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Abstract: 

Theorem provers can be viewed as containing 
declarative knowledge (in the form of axioms and 
lemmas) and procedural knowledge (in the form of an 
algorithm for proving theorems). Sometimes, as in 
the case of commutative laws in a Knuth-Bendix 
prover, it is appropriate or necessary to transfer 
knowledge from one category to the other. We 
describe a theorem proving system that 
independently recognizes opportunities for such 
transfers and performs them dynamically. 

Theorem proving algorithms 

Theorem provers can be divided into two 
general classes: those that operate without human 
intervention to prove straightforward consequences 
of a set of axioms, and those that serve as a 
mathematician's assistant in the search for a proof 
of a mathematically significant theorem. The first 
type of prover is needed for program verification 
and artificial intelligence applications, where the 
necessity of human intervention would severely 
disrupt the intended application. The second type 
of theorem prover ususally contains one or more of 
the first type. It is the first type of prover 
that we are concerned with. 

Our model of a theorem prover is thus an 
algorithm that establishes the truth of a statement 
by showing that it is a logical consequence of a 
given set of axioms. In the process of 
establishing that truth, the theorem prover may 
obtain intermediate results that play the role of 
lemmas. The power and efficiency of the theorem 
prover depend on the algorithm that is employed 
(and there is often a trade-off between these two 
characteristics of the system). 

Two major classes of theorem proving 
algorithms are the resolution-based methods 
[ROB65,OVE75,BOY71] and Knuth-Bendix type methods 
[KNU70,HUE80,HUE80b,JEA8O,MUS8O,PET81, STI81]. 
There are several ambitious theorem provers of the 
second type that incorporate one or the other of 
these methods; for example, the Affirm system 
[TH079] includes a Knuth-Bendix prover, and the ITP 
theorem prover [MCC76,OVE75,LUS84] uses 
hyperresolution, an efficient form of resolution, 
along with other techniques. Both the Knuth-Bendix 
algorithm and resolution methods can also be used 
as the basis of an algorithmic theorem prover. The 

Knuth-Bendix method is usually more efficient in 
the cases where it applies, but resolution is much 
more general. 

Declarative versus procedural knowledge in 
theorem provers 

Both of these basic approaches to theorem 
proving can viewed as, in a very general sense, 
expert systems: they operate on a data base of 
explicit knowledge (the axioms) using an inference 
engine (the theorem-proving algorithm) to solve a 
problem. This analogy cannot be pushed too far, 
but it does lead to some interesting questions 
about the structure of theorem-proving systems. In 
particular, the debate about the role of 
declarative versus procedural knowledge has a very 
real application in the theorem-proving field. 

Certain information in a theorem proving 
system can be represented explicitly (as axioms) or 
incorporated into the inference mechanism. There? 
are at least two important examples of thiq 
phenomenon. One is the use of paramodulation 
[GL080,OVE75,WOS70,WOS80] in resolution-type 
theorem provers. The basic resolution algorithm 
makes no special provision for the use of the 
equality predicate in the statement of axioms. To 
introduce equality it is necessary to provide 
axioms that specify its properties. Chang and Lee 
[CHA73] give a set of ten such axioms, which 
establish that equality is reflexive, symmetric, 
and transitive and allow equals to be substituted 
for equals in any expression. To use such axioms 
in the proof of a theorem would obviously lead to 
an extremely inefficient proof. The alternative is 
to build into the theorem-proving algorithm the 
knowledge required to handle equality 
appropriately. The inference rule that is used for 
this purpose is called paramodulation. Adding 
paramodulation to a resolution theorem prover 
results in an ability to prove theorems about 
systems that contain equality in a natural, 
efficient way. 

Another example of the same phenomenon can be 
found in Knuth-Bendix theorem proving systems. 
These systems operate by deriving all the 
interesting theorems implied by a set of axioms. 
The axioms and theorems are expressed as rewrite 
rules. When the algorithm is successful, the 
result is an extremely efficient method of proving 
any additional theorems in that system. 
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Unfortunately, the algorithm can fail. The 
rewriting process on which it depends requires a 
partial order on terms of the system such that each 
rewrite results in a term that is smaller under the 
partial order than the one from which it was 
derived. It is therefore, for example, impossible 
to include axioms that express the commutativity of 
an operator, since there is no way to orient a 
commutative law consistent with a partial order. 
The solution is to deal with the commutative 
property of operators on the level of the rewriting 
algorithm, rather than treating it explicitly as a 
rewriting rule. The fact that an operator is 
commutative can be recorded; then, whenever the 
algorithm checks whether an expression involving 
that operator can be applied, it tries both ways of 
ordering the operands. 

For operators that are both commutative and 
associative, a more elaborate scheme is required. 
In this case a commutative and associative 
unification algorithm, which checks all possible 
ways of matching two expressions that involve 
nested applications of a commutative and 
associative operator, is used. Such algorithms are 
surprisingly complex: the problem is equivalent to 
finding certain partitions of integers [ST1811 
Nevertheless, its use allows the application of 
Knuth-Bendix methods to a much broader range of 
systems than would otherwise be possible. 

To handle commutativity with a special 
unification algorithm is a necessity in Knuth- 
Bendix systems ; to deal with equality via 
paramodulation or a similar approach is a practical 
necessity in resolution systems. There are also 
cases of operators or properties that can be 
handled either declaratively or procedurally. An 
example is the idempotent property of an 
associative and commutative operator; there is an 
associative-commutative-idempotent unification 
algorithm, and idempotency can also be dealt with 
by explicit rewriting. Some investigators are 
attempting to develop special unification 
algorithms to deal with other common properties of 
operators in the framework of Knuth-Bendix systems 
[JOU83,JOU82,HUL80]. 

Dynamic recognition of commutative and associative 
laws 

A Knuth-Bendix theorem prover starts with a 
set of axioms and derives rewrite rules from them. 
If the prover is able to deal with commutative 
operators, then it will notice whether the main 
operator in an expression is commutative or not and 
apply the appropriate unification algorithm. 
Ordinarily the prover is told which operators are 
commutative at the start of its run. However, it 
is possible for the stated properties of an 
operator to imply that it is commutative without 
the commutative axiom being given explicitly. For 
example, here are the group axioms, written in 
additive notation: 

1. 0+x = x 
2. -x+x = 0 
3. (x+y)+z = x+(y+z). 

These axioms can be completed by the Knuth-Bendix 
procedure to obtain a set of ten rewrite rules 
sufficient to decide whether any two expressions 
written in this system are equivalent. If we start 
with an additional axiom, 

4. x+x = 0, 

the system will derive the fact that + is a 
commutative operation. At that point it would be 
necessary to restart the process, this time with 
the initial stipulation that + is commutative. 

The necessity of restarting the system is 
annoying and is contrary to the goal of avoiding 
the necessity of human intervention in the theorem 
proving process. (This goal is extremely important 
for practical program verification and artificial 
intelligence systems.) Fortunately, a commutative 
rule is easy to recognize. It is straightforward 
to have the prover examine any unorderable rewrite 
rule it has obtained (either as an initial axiom or 
during the proving process) to see if it is a 
commutative law. If a commutative law is 
discovered, that fact can be recorded and all 
future applications of that operator can be done 
using the commutative unification principle. If 
the operator is also associative, the more powerful 
associative-commutative unification can be used. 
It is also helpful to check the already derived 
rewrite rules to see if any can be simplified using 
the fact that the operator is commutative. 

One important unanswered question is the 
extent to which previous work must be redone when 
an operator is discovered to be commutative. All 
previously discovered rules must still be valid, 
but it is possible that some further rules may be 
discovered by reconsidering the earlier results. 
Until this can be resolved theoretically, the 
sys tern plays it safe by regenerating all relevant 
potential rules using the fact that the operator is 
commutative, and checks that they reduce to a 
common form. 

Implementation 

A Knuth-Bendix theorem prover embodying these 
ideas has been implemented in Prolog. At present 
it is able to recognize a commutative law and use 
the commutative unification algorithm on operators 
for which such laws have been discovered. It also 
recognizes explicit associative laws, and will use 
commutative-associative unification for operators 
that have both properties. If an operator that is 
known to be associative is found to also be 
commutative, the associative law is removed from 
the list of explicit rewrite rules belonging to the 
system. (No practical unification algorithm for 
the associative property alone is known.) 

As an example, consider the group theory 
axioms given above. The system completes the 
original three axioms by deriving rewrite rules in 
the following order: 
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4. -x+(x+y) = y 
5. -0+x = x 
6. --x+0 = x 
7. --0+x = x 
8. -0 = 0 
9. --x+y = x+y 
10. x+0 = x 
11. x+(-x) = 0 
12. --x = x 
13. x+(-x+y) = y 
14. x+(y-(x+y)) = 0 
15. -(x+y>+(x+(y+z)) = z 
16. x+(y+(-(x+y)+z)) = z 
17. x+(y+(z-(x+(y+z)))) = 0 
18. x-(y+x) = -y 
19. x+(y-(z+(x+y))) = -z 
20. x+(-(y+x)+z) = -y+z 
21. -(x+y) = -y+(-x) 

Rules 5,6,7,9,14,15,16,17,18,19, and 20 are 
eliminated during the process by being simplified 
using later rules; the final set has the remaining 
ten elements. 

It is interesting to contrast this derivation 
with the one obtained by starting with the three 
group theory axioms plus the fourth axiom given 
above, stating that the group operation is 
idempotent. The following rules are discovered in 
order: 

5. -x+(x+y) = y 
6. x+(y+(x+y)) = 0 
7. x+(x+y) = y 
8. -0+x = x 
9. -0 = 0 
10. --x+0 = x 
11. -x+0 = x 
12. -x = x 
13. x+0 = x 
14. x+(y+(x+(y+z))) = 2 
15. x+(y+(z+(x+(y+z)))) = 0 
16. x+(y+x) = y 
17. x+(y+(z+(x+y))) = 2 
18. x+(y+(x+z)) = y+z 
19. x+y = y+x 

At this point, the system recognizes that + is 
commutative and associative. Rule 3 is removed from 
the rule database, and the shift to associative- 
commutative unification for applications of the + 
operator is made. The discovery of rule 19, like 
the discovery of rule 21 in the previous example, 
causes many of the earlier rules to disappear. For 
example, it is no longer necessary to have rules 
showing that 0 is both a left and a right identity. 

This example demonstrates the ability of the 
theorem prover to modify itself in response to its 
discoveries. The extra checking involved consumes 
a negligible amount of time and greatly expands the 
capacities of the prover to handle sets of axioms 
without human intervention. 

Future work 

Many further improvements are possible on this 
system. As unification algorithms for other 

properties are discovered, the ability to recognize 
those properties can be built into the system, 
provided they can be easily recognized 
syntactically. Unfortunately, it is necessary to 
devise a new unification algorithm for each desired 
combination of properties, and this is no easy 
matter. Associativity and commutativity are 
probably the most generally useful properties, and 
a system that simply recognizes those (and thereby 
provides a good method for handling commutativity) 
should be most useful. A review of the currently 
available unification algorithms and their 
properties is given in [SIE84]. 

Also, while the commutative property is easy 
to recognize syntactically, there may be axioms 
present that imply the associative property and 
that lead to unorderable rules when the commutative 
law is applied to them. It would be helpful if the 
system could attempt to prove the associative law 
whenever it got into trouble with an unorderable 
rule for an operator known to be commutative and 
not known to be associative. In this way the order 
of discovery of properties would not be such a 
crucial factor in the success of the algorithm. 
(In general, it is a good strategy to postpone 
processing of unorderable rules in the hope that 
future rewrite rules can be used to eliminate 
them.) 
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Another area for research is the efficiency of 
the associative and commutative unification 
algorithm. The usual algorithm often generates many 
redundant possibilities; it should be possible to 
develop methods to recognize and avoid them. 
Finally, the Knuth-Bendix algorithm itself should 
be studied to identify potential speed-ups. 
Progress in this direction has already been made by 
Huet [HUE81]. 
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