
A Forward Inference Engine
to Aid in Understanding Specifications*

Donald Cohen
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

Abstract: An important part of understanding a specification is
recognizing the consequences of what is stated. We describe a
program that can help a user acquire this understanding. It does
this by deriving interesting, though not deep consequences of a
set of input axioms, while avoiding (a typically much larger set of)
uninteresting consequences. The heuristics for obtaining that
effect are described and justified. The program has been used in
a symbolic evaluator that helps a user to understand and debug
specifications written in the Gist specification language.

1. Int reduction
A specification can be viewed’as a set of facts describing an

existing or desired system. This paper describes a program
called FIE (for “Forward Inference Engine”), which finds
interesting consequences of a set of input facts. Such a
“kibitzer” program (a term suggested by Elliot Soloway) can help
us to understand the system. This is useful either in designing a
new system or in trying to understand an existing system. FIE is
the underlying inference engine in a prototype symbolic evaluator
for Gist specifications [Cohen 831.

Humans automatically draw consequences of new facts. A
kibitzer does the same thing. To the extent that the results
overlap, the kibitzer confirms the user’s understanding. Results
that he failed to anticipate may reveal important properties of the
system. Results that contradict his beliefs reveal bugs, either in
his mental model of the system or in the formal description.

2. Examples
Imagine a user trying to specify a domain. perhaps as a step in

database design. The kibitzer prompts with “>” and announces
results in upper case. The user types in lower case. We start with
an example of the kibitzer finding an expected result:

>every person has exactly one sex.
>no person has a spouse with the same sex.
NO PERSON IS HIS OWN SPOUSE.
>why?
A PERSON WHO IS HIS OWN SPOUSE HAS THE SAME SEX
AS HIS SPOUSE.

The next example shows an unexpected result:

>ships may carry (any number of) cargo objects.
>no ship carries both grain and fuel (types of
cargo object).
>suppose some ship, s, is carrying some cargo
object, c.

*
This research was supported by the Air Force Systems Command, Rome Air

Development Center, under contrace No. F30602 81 K 0056, and by the Defense

Advanced Research Projects Agency under contract No. MDA903 81 C 0335.

Views and conclusions contained in this report are the author’s and should not be

interpreted as representing the official opinion or policy of RADC, DARPA, the

U.S. Government, or any person or agency connected with them.

IF S CARRIES ANY GRAIN THEN C IS NOT A FUEL.
IF S CARRIES ANY FUEL THEN C IS NOT A GRAIN,
C MUST NOT BE BOTH A GRAIN AND A FUEL.
>

The first two results are expected. The third seems trivial at first
- after all, nothing is both a grain and fuel. However, this is not
implied by the specification. (The axioms only imply that no
cargo object carried by a ship is both grain and fuel!)

An intelligent kibitzer can be expected to refrain from reporting
uninteresting consequences. Hence, an apparently trivial output
is evidence of a misunderstanding - the kibitzer does not think the
result is trivial. Typically, such a result follows trivially from a
belief on the part of the user which is not shared by the kibitzer. If
the specification is taken to be definitive, this indicates an
unjustified assumption on the user’s part. If the user is
debugging the specification, this indicates an omission.

The ship example comes from a Gist specification which
declared grain and fuel as subtypes of cargo, but failed to declare
them as disjoint. Notice that this is not discovered until we
suppose that there is a ship carrying cargo. FIE tends not to
“speculate” very far by imagining situations. Rather the user
guides its exploration by providing explicit suppositions.

Finally we present an example in which an expected result is
not found:

>every party has exactly one candidate.
>the president is the candidate of the winning
party.
>if the republican party wins, reagan is the
president.
>

When I wrote this example, I expected to be told that Reagan was
the Republican candidate. It turns out that this expectation
(which is widely shared) rests on an interpretation of “if . . . then
. . . ” which does not correspond to classical implication: the formal
specification does not match our intent,

The failure of an intelligent kibitzer to report an expected result
suggests that the user may be wrong to expect it. This may be a
symptom of the user’s incorrect reasoning or of a missing axiom.

At this point a user would probably like to ask why the expected
result does not hold (or whether it does). Another way to phrase
this question, is under what circumstances would the expected
result nol apply. This could be (but has not yet been)
implemented by supposing that the result is false, and reporting
any interesting consequences, i.e., using the kibitzer as a weak
refutation theorem prover:

>when woul dn’ t reagan be the republ ican
candidate?
SUPPOSE THE REPUBLICANS DO NOT WIN.
>

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

With the exception of English input, all the pieces of the above
system exist in prototype form. Instead of English input, we
currently use either Gist or predicate calculus. FIE discovers the
consequences. In the examples above (except for the
unimplemented “Why not ?” segment) it reported all the results
shown and no others. The Gist behavior explainer [Swartout 831
is capable of converting the results to English, and to some extent
can explain proofs.

For an extended example that illustrates FIE’S role in symbolic
execution of Gist specifications [Cohen 831, see [Swartout 831.

3. Requirements for an Effective
Kibbitzer

FIE is the theorem proving component of the kibitzer illustrated
above. Unlike a conventional theorem prover, it has no specific
target theorem, but rather the more general goal of finding the
interesting consequences of its input axioms.

We will not attempt to formally define interestingness.
Informally, a user should feel that it’s worth his time to read the
output. One heuristic is that a result is nof interesting if it follows
trivially from other known results. FIE therefore tries to suppress
closely related results. The meaning of “closely related” and the
user’s influence over it are described later.

Other heuristics are related to symbolic execution. For
example, Gist allows descriptive reference. It is therefore
important to know whether two descriptions refer to the same
object. We feel that these heuristics will not prevent FIE from
being useful for other applications, though additional heuristics
might well be appropriate.

In order to provide useful interactive assistance, FIE must be
fairly fast . it should rarely take more than a minute or so. This
precludes the sort of “deep” consequences that challenge
today’s theorem provers. However, shallow consequences may
still surprise or interest a user. (After all, human kibitzing is useful
even in the absence of deep consequences.)

4. Overview
FIE can be viewed as a function that accepts a set of “old” facts,

modeling a state of understanding, and a set of “new” facts to be
integrated into that model. It returns a set of facts equivalent (in
the sense of two way implication) to the union of these input sets.
The “interesting results” are the output facts that were not in
either of the input sets.

Initially the “old” set is empty. Subsequently it contains the
results of previous calls. The advantage of dividing the input into
two sets is that FIE need not consider interactions among already
integrated facts. It simply integrates one new fact at a time. (For
efficiency, FIE integrates simpler facts first.)

We now describe how FIE integrates new facts. (If you don’t
want to see technical details, skip to the end of the paper.) We
use terminology common in the literature of logic and automatic
theorem proving. Definitions of these terms can be found in
[Loveland 781. FIE relies heavily on well known techniques from
resolution theorem proving. Most of this paper describes
additions and alterations to these techniques that have been
useful in the kibitzing application.

Facts are represented as clauses. A clause, current, is added
to the set of old clauses, old, in three phases, which are
described in detail in the following sections:

1. Consider current in isolation: it is simplified and
canonicalized, and its factors are found (they will
also be added).

2. Consider interactions between current and members
of old which justify simplifications (of either).
Whenever a clause is simplified, the unsimplified
version is discarded and the simplified version is put
into the set of clauses to be integrated.

3. Consider interactions between current
of old to generate new consequences.

members

4.1. Logical language
FIE uses a typed version of first order logic: every variable and

object has a type. It is assumed that there is at least one object of
each type. (If not, the type should be replaced by a new predicate
on objects of a super-type and all inputs should be changed
accordingly.) FIE relies on external decision procedures to tell
whether two types are disjoint and whether one type is a subtype
of another. Some objects are further classified as literals which
are assumed to be distinct objects. All other objects (including
skolem functions) are essentially names which may or may not
refer to distinct objects. In the examples below we will use letters
near the end of the alphabet (e.g., x, y, z) for variables. Function
and predicate names can be distinguished by position. Literals
will be capitalized. Where appropriate, terms will be subscripted
to indicate type.

5. Processing a Clause in Isolation
In the first phase, current (the new clause to be integrated) is

simplified. This is important, but mostly mundane from a
technical standpoint, e.g., -True --+ False, (P V False V Q) -+ (P
V Q), (P V C V P) + (P V Q), (P V Q V -P) --+ True.

5.1. Equality Simplification
The algorithm for simplifying equalities makes use of the type

structure decision procedures. If the types of the two objects are
incompatible the equality is False. If the two objects are different
literals the equality is False. Other cases specific to symbolic
execution are also recognized. For example, in Gist it is possible
to create and destroy objects. An object that is created must be
distinct from any object that was known to exist before. If none of
these apply. the equality is ordered so as to make it preferable to
substitute the first term for the second: constants are preferred to
variables, terms of more specific type are preferred to terms of
more general type, etc. As a last resort, all expressions are
ordered alphabetically.**

5.2. Substitution for Restricted Variables
The next two steps simplify results that don’t seem to arise very

often in normal theorem proving. The first substitutes for
variables in inequality literals, e.g., -(= a x) V (P x) is rewritten
as (P a). In particular, if the inequality is between a variable, x, of
type tl, and a term, a, of type t2, where a contains no variables
and t2 is a subtype of tl, then the inequality literal is discarded
from the clause, and all occurrences of x in the remaining literals
are replaced by a. In part, this rule is used to apply substitutions
computed in the generalized resolution procedure described
below.

5.3. Equality Canonicalization
The next step is analogous but allows inequalities between non-

variables, e.g., -(= a b) V (P b) becomes -(= a b) V (P a).
Intuitively, someone who knows “if a= b then (P b)” also knows

57

“if a = b then (P a)“. In this case the inequality literals must be
kept. While the previous rule is a clear simplification, this one is a
canonicalization, allowing clauses to be recognized as
equivalent.

6. interactions that Simplify
The second phase uses information in one clause to simplify

another clause. We describe modifications to the standard
procedures for subsumption and equality substitution.

6.1. Conditional Equality Canonicalitation
First the clauses in old are used to further simplify and

canonicalize current via substitution of equalities. This may be
regarded as an efficient restriction of paramodulation - doing in
parallel all paramodulations which can be viewed as simplifying.
A special case is demodulation: if we know (= a b), the clause (P
b) is rewritten as (P a).

More generally R V (= a b) can be used to rewrite R V (Q b) as
R V (Q a). The intuitive justification is that someone who knows
“if P then a= b” will consider “if P then Q(b)” equivalent to “if P
then Q(a)“. As the name suggests, conditional equality
canonicalization is especially valuable to FIE in dealing with
conditional statements.

In general, we argue that if the clauses C and D combine to
yield E, then A V C should combine with A V D to yield A V
E. This holds for FIE’S generation of new consequences
(described later), and we think that it would be appropriate for
resolution theorem provers in general. (Note that this is not true
of ordinary demodulation.)

Incidentally, these substitutions do not always yield unique
results. Given P V (= a c) and Q V (= b c) we can rewrite P V
QV (R c) in two different ways. We have done nothing about this.

The final generalization is that if Rl X2, then Rl V (= a b) can
be used to rewrite R2 V (Q b) as R2 V (Q a). The previous rule is
obtained if implication is only recognized between identical
formulae. Subsumption is the obvious candidate for a stronger
recognizer of implication. recognizer of implication.

As an example, suppose 1. no box has two distinct locations, As an example, suppose 1. no box has two distinct locations,
and 2. every box is at locationl. These imply 3. no box is at rn~y and 2. every box is at locationl. These imply 3. no box is at rn~y
location other than locationl. location other than locationl. One feels intuitively that fact 3 One feels intuitively that fact 3
implies fact 1. The general rule allows fact 3 to rewrite fact 1 and implies fact 1. The general rule allows fact 3 to rewrite fact 1 and
subsume the result: subsume the result:

l* (= Yloc ‘& v -tLoc ‘box $0,)) ’ 1. (= Yloc qoc) v -(Lot Xbox Y,& v

-tLoc ‘box ‘,,,c) -tLoc ‘box ‘,,,c)
is canonicalized by is canonicalized by

2. (= 2. (= lo” Y,,,) v -lLoc ‘box Y,,,) loci Y,,,) v -lLoc ‘box Y,,,)
to yield (we have arranged to use the null substitution) to yield (we have arranged to use the null substitution)

(q lo c i �& v --CL� � b o ⌧ Y,o,)) v (= loci ‘,oc) v --CL” ‘box Y,o,)) v

-tLo c � b o ⌧ �,o c) -tLoc ‘box ‘,oc)
which is subsumed by clause 2 (using xlnp for y,,,) which is subsumed by clause 2 (using xloc for y,,,) .-I .W”

This final generalization is relatively expensive in execution This final generalization is relatively expensive in execution
time. For example, one subsuming substitution may fail while time. For example, one subsuming substitution may fail while
another succeeds, e.g., Px V a= b can be used to rewrite Pa V another succeeds, e.g., Px V a= b can be used to rewrite Pa V
Pb only by substituting a for x. However, it is easy to devise cheap Pb only by substituting a for x. However, it is easy to devise cheap
algorithms that obtain part of the benefit. The current version of algorithms that obtain part of the benefit. The current version of
FIE requires Rl and R2 above to be identical. FIE requires Rl and R2 above to be identical. This is usually This is usually
sufficient, because they are typically (e.g., in the case of branch sufficient, because they are typically (e.g., in the case of branch
conditions from conditional statements) single literals immune conditions from conditional statements) single literals immune
from substitution. from substitution.

6.2. Su bsumption
Next, FIE checks to see if current is subsumed by any clauses in

o/d. In general, FIE deletes any clause subsumed by a known
clause. Thus FIE should recognize Cl as subsuming C2 in just
those cases where a person who knows Cl will consider C2 as
redundant.

To test whether clause Cl subsumes clause C2, the inequality
literals of C2 are first used to rewrite Cl as in equality
canonicalization. This, in combination with equality
canonicalization allows (P tl) to subsume any clause (regardless
of equality ordering) of the form “if tl = t2 then (P t2)“.

The resulting clause Cl’ subsumes C2 if it has no more literals
than C2 and some substitution maps each literal of Cl’ to a literal
of C2 (a standard definition). In particular, a clause does not
subsume its factors. Factors are often not obvious to humans,
and thus constitute interesting results.

6.2.1. Reordering Arguments
When a relation is intuitively commutative, such as the Spouse

relation, the commutative variants of known facts cease to be
interesting. The user can declare a predicate to be intuitively
symmetric (and other properties corresponding to permuting
arguments), so that FIE will consider the variants to be “obvious”
consequences of each other. The subsumption algorithm
computes the variants of each literal and accepts a substitution
for any of them. Perhaps other common properties would also be
worth recognizing, but we have not had to deal with them yet.

6.2.2. Uniqueness Properties
We have described some additions to a large bag of previously

known tricks for dealing with equality. The way FIE deals with
commutativity is important for its application, but nothing new. In
contrast, uniqueness does not seem to have been much studied.
We feel we have made progress in building an understanding of
uniqueness into FIE. In each case, the ability to discard a result
that is too easily derived requires compensation (described later)

the component that finds new consequences must be
strengthened to avoid losing the consequences of what has been
discarded.

When a relation is intuitively single valued, such as the Location
relation, negative instances become uninteresting in the face of
positive instances, If we know where an object is. there is no
need to list all the other locations as places where it is not. The
user can tell FIE that he understands certain uniqueness
properties of a predicate. (In the case of symbolic execution, this
information is already in the specification and the user need not
restate it.)

The uniqueness properties are of the form: V x,y,z,u,v (P<uu>
A P<zv>)Iu = v
where x,y and g represent vectors of variables distinct from each
other and from u and v (y and I of the same length), and <mu> is
some permutation of the variables in the concatenation of x, y
and (the single variable) u. A given uniqueness declaration must
specify the predicate P, the permutation < > and the size of x. The
literal P<&c> is considered to subsume the literal -P<deD (here
we use c and f to stand for terms and 2, b, d and .e as vectors of
terms) if there is a substitution 8 which maps _a to d and 8 maps c
to a term known not to be equal to f. (The current implementation
just checks whether (= c f) simplifies to False. We have seen
cases where this was inadequate.)

58

6.3. New Facts Simplify Old
If current (the clause being integrated) is still not simplified, it is

used to simplify all the other clauses of old. Any clauses that are
rewritten (where we regard subsumption as rewriting to True) are
removed from old and the new version is put into the list of
clauses to be added. Finally current is inserted into old.

7. Deriving New Consequences
In the final phase, current is combined with each clause of old

to find new results. This is done with two rules, both closely
related to binary resolution. Note that if clauses Cl and C2 are
known to be true, and clause C3 is a resolvent of Cl and C2, then
C3 must be true.

7.1. Resolution
The major difference between normal resolution and the first

rule (which we will refer to simply as resolution) stems from our
interest in equality. In normal resolution, it is impossible to
resolve P(a) with -P(b). In our case this is allowed, with the result
of -(= a b). Deriving inequalities may seem odd from a theorem
proving point of view, but the results can be interesting to a
person. They also serve as a communication mechanism in
symbolic execution: the distinctness of two objects may be
important at one time, but only derivable at another time.

In general, from the clauses P V (R t, . . . t”) and Q V -(R u, . . .
un) (where ti and ui are terms and P and Q are clauses), we derive
P V Q V -(= t, u,) V . . . V -(= tn un). Notice that the
substitution is stored in the inequality literals of the clause (which,
of course, tend to simplify).

7.2. Uniqueness Resolution
The other rule uses the uniqueness information described

above, Given that box1 is at N.Y. and box2 is at L.A., it directly
derives that box1 and box2 are distinct. Also, given that Joe is at
location1 and that Joe is at location2, it directly derives that
location1 and location2 are identical. In fact, given a uniqueness
declaration, an explicit axiom, such as -(Lot x y) V -(Lot x z) V
(= y z) adds very little in terms of interesting consequences.

From the clauses P V R<au> and Q V R<sv> uniqueness
resolution derives
PVQV-(= xdV(= uv),
where -(= x.d means -(.= x, w,) V . . . v -(= XmWm)’

In the case of Location, y and z are empty, x and w are the
terms representing objects and u and v are the terms
representing locations.

(Lot box1 N.Y .) combines with

(Lot box2 L.A.) toyield

-(= box1 box2) V (= N.Y. L.A.)

which simplifies (assuming L.A. and N.Y. are known to be
distinct) to

-(= box1 box2)
A more impressive example:

(Lot Xbox N .Y.) V (= box1 xboX) every box otherthan

box1 is at N.Y.

(Lot box2 L. A.) yields by uniqueness resolution

-(q box2 xbox) V (= N.Y L.A.) V (= box1 xbox)

which simplifies in two steps to (= box1 box2)
The reordering properties of predicates (e.g., commutativity)

are used in resolution (and uniqueness resolution) in the same
way as in subsumption.

8. Filtering New Consequences
The two rules above can, of course, generate many new

consequences. Some of these will be recognized as closely
related to known facts, but in general this is not sufficient to
prevent an explosion in the number of clauses. FIE adopts a very
simple (and severe) strategy to ensure termination: it considers
any resolvent that is more complex than either parent to be
uninteresting. Higher complexity is defined as greater nesting of
functions*** or more literals****

Different “versions” of FIE, corresponding to a tradeoff between
power and selectivity may be obtained by varying some
implementation parameters. The first of these is where to draw
the boundary between “more literals” (uninteresting) and
“fewer” (interesting). We have tried three solutions:

- the result
parent

-the result must contain
literals as one parent

strictly than one

number of

. the result must either contain strictly fewer literals, or
the same number of literals but strictly more equality
(inequality) literals than one parent.

The standard setting for symbolic execution has been the third.
How much the results differ, and whether the difference is for
better or worse depends on the problem.

The other, and perhaps more interesting parameter, is how
much simplification is done before deciding whether a result is
interesting. FIE’S results would be fairly predicatable (and dull
from a theorem proving point of view, though perhaps still
interesting to the user) if the decision were made directly on the
results of resolution. Often, however, complex results simplify
enough to be considered “interesting”. So far, we have only
processed resolvents in isolation before deciding whether to keep
them, but we have seen cases where interactions with other
known clauses would have allowed resolvents to be kept. The
most complete version (classified as future work) would be to
keep “uninteresting” clauses for simplification, but not resolve
them unless (until) they were simplified to the point of
“interestingness”.

It must be mentioned that FIE still can not guarantee a small
number of consequences. Knowing of n boxes at different
locations will generate n2 inequalities, all of which FIE considers
interesting. Actually, it is proper to consider as interesting the
fact that these n boxes are all distinct. The “problem” is that
predicate calculus cannot express that fact succinctly. One
could imagine building a new representation for such a fact,
extending the subsumption algorithm to recognize it, and building
a special inference mechanism to use it. This would be a useful
addition for some domains, but other forms of the same problem
would remain, such as transitivity: given the axiom that a relation
R is transitive, a set of axioms of the form (R ai ai7 ,) implies all
results of the form (R ai ai) for i<j.

to generate new

knew how to add

(P 1) would have

l l l *We mention in passing that the complexity cutoff can be programmed to

some extent by altering the input clauses. For example, given a clause C

containing the literal L, and another clause D which does not contain a literal that

unifies with L, one can disjoin L to D to effectively raise the complexity limit

without losing termination.

59

We have not tried to deal with the problems above (or related
problems). This is partly due to the fact that in exploring sets of
axioms (including symbolic execution, where individual examples
are normally small), one rarely needs many instances: in order to
explore the axioms of ordering, we would probably consider three
or four objects, not twenty. However, other problems have arisen
in practice. These have been solved without new representations
or inference mechanisms.

8.1. Conditionality, again
In symbolic execution, a conditional statement (If P then Sl else

S2) can be intuitively understood as two possible worlds. There is
one set of theorems of the form -P V Ci (for results of Sl) and
another set of the form P V Cj (for results of S2). Resolving on P
produces a cross product of clauses. These always seem
uninteresting - they intuitively amount to the case split: P V -P.

The symbolic evaluator generates a new literal, L, meaning “the
THEN branch was taken”. (It needs a way to refer to that bit of
history anyway - the expression P is insufficient since it refers to
mutable domain relations.) FIE discards any result of resolving on
L unless it has strictly fewer literals than one of its parents, This
accepts consequences that can be derived independent of L, and
if L can be proven True or False it allows the appropriate set of
clauses to be deconditionalized (and the others to be subsumed).
In another setting, the user could tell FIE which literals intuitively
correspond to case splits.

8.2. Skolem functions
FIE filters out a large class of consequences that contain skolem

functions. In essence, the skolem functions offer alternative
representations for certain facts. We prefer to represent these
facts only once in the original (and more natural) way.

As an example, consider the’ clause that every box has a
location, (Lot x (fx)). This clause is useful, e.g., if we find a box
with no location it would be nice to notice the contradiction.
However, it interacts with -(Lot box1 L.A.) to yield -(= L.A. (f
boxl)), which a person would consider redundant. Given that
locations are unique, (Lot box1 N.Y.) implies (= N.Y. (f boxl)).
As another example, given that every person has a Gender, (Gen
x (gx)), and that spouses cannot share a gender, we can derive
-(Sp x y) V -(Gen y (gx)), which is hard to explain in English in
any terms other than the original axiom, that spouses cannot
share a gender. FIE discards all of these (and other similar)
results.

9. Related Work
FIE resembles Eurisko [Lenat 831 (and AM [Lenat 761) in that it

searches for interesting extensions to an initial knowledge base.
However, Eurisko is meant to find deep results in many hours of
exploration, whereas FIE is meant to quickly point out a few
consequences that the user should probably know. Furthermore,
Eurisko’s results are empirically justified conjectures, whereas
FIE’S results are theorems.

Forward inference is quite rare in programs with general
theorem proving capability, except on a special case basis.
Programs like [Nevins 751 use forward inference rules whose
form is carefully designed to generate certain types of results. On
the other hand, [Bledsoe 783 provides various types of forward
reasoning as user options, with no guarantee that they will lead to
reasonable behavior - the responsibility belongs to the human
user. [Cohen 811 is much closer in spirit to FIE in that it takes total
responsibility for deciding which inferences to make. However, it
uses forward reasoning purely to integrate new knowledge into
its own database. It is not trying to interest an external user.

FIE has strong ties to the large body of work on resolution
theorem proving [Loveland 781. It uses clause representation,
and resolution is its primary rule of inference [Robinson 651.
Also, we share with much of this work an emphasis on techniques
for recognizing and deleting useless or redundant information,
e.g., canonicalization and subsumption.

IO. Conclusions
FIE automatically generates interesting consequences from a

set of input axioms. One measure of success is that the symbolic
evaluations we have tried have reported nearly all the results we
expected, and some that were not expected.

FIE works hard to avoid uninteresting consequences. The
notion of interestingness is heavily dependent on context. In
particular, a fact is considered uninteresting if it is too easy to
derive from other known facts.

FIE finds mostly shallow consequences, but finds them quickly.

In the longest symbolic execution to date of a Gist specification,
the average call to FIE integrated 10 new clauses with 23 old ones
to yield 27 clauses in less than 10 CPU seconds on a VAX750
running Interlisp.

FIE has been used successfully in a symbolic evaluator. The
specified domains have included a file system, a package router,
a world of people (marriages, children, etc.), and a world of ships
(cargoes, ports etc.). In the future we hope to adapt it to other
purposes (e.g., debugging and explaining database schemas).

Acknowledgements: This work was done in the context of a
larger effort by the Gist group at ISI. Also. the presentation of this
paper was greatly improved by the suggestions of members of the
group, especially Jack Mostow.

References

[Bledsoe 781 W. W. Bledsoe and Mabry Tyson, The UT Interactive
Prover, University of Texas, Technical Report, 1978. Math.
Dept. Memo ATP-17A

[Cohen 811 Donald Cohen, Know/edge Based Theorem Proving
and Learning, UMI Research Press, 1981.

[Cohen 831 Donald Cohen, “Symbolic Execution of the Gist
Specification Language,” in IJCAI, 1983.

[Lenat 761 Douglas Lenat, AM: An Artificial Intelligence Approach
to Discovery in Mathematics as Heuristic Search,

Ph.D. thesis, Stanford University, July 1976.
[Lenat 831 Douglas B. Lenat, “EURISKO: A Program that Learns

New Heuristics and Domain Concepts; The nature of
Heuristics III: Program design and results,” ArtificiaI

intelligence 21, (1,2), March 1983, 61-98.
[Loveland 781 Donald W. Loveland, Fundamental Series in

Computer Science. Volume 6: Automated Theorem Proving:
A Logical Basis, North-Holland Publishing Company, 1978.
This is cited only as one representative of a large body of
work on resolution theorem proving.

[Nevins 751 Arthur J. Nevins, “Plane Geometry Theorem Proving
Using Forward Chaining,” Artificial intelligence 6, (l), 1975,
l-23.

[Robinson 651 J. A. Robinson, “A Machine-Oriented Logic Based
on the Resolution Principle,” JACM 12, (I), Jan. 1965, 23-41.

[Swat-tout 831 Bill Swarout, “The GIST Behavior Explainer,” in
NCAI. 1983.

60

