
Generalization Hearistics for Theorems
Related to Recarsivcly Defined Fanctions
S. Kamal Abdali

Computer Research Lab
Tektronix, Inc.

P.O. Box so0
Beaverton, Oregon 97077

ABSTRACT

This paper is concerned with the problem of general-
izing theorems about recursively defined functions, so
as to make these theorems amenable to proof by
induction. Some generalization heuristics are
presented for certain special forms of theorems about
functions specified by certain recursive schemas. The
heuristics are based upon the analysis of computa-
tional sequences associated with the schemas. If
applicable, the heuristics produce generalizations that
are guaranteed to be theorems.

INTRODUCTION

This paper deals with the generalization of
theorems arising from the analysis of recursive
definitions. The theorems of concern here express
the properties of functions computed by instances of
certain recursive program w<hern&:: To prove these
theorems, one usually needs to invoke some form of
induction. However, one often encounters cases
when induction fails. That is, it turns out that, as
originally posed, a given theorem is too weak to be
useable in the induction hypothesis for carrying out
the induction step. In such cases, it is of interest to
find a more general theorem for which induction
would succeed.

Manna and Waldinger [8] describe the theorem
generalization problem, and mention the heuristic of
replacing a constant by a variable and a variable by
another variable. Aubin [l, 21 discusses in detail the
method of attempting to replace some constant with
an expression describing the possible values that the
corresponding argument could assume. Another type
of heuristics is exemplified by the method of Greif
and Waldinger [5], in which the symbolic execution
of the program for its first few terms is followed by
pattern matching to find a closed form expression
which generates the series so obtained. Much has
been contributed to the generalization problem by
Boyer and Moore [3, 4, lo]. In their work, expres-
sions common to both sides of an equality are
replaced with a new variable. This has turned out to
be quite a powerful method in actual practice. Still

Jan Vytopil
BSO-AT

P.O. Box 8348
3503 RH Utrecht
The Netherlands

other types of generalization methods are implicit in
the work on the synthesis of program loop invariants
such as [9, 12, 131, because there is a duality between
the problems of finding loop invariants and finding
theorem generalizations. Indeed, it is shown in [ll]
that for certain classes of functions and theorems,
these problems are equivalent. Finally, the more
recent work on rewrite rule-based methods for prov-
ing properties of recursively (equationally) defined
functions (e.g., [6]) makes use of unification which
can also be looked upon as a kind of generalization.

Two methods of theorem generalization are
presented below. These are applicable to two special
recursive schemas, and are based on an analysis of
the computational sequence of these schemas. The
use of these methods requires the existence (and
discovery) of some functions that satisfy
ditions dependent on the schemas.

certain con-

NOTATION

To express programs and schemas, we use the
notation for recursive schemas given in Manna[7, p.
3191, with the following convention for letter usage:
u-z for individual variables (input, output, and pro-
gram variables), c for individual constants,
F -H, f -h, and n for function variables, and p, q
for predicate variables. Subscripts and primes may
also be added to these letters. In general, these sym-
bols stand for vectors rather than single items. Fol-
lowing Moore [lo], we distinguish two classes of pro-
gram variables: “recursion variables”, denoted by
unsubscripted y or y subscripted with smaller
integers, which are used in predicates (loop termina-
tion tests), and “accumulators”, denoted by y sub-
scripted with larger integers, which are used in form-
ing results but not used in termination tests.

GENERALIZATION SCHEME I

Suppose we are given a recursive schema:

Z =F(x,c),whcre (1)
~(y~,yz)+ irp0,1)then~zelseFV0,1),g011,~2))

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Further suppose that for a given interpretation of c,
p, f, g the schema computes a known function G.
That is, for all x for which G(x) is defined, we would
like to prove

F(x, c) = G(x) (2)

by
7; (.$‘gj...))

f j(x), i > 0, the expression
in which there are i successive

applications of f. Further, we denote by
y f.‘) , yp) , i > 0, the values of the variables yl, y2 on
the i-th iteration of (l), taking yf’), y$‘) to mean x
and c, respectively. If, for a given argument x, the
value of F (X , c) is defined, then there must exist an
inte er such
P(Y o’MYf4,....Pcyfi)) c

that each of
is false and p(yfL+l)) is

true, and the following equalities hold:

YP’ 'f'(x),

YP = 8 v i -Yx I,8 cf i -2(x L 8 (f (x 198 (x ? c)).-1)
for OSiSA, and

F(x,c) =yi’+l)

= scf w, scf ‘-1w,*.., scf w sh 4)“‘))

Note that the depth of recursion, that is the value of
A, depends only on x and not on c.

Suppose we can find two functions hl and h2
with the property

s(u, hlh 0 = hl(g(u, 4, h+, v, w))- (3)

If we wish to generalize (2) by replacing c with
h l(c, z), then the final value of y2 will be

8 cf k (x 198 cf k -‘(xl * - - - s g (x 9 MC 9 z ND*

Using (3) repeatedly to move hl outwards across g,
we can rewrite this as

hlt#+‘), (4)

h2Cf ‘(x), yjk), h2v ‘-l(x), #-‘) , . - . ,

hzV 2(x 1, Y i2) 9 hdf (x 138 (x 9 c), h2b 9 c 9 z))))

The first argument of hl, ylk+*), is equal to
F (X , c), and the second argument of hl is the itera-
tion of h2 with the first and second arguments having
the same values as they have during the evaluation of
F. Using the definition of F, we can define a new
function H so that H (x, c , z) equals the second argu-
ment of hl in (4). This H is defined as follows:

H6%Y2d3) + if Poll) then Y3

else W h), gh, rz), h201, Y~,Y~)I

The generalization of a theorem should be an
expression (relation) which

‘0 we believe is in fact a theorem

b) has the original theorem as an instance

4 is easier to prove.

We propose

F(x,hl(c,z)) =hl(G(x),H(x,c~)) (5)

as a generalization of (2). The following result states
that the condition (a) is satisfied, that is, (5) is indeed
true.

Theorem 1: Let f, g, G be some previously defined
functions, and F, H be defined by the schemas

FRY+ iIp011)theny2e~FVCy1),80,1,Y2))

HtYl* Y2,Y3) + ifdyWeny3

eifie H cf hh 8 01, YZ), h2691, Y2, Y3N

If

F(x, c) = G(x)

and there exist functions hl and h2 satisfying

S(b hlh 4) =hl(g(u,v),h2(u,v,w))

then

F(x, hl(c, z)) = hl(G(x),H(x, c, z))

holds. II

This theorem can be proved by first showing that
under its conditions and definitions, it is the case
that

F(x, h&w)) = hl(F(x, w), H(x, w, z))-

The condition

Au, hl(b 4) =hddu,v),h2(~,v,w))

does not guarantee that the original theorem is an
instance of the generalized theorem. In general, it is
difficult to state how to derive A, and h2 so that the
original theorem is an instance of the more general
equation (5). Nevertheless, we can state a sufficient
condition for it:

Theorem 2: Under the definitions and conditions of
Theorem 1, a sufficient condition that
F(x,c)=G(x) l an l

F (X , h l(c , z)) = hl(G’[x), H (x , c , z)p?tk they:
exist an r such that

h&, r) = u and h2(u,v,r)=r (6)

for all u and v. Ii

2

Although (6) is not a necessary condition,
experience suggests that it is a natural and easily
satisfied requirement. Also, although at present
there is no systematic way of finding hI and h2 (if
they exist at all), there are often natural candidates
for these functions, such as addition, multiplication
or append for hl and projection functions for h2.
Note also that while we have only considered
theorems of the type F (x , c) = G (x) for simplicity,
the method can be used for some more complicated
cases such as F (m (x), A (x)) = G (x).

A more restrictive heuristic than that given by
Theorems 1 and 2, but one which is particularly sim-
ple to use, is described by the following:

Theorem 3: Let f, g, G be some previously defined
functions, and F be defined by the schema

F&,Y+ ~~011)theny2e~F~~1),g~1,~3).

If

F(x,c) =G(x) (7)

and there exists a function h and a constant r such
that

sw+9w)) = h(g(u,v),w)

h(u, r) = u, for all u,

then it is the case that

F(x, h(c, z)) = h@(x), z)’ (8)

Furthermore, (7) is an instance of (8). II

Example 1: Let the function rev(x) be defined by

‘4Ylr Y3 - if null 0) *) then y2

else rev w 64, co?ls (cm bl), Y2))*

When we try to prove the property

rev (x , nil) = reverse (x) (9
by induction on x (reverse being the usual LISP func-
tion), we find that the induction step cannot be car-
ried through. To apply the generalization method
given above, we observe that

~6’1) = nul%), f (~1) = cdr0,1),
ShY2) = coMcdYl)rY2).

We now look for a function h satisfying

s(Urh(v,w)) =h(g(u,v),w)

that is,

com(car(u), h(v, w)) = h(cons(car(u), v), W)

and also, for some r and all II,

h(u,r)=u.

The simple choice h (u , v) = append (u , v) (with nil
for r) satisfies the above conditions. The generaliza-
tion of property (9) is thus found to be

rev (X , append (nil , z)) = append (reverse (x), z),

that is,

rev (x , z) = append (reverse(x), z)-

This property is provable by induction on x with the
usual definitions of append and reverse.

Example 2: Let F (~1, ~2, ~3) be defined by

F(yl&,Y+ x~l=")tbeny3dsc

F (yl div 2, ~292, if odd(yl) then Y293 else Y3)

Here, yl is the recursion variable, and ~2, ~3 are
accumulators. We have

f &, YZ) = <YI div 2, Y~*YP

go’l, Y2r Y3) = if dd6’1) then Y2*Y3 ek YS-

We look for a function h which satisfies

g(u,v,h(w,z))=h(g(u,v,w),z),

that is,

ifodd(u)thenv*h(w,z)ebh(w,z)

=h(ifodd(u)tb env*w dsew,z).

Also, there must exist an r such that for all u,
h(u,r) =u. To satisfy these requirements, we can
simply take h(u) v) = u *v (with r=l). It is now easy
to see that the property

F (xl, x2, 1) = xf’

generalizes to the induction-provable property

F (xl, x2, z) = (x;‘)*z.

GENERALIZATION SCHEME II

Suppose we have to prove

F(x, c, c’) CC(X), where

F h Y29 Y3) * if kY2) the” Y3

e~wl~f (r2hcy29Y3))

(10)

To prove this theorem, we need to carry out
induction on y2. But this would be impossible
because the initial value of y2 is constant. Therefore
we must generalize (10) by replacing c with a more
general term. In the previous heuristics, we replaced
a constant c with a function h (c , z) and then tried to
determine the influence of this change of initial value
on the final result. It was easy to see how the change
of initial value of an accumulator propagated through
the entire computation, because of the limited role
played by an accumulator in the function evaluation.

It is harder to apply the same strategy to a recursion
variable. The initial value of a recursion variable
determines the depth of recursion, and at each level
of recursion, the value of a recursion variable also
affects the final result of computation. Conse-
quently, the change in the initial value of a recursion
variable has a much more complicated influence on
the computation. So the function h must be chosen
more carefully, and in fact our choice now is quite
limited. A good strategy would be to replace c with
an expression describing all possible values that this
recursion variable can take on during the computa-
tion of F (x , c , c ‘). Suppose we can derive the values
of the recursion variable and the accumulator at the
recursion depth z, say h (z) and H (z), respectively. If
(10) holds, then

Fh h(z), H(z)) = G(x)

would be a good generalization, likely provable by
induction on z (that is, on the depth of recursion).
To find suitable candidates for h(z) and H(z), we
observe that

F(x,c,c? =F(x,f(c),g(c,c?), if c#x,
=F(x,f2(c),gV(c),g(c,c3)), if f(c)#x,
= . . . =

F (x , f i (c), g cf i -‘(c), 8 cf i -2(c),m..,tt (c , c $.J)Xll)
if iSid, = min u If i(c) =x}.

Thus, H(i) =gui-1(c),g(fi-2(c), . . ., g(c,c?)).
On the other hand, for is itin, we also have

W’(x)) = W’(x), c, ~9))) =

FCf'(c),f 'Cc), e&f'-'(c)r gV'-2(c),...~(c,.?)))g

= g(fi-'(c),g(p-2(c) ,... &(C, c?...))

So H (i) can simply be replaced by G cf i (c)). We are
thus led to the following

Theorem 4: Let F be defined by (lo), G be some pre-
viously defined function, and let

. zmin=min~Ifj(c)=x),

h (z) + if z =0 then c else f (h (z -1)).

Then

F(x, h(z), G(h(z))) = G(x) for O~ZZZ;~~ (12)

iff F(x, c, c? = G(x).

Example 3: Let the definition of a function F be
given as

F 619 Y2r Y3) + if 6YYz) thea Y3

else F tit, Y2+1, (Y2+l)*Y3)

We define h by

h(z) - if z=O then 0 else h(z-l)+l,

obtaining, simply, h (z) = z . Also in this case we
have

.
‘mill = min (i I (i =x)} = x.

So we can generalize

F (x , 0,l) = x !

into

F(x,z,z!)=x! for O<ZZX.

In the above discussion, we have used the sim-
plest case of the theorem in (10). Now suppose that
the initial value of y2 is not a constant but some
function M (x). We can derive the value of the accu-
mulator at the recursion depth z if we assume the
case

whx)) = M(x) for all OSzSimin,

where h is defined by

hcYl9Yz) - lf (y2=O) then M(yI)

el=f (hOI Y2-w

For example, an M (x) with this property is given by

NYl) - if PO*) thenY1 e~wnY1)),

where f- is the functional inverse of f, that is,
f v(y))=y . Now we can write

M(x) = MV(x)) = Mfyx)) = - - -

= M (pJ(x)) = J’i”‘(x)

h(x, z) = f z @-““‘(x)) = p”“-“(x),

for all 05 z I iti,.

M (h (x , z)) = A4 #i”“(x)) = f”“(x) = M (x).

We can therefore generalize

F(x, M(x), c? = G(x)

into

F(x,h(x,z),G(h(x,z))=G(x), for05zlimin.

Using the relation between f and its inverse f-, the
above can be rewritten as

F(x, h’(x, 4, G(h’(x,z))) = G(x),

for 01 z 5 i ‘min,

where

h ‘(x , z) + if z =0 then x else r(h ‘(x)),

i ‘tin = min {i Ip (h ‘(x , i))).

Example 4: Let the functions A4 and F be defined as
follows:

mYl* Y2) + ifYl<Y2~~Y24-wYlJ*y2)

UYI, ~29 ~39 ~4) * if cy*=Y2) then <Y39 Y4’

ekif (y3 2 y2 div 2)

then F bl, y2 div 2,y3 - y2 div 2, 2*y4+l)

else F 011, ~2 div 2, ~3~2~4)~

Since (292) div 2 = ~2, we can apply the above
method, generalizing

F (x2, M (xl, xz), x1, 0) = <xl mod x2, x1 div x2>

into

F(~~,h(x~,z),xlm~h(x2,z),~1d~vh(x2,~))

= <x1 mod x2, x1 div x2> for Oszziimin,

where

h(.Yl,Yz) * if y2= 0 then y 1 dse 2*h (yr, y2-1),

that is,

WYl, Yz) = eY1.

CONCLUSION

We have discussed the problem of generalizing
theorems about recursively defined functions in such
a way that the generalized form of the theorems is
more amenable to proof by induction. We have
presented, motivated, and illustrated some heuristics
for carrying out the generalization for certain pat-
terns of theorems and recursive definitions.

Our heuristics are given in terms of definitional
schemas. Given a functional definition, we try to
find a matching schema and look for certain auxiliary
functions satisfying some conditions dependent on
the schema. This seems to be a systematic approach,
as opposed to the ad hoc approach of, say, replacing
constants by expressions. Furthermore, our generali-
zation heuristics have been derived by analyzing
recursive computational sequences. Whenever these
heuristics apply, the generalized theorems are true if
and only if the original theorems are true. This is
not the case with the heuristics currently found in
the literature. It may be possible to apply similar gen-
eralization methods to other types of definitional
schemas, and develop a catalog of heuristics for
different patterns of recursive definitions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

REFERENCES

Aubin, R.: “Some generalization heuristics in
proofs by induction”, Proc. IRIA Colloq. on Prov-
ing and Improving Programs, Arc et Senans, pp.
197-208 (July 1975).

Aubin, R.: “Mechanizing structural induction”,
Ph.D. dissertation,
(1976).

University of Edinburgh

Boyer, R.S. and Moore, J.S.: “Proving theorems
about LISP functions”, JAChf 22, 1, pp. 129-W
(January 1975).

Boyer, R.S. and Moore, J.S.: A Computatio~l
Logic, Academic Press, New York (1979).

Greif, I. and Waldinger, R.S.: ‘A more mechani-
cal heuristic approach to program verification”,
Proc. Intl. Symp. on Programming, Paris, pp.
83-90 (April 1974).

Huet, GP. and Huillot, J.-M.: “Proof by induc-
tion in equational theories with constructors”,
JCSS 25,2, pp. 239-266 (Oct. 1982).

Manna, Z.: Mathematical Theory of Computation,
McGraw Hill, New York (1974).

Manna, Z. and Waldinger, R.: “‘Synthesis: dreams
- programs”, IEEE Trans. Software Engintering,
SE-S, 4, pp. 294-328 (July 1979).

Misra, J.: “Some aspects of the verification of
loop computations”, IEEE Trans. Software
Engineering, SE4,6, pp. 478-486 (Nov. 1978).

Moore, J.S.: “Introducing iteration into the pure
LISP theorem prover”, IEEE Trans. Software
Engineering, SE-I, 3, pp. 328-338 (May 1975).

Morris, HJ. and Wegbreit, B.: “Subgoal induc-
tion”, CACM 20,4, ~~209-222 (April 1977).

Tamir, M.: “ADI: Automatic derivation of
invaraiants”, IEEE Trans. Sofhvare Engineering,
SE-6, 1, pp. 40-48 (Jan. 1980).

Wegbreit, B.: ‘The synthesis of loop predicates”,
CACM 17,2, pp. 102-112 (Feb. 1974).

5

