorem in (10). Now suppose that 
the initial value of y2 is not a constant but some 
function M (x). We can derive the value of the accu- 
mulator at the recursion depth z if we assume the 
case 

whx)) = M(x) for all OSzSimin, 

where h is defined by 

hcYl9Yz) - lf (y2=O) then M(yI) 

el=f (hOI Y2-w 

For example, an M (x) with this property is given by 

NYl) - if PO*) thenY1 e~wnY1)), 

where f- is the functional inverse of f, that is, 
f v(y))=y . Now we can write 

M(x) = MV(x)) = Mfyx)) = - - - 

= M (pJ(x)) = J’i”‘(x) 

h(x, z) = f z @-““‘(x)) = p”“-“(x), 

for all 05 z I iti,. 

M (h (x , z)) = A4 #i”“(x)) = f”“(x) = M (x). 

We can therefore generalize 

F(x, M(x), c? = G(x) 

into 

F(x,h(x,z),G(h(x,z))=G(x), for05zlimin. 

Using the relation between f and its inverse f-, the 
above can be rewritten as 

F(x, h’(x, 4, G(h’(x,z))) = G(x), 

for 01 z 5 i ‘min, 

where 

h ‘(x , z ) + if z =0 then x else r(h ‘(x)), 

i ‘tin = min {i Ip (h ‘(x , i))). 



Example 4: Let the functions A4 and F be defined as 
follows: 

mYl* Y2) + ifYl<Y2~~Y24-wYlJ*y2) 

UYI, ~29 ~39 ~4) * if cy*=Y2) then <Y39 Y4’ 

ekif (y3 2 y2 div 2) 

then F bl, y2 div 2,y3 - y2 div 2, 2*y4+l) 

else F 011, ~2 div 2, ~3~2~4)~ 

Since (292) div 2 = ~2, we can apply the above 
method, generalizing 

F (x2, M (xl, xz), x1, 0) = <xl mod x2, x1 div x2> 

into 

F(~~,h(x~,z),xlm~h(x2,z),~1d~vh(x2,~)) 

= <x1 mod x2, x1 div x2> for Oszziimin, 

where 

h(.Yl,Yz) * if y2= 0 then y 1 dse 2*h (yr, y2-1), 

that is, 

WYl, Yz) = eY1. 

CONCLUSION 

We have discussed the problem of generalizing 
theorems about recursively defined functions in such 
a way that the generalized form of the theorems is 
more amenable to proof by induction. We have 
presented, motivated, and illustrated some heuristics 
for carrying out the generalization for certain pat- 
terns of theorems and recursive definitions. 

Our heuristics are given in terms of definitional 
schemas. Given a functional definition, we try to 
find a matching schema and look for certain auxiliary 
functions satisfying some conditions dependent on 
the schema. This seems to be a systematic approach, 
as opposed to the ad hoc approach of, say, replacing 
constants by expressions. Furthermore, our generali- 
zation heuristics have been derived by analyzing 
recursive computational sequences. Whenever these 
heuristics apply, the generalized theorems are true if 
and only if the original theorems are true. This is 
not the case with the heuristics currently found in 
the literature. It may be possible to apply similar gen- 
eralization methods to other types of definitional 
schemas, and develop a catalog of heuristics for 
different patterns of recursive definitions. 
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