
A SELF-MODIFYING THEOREM PROVER

Cynthia A. Brown

GTE LABORATORIES INCORPORATED
40 Sylvan Road

Waltham, Massachusetts 02254

Abstract:

Theorem provers can be viewed as containing
declarative knowledge (in the form of axioms and
lemmas) and procedural knowledge (in the form of an
algorithm for proving theorems). Sometimes, as in
the case of commutative laws in a Knuth-Bendix
prover, it is appropriate or necessary to transfer
knowledge from one category to the other. We
describe a theorem proving system that
independently recognizes opportunities for such
transfers and performs them dynamically.

Theorem proving algorithms

Theorem provers can be divided into two
general classes: those that operate without human
intervention to prove straightforward consequences
of a set of axioms, and those that serve as a
mathematician's assistant in the search for a proof
of a mathematically significant theorem. The first
type of prover is needed for program verification
and artificial intelligence applications, where the
necessity of human intervention would severely
disrupt the intended application. The second type
of theorem prover ususally contains one or more of
the first type. It is the first type of prover
that we are concerned with.

Our model of a theorem prover is thus an
algorithm that establishes the truth of a statement
by showing that it is a logical consequence of a
given set of axioms. In the process of
establishing that truth, the theorem prover may
obtain intermediate results that play the role of
lemmas. The power and efficiency of the theorem
prover depend on the algorithm that is employed
(and there is often a trade-off between these two
characteristics of the system).

Two major classes of theorem proving
algorithms are the resolution-based methods
[ROB65,OVE75,BOY71] and Knuth-Bendix type methods
[KNU70,HUE80,HUE80b,JEA8O,MUS8O,PET81, STI81].
There are several ambitious theorem provers of the
second type that incorporate one or the other of
these methods; for example, the Affirm system
[TH079] includes a Knuth-Bendix prover, and the ITP
theorem prover [MCC76,OVE75,LUS84] uses
hyperresolution, an efficient form of resolution,
along with other techniques. Both the Knuth-Bendix
algorithm and resolution methods can also be used
as the basis of an algorithmic theorem prover. The

Knuth-Bendix method is usually more efficient in
the cases where it applies, but resolution is much
more general.

Declarative versus procedural knowledge in
theorem provers

Both of these basic approaches to theorem
proving can viewed as, in a very general sense,
expert systems: they operate on a data base of
explicit knowledge (the axioms) using an inference
engine (the theorem-proving algorithm) to solve a
problem. This analogy cannot be pushed too far,
but it does lead to some interesting questions
about the structure of theorem-proving systems. In
particular, the debate about the role of
declarative versus procedural knowledge has a very
real application in the theorem-proving field.

Certain information in a theorem proving
system can be represented explicitly (as axioms) or
incorporated into the inference mechanism. There?
are at least two important examples of thiq
phenomenon. One is the use of paramodulation
[GL080,OVE75,WOS70,WOS80] in resolution-type
theorem provers. The basic resolution algorithm
makes no special provision for the use of the
equality predicate in the statement of axioms. To
introduce equality it is necessary to provide
axioms that specify its properties. Chang and Lee
[CHA73] give a set of ten such axioms, which
establish that equality is reflexive, symmetric,
and transitive and allow equals to be substituted
for equals in any expression. To use such axioms
in the proof of a theorem would obviously lead to
an extremely inefficient proof. The alternative is
to build into the theorem-proving algorithm the
knowledge required to handle equality
appropriately. The inference rule that is used for
this purpose is called paramodulation. Adding
paramodulation to a resolution theorem prover
results in an ability to prove theorems about
systems that contain equality in a natural,
efficient way.

Another example of the same phenomenon can be
found in Knuth-Bendix theorem proving systems.
These systems operate by deriving all the
interesting theorems implied by a set of axioms.
The axioms and theorems are expressed as rewrite
rules. When the algorithm is successful, the
result is an extremely efficient method of proving
any additional theorems in that system.

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Unfortunately, the algorithm can fail. The
rewriting process on which it depends requires a
partial order on terms of the system such that each
rewrite results in a term that is smaller under the
partial order than the one from which it was
derived. It is therefore, for example, impossible
to include axioms that express the commutativity of
an operator, since there is no way to orient a
commutative law consistent with a partial order.
The solution is to deal with the commutative
property of operators on the level of the rewriting
algorithm, rather than treating it explicitly as a
rewriting rule. The fact that an operator is
commutative can be recorded; then, whenever the
algorithm checks whether an expression involving
that operator can be applied, it tries both ways of
ordering the operands.

For operators that are both commutative and
associative, a more elaborate scheme is required.
In this case a commutative and associative
unification algorithm, which checks all possible
ways of matching two expressions that involve
nested applications of a commutative and
associative operator, is used. Such algorithms are
surprisingly complex: the problem is equivalent to
finding certain partitions of integers [ST1811
Nevertheless, its use allows the application of
Knuth-Bendix methods to a much broader range of
systems than would otherwise be possible.

To handle commutativity with a special
unification algorithm is a necessity in Knuth-
Bendix systems ; to deal with equality via
paramodulation or a similar approach is a practical
necessity in resolution systems. There are also
cases of operators or properties that can be
handled either declaratively or procedurally. An
example is the idempotent property of an
associative and commutative operator; there is an
associative-commutative-idempotent unification
algorithm, and idempotency can also be dealt with
by explicit rewriting. Some investigators are
attempting to develop special unification
algorithms to deal with other common properties of
operators in the framework of Knuth-Bendix systems
[JOU83,JOU82,HUL80].

Dynamic recognition of commutative and associative
laws

A Knuth-Bendix theorem prover starts with a
set of axioms and derives rewrite rules from them.
If the prover is able to deal with commutative
operators, then it will notice whether the main
operator in an expression is commutative or not and
apply the appropriate unification algorithm.
Ordinarily the prover is told which operators are
commutative at the start of its run. However, it
is possible for the stated properties of an
operator to imply that it is commutative without
the commutative axiom being given explicitly. For
example, here are the group axioms, written in
additive notation:

1. 0+x = x
2. -x+x = 0
3. (x+y)+z = x+(y+z).

These axioms can be completed by the Knuth-Bendix
procedure to obtain a set of ten rewrite rules
sufficient to decide whether any two expressions
written in this system are equivalent. If we start
with an additional axiom,

4. x+x = 0,

the system will derive the fact that + is a
commutative operation. At that point it would be
necessary to restart the process, this time with
the initial stipulation that + is commutative.

The necessity of restarting the system is
annoying and is contrary to the goal of avoiding
the necessity of human intervention in the theorem
proving process. (This goal is extremely important
for practical program verification and artificial
intelligence systems.) Fortunately, a commutative
rule is easy to recognize. It is straightforward
to have the prover examine any unorderable rewrite
rule it has obtained (either as an initial axiom or
during the proving process) to see if it is a
commutative law. If a commutative law is
discovered, that fact can be recorded and all
future applications of that operator can be done
using the commutative unification principle. If
the operator is also associative, the more powerful
associative-commutative unification can be used.
It is also helpful to check the already derived
rewrite rules to see if any can be simplified using
the fact that the operator is commutative.

One important unanswered question is the
extent to which previous work must be redone when
an operator is discovered to be commutative. All
previously discovered rules must still be valid,
but it is possible that some further rules may be
discovered by reconsidering the earlier results.
Until this can be resolved theoretically, the
sys tern plays it safe by regenerating all relevant
potential rules using the fact that the operator is
commutative, and checks that they reduce to a
common form.

Implementation

A Knuth-Bendix theorem prover embodying these
ideas has been implemented in Prolog. At present
it is able to recognize a commutative law and use
the commutative unification algorithm on operators
for which such laws have been discovered. It also
recognizes explicit associative laws, and will use
commutative-associative unification for operators
that have both properties. If an operator that is
known to be associative is found to also be
commutative, the associative law is removed from
the list of explicit rewrite rules belonging to the
system. (No practical unification algorithm for
the associative property alone is known.)

As an example, consider the group theory
axioms given above. The system completes the
original three axioms by deriving rewrite rules in
the following order:

39

4. -x+(x+y) = y
5. -0+x = x
6. --x+0 = x
7. --0+x = x
8. -0 = 0
9. --x+y = x+y
10. x+0 = x
11. x+(-x) = 0
12. --x = x
13. x+(-x+y) = y
14. x+(y-(x+y)) = 0
15. -(x+y>+(x+(y+z)) = z
16. x+(y+(-(x+y)+z)) = z
17. x+(y+(z-(x+(y+z)))) = 0
18. x-(y+x) = -y
19. x+(y-(z+(x+y))) = -z
20. x+(-(y+x)+z) = -y+z
21. -(x+y) = -y+(-x)

Rules 5,6,7,9,14,15,16,17,18,19, and 20 are
eliminated during the process by being simplified
using later rules; the final set has the remaining
ten elements.

It is interesting to contrast this derivation
with the one obtained by starting with the three
group theory axioms plus the fourth axiom given
above, stating that the group operation is
idempotent. The following rules are discovered in
order:

5. -x+(x+y) = y
6. x+(y+(x+y)) = 0
7. x+(x+y) = y
8. -0+x = x
9. -0 = 0
10. --x+0 = x
11. -x+0 = x
12. -x = x
13. x+0 = x
14. x+(y+(x+(y+z))) = 2
15. x+(y+(z+(x+(y+z)))) = 0
16. x+(y+x) = y
17. x+(y+(z+(x+y))) = 2
18. x+(y+(x+z)) = y+z
19. x+y = y+x

At this point, the system recognizes that + is
commutative and associative. Rule 3 is removed from
the rule database, and the shift to associative-
commutative unification for applications of the +
operator is made. The discovery of rule 19, like
the discovery of rule 21 in the previous example,
causes many of the earlier rules to disappear. For
example, it is no longer necessary to have rules
showing that 0 is both a left and a right identity.

This example demonstrates the ability of the
theorem prover to modify itself in response to its
discoveries. The extra checking involved consumes
a negligible amount of time and greatly expands the
capacities of the prover to handle sets of axioms
without human intervention.

Future work

Many further improvements are possible on this
system. As unification algorithms for other

properties are discovered, the ability to recognize
those properties can be built into the system,
provided they can be easily recognized
syntactically. Unfortunately, it is necessary to
devise a new unification algorithm for each desired
combination of properties, and this is no easy
matter. Associativity and commutativity are
probably the most generally useful properties, and
a system that simply recognizes those (and thereby
provides a good method for handling commutativity)
should be most useful. A review of the currently
available unification algorithms and their
properties is given in [SIE84].

Also, while the commutative property is easy
to recognize syntactically, there may be axioms
present that imply the associative property and
that lead to unorderable rules when the commutative
law is applied to them. It would be helpful if the
system could attempt to prove the associative law
whenever it got into trouble with an unorderable
rule for an operator known to be commutative and
not known to be associative. In this way the order
of discovery of properties would not be such a
crucial factor in the success of the algorithm.
(In general, it is a good strategy to postpone
processing of unorderable rules in the hope that
future rewrite rules can be used to eliminate
them.)

40

Another area for research is the efficiency of
the associative and commutative unification
algorithm. The usual algorithm often generates many
redundant possibilities; it should be possible to
develop methods to recognize and avoid them.
Finally, the Knuth-Bendix algorithm itself should
be studied to identify potential speed-ups.
Progress in this direction has already been made by
Huet [HUE81].

References

[BOY711 BOYER, R. S., "Locking: a restriction of
resolution", Ph.D. Thesis, University of
Texas at Austin, 1971.

[BOY791 Boyer, R. S., and J. S. Moore, A
Computational Logic, Academic Press, New
York, 1979.

[CHA73] Chang, C. L. and R. C. T. Lee, Symbo/ic
Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973.

[FAG841 Fages, F., "Associative-Commutative
Unification", INRIA, Domaine de Volceau
Rocquencourt, 78153 Le Chesnay, France,
1984.

[GL080] Gloess, P. Y., and J. P. H. Laurent,
"Adding Dynamic Paramodulation to Rewrite
Algorithms", in 5th Conference on
Automated Deduction, W. Bibel and R.
Kowalski, eds., Springer Verlag LNCS 87,
Berlin 1980, pp.195-207.

[GOG78]

[GOG80]

[GUT781

[HER301

[HUE801

Goguen, J. A., J. W. Thatcher, and E. G.
Wagner, "An Initial Algebra Approach to
the Specification, Correctness, and
Implementation of Abstract Data Types", in
Current Trends in Programming
Methodology, v. 4, R. Yeh, ed., Prentice-
Hall (1978), pp. 80-149.

Goguen, J. A., "How to prove algebraic
inductive hypotheses without induction,
with applications to the correctness of
data We implementation", in 5th
Conference on Automated Deduction, W.
Bibel and R. Kowalski, eds., Springer
Verlag LNCS 87, Berlin 1980, pp.356-373.

Guttag, J., E. Horowitz, and D. Musser,
"Abstract Data Types and Software
Validation", CACM v. 21, no. 12, 1978,
pp.1048-1063.

Herbrand, J., "Investigations in proof
theory: the properties of propositions",
in From Frege to Goedel: A Source Book
in Mathematical Logic, J. van Heijenoort ,
ed., Harvard University Press, Cambridge,
Mass.

Huet, G., and J. M. Hullot, "Proofs by
Induction in Equational Theories with
Constructors", Twenty-first Annual
Symposium on Foundations of Computer
Science, IEEE Computer Society, 1980, pp.
96-107.

[HUE80b] Huet, G., and D. Oppen, "Equations and
Rewrite Rules - A Survey", in Formal
Language Theory, R. Book, ed., Academic
Press, N.Y., 1980, pp.349 - 405.

[HUE811 Huet, G., "A Complete Proof of the
Correctness of the Knuth and Bendix
Completion Algorithm," JCSS 23, 1981, pp.
11-21.

[HUL80] Hullot, J. M., "Canonical Forms and
Unification", 5th Conference
Automated Deduction, W. Bibel and ?
Kowalski, eds., Springer Verlag LNCS 87,
Berlin 1980, pp.396-405.

[JEA80] Jeanrond, H. J., "Deciding Unique
Termination of Permutative Rewriting
Systems: Choose Your Term Algebra
Carefully", in 5th Conference
Automated Deduction, W. Bibel and "R':
Kowalski, eds., Springer Verlag LNCS 87,
Berlin 1980, pp.335-355.

[JOUST] Jouannaud, J. P., "Confluent and Coherent
Equational Term Rewriting Systems:
Application to Proofs in Abstract Data
Types," Technical Report 83-R-005, Centre
de Recherche en Informatique de Nancy,
1983.

[JOUST] Jouannaud, J. P., C. Kirchner, and H.
Kirchner, "Incremental Unification in
Equational Theories", Proceedings of the
Twentieth Annual Allerton Conference,

[KNU70]

[LUS84]

[MCCOY]

[MUSHY]

[OVE75]

[PET811

[ROB651

[ROB65b]

[SIEVE]

[sTI~I]

[TH079]

[WOS70]

[WOSSO]

1982, pp. 396-405.

Knuth, D., and P. B. Bendix, "Simple Word
Problems in Universal Algebras", in
COMPUTATIONAL PROBLEMS IN ABSTRACT
ALGEBRA, J. LEECH,
PP. 263-279.

PERGAMON PRESS 1970,

Lusk, E.L., and Overbeek, R. A., "A
Portable Environment for Research '
Automated Reasoningtl, in 7th Conferen::
on Automated Deduction, R. Shostak, ed. I
Springer Verlag LNCS 170, Berlin 1984,
pp.l-42.

McCharen, J. D., R. A. Overbeek, and L.
was, "Problems and experiments for and
with automated theorem-proving programs",
IEEE Trans. Cornput., V. 25, No. 8, 1976,
pp. 773-782.

Musser, D. L., "On proving inductive
properties of abstract data types", Proc.
Seventh Annual ACM Symp. on POPL,
1980, pp. 154-162.

Overbeek, R. A., "An implementation of
hyperresolution", Comput. Math. Appl.
1, 1975, pp.201-214.

Peterson, G. E., and M. E. Stickel,
"Complete sets of reductions for some
equational theories", JACM v. 28, no. 2,
1981, pp. 233-264.

Robinson, J. A., "A machine-oriented logic
based on the resolution principle", JACM
12(l), 1965, pp. 23-41.

Robinson, J. A., "Automatic deduction with
hyper-resolution", Internat. J. Comput.
Math., 1, pp. 227-234.

Siekmann, J. H., "Universal Unification",
in 7th Conference on Automated
Deduction, R. Shostak, ed., Springer
Verlag LNCS 170, Berlin 1984, pp.l-42.

Stickel, M. E., "A unification algorithm
for associative-commutative functions",
JACM, v. 28, no.3, 1981, pp.423-434.

Thompson, D. H., ed., AFFIRM Reference
Manual, USC Information Sciences
Institute, 1979.

wos, L., and G. A. Robinson,
"Paramodulation and Set of Support",
Proc . Sump- Automatic Demonstration ,
Versailles, France, 1968, Springer-Verlag,
New York (1970), pp.276-310.

Wos, L., R. Overbeek, and L. Henschen,
"Hyperparamodulation: A Refinement of
Paramodulation", in 5th Conference on
Automated Deduction, W. 8ibel and R.
Kowalski, eds., Springer Verlag LNCS 87,
Berlin 1980, pp.208-219.

41

