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Abstract: An important part of understanding a specification is 
recognizing the consequences of what is stated. We describe a 
program that can help a user acquire this understanding. It does 
this by deriving interesting, though not deep consequences of a 
set of input axioms, while avoiding (a typically much larger set of) 
uninteresting consequences. The heuristics for obtaining that 
effect are described and justified. The program has been used in 
a symbolic evaluator that helps a user to understand and debug 
specifications written in the Gist specification language. 

1. Int reduction 
A specification can be viewed’as a set of facts describing an 

existing or desired system. This paper describes a program 
called FIE (for “Forward Inference Engine”), which finds 
interesting consequences of a set of input facts. Such a 
“kibitzer” program (a term suggested by Elliot Soloway) can help 
us to understand the system. This is useful either in designing a 
new system or in trying to understand an existing system. FIE is 
the underlying inference engine in a prototype symbolic evaluator 
for Gist specifications [Cohen 831. 

Humans automatically draw consequences of new facts. A 
kibitzer does the same thing. To the extent that the results 
overlap, the kibitzer confirms the user’s understanding. Results 
that he failed to anticipate may reveal important properties of the 
system. Results that contradict his beliefs reveal bugs, either in 
his mental model of the system or in the formal description. 

2. Examples 
Imagine a user trying to specify a domain. perhaps as a step in 

database design. The kibitzer prompts with “>” and announces 
results in upper case. The user types in lower case. We start with 
an example of the kibitzer finding an expected result: 

>every person has exactly one sex. 
>no person has a spouse with the same sex. 
NO PERSON IS HIS OWN SPOUSE. 
>why? 
A PERSON WHO IS HIS OWN SPOUSE HAS THE SAME SEX 
AS HIS SPOUSE. 

The next example shows an unexpected result: 

>ships may carry (any number of) cargo objects. 
>no ship carries both grain and fuel (types of 
cargo object). 
>suppose some ship, s, is carrying some cargo 
object, c. 
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IF S CARRIES ANY GRAIN THEN C IS NOT A FUEL. 
IF S CARRIES ANY FUEL THEN C IS NOT A GRAIN, 
C MUST NOT BE BOTH A GRAIN AND A FUEL. 
> 

The first two results are expected. The third seems trivial at first 
- after all, nothing is both a grain and fuel. However, this is not 
implied by the specification. (The axioms only imply that no 
cargo object carried by a ship is both grain and fuel!) 

An intelligent kibitzer can be expected to refrain from reporting 
uninteresting consequences. Hence, an apparently trivial output 
is evidence of a misunderstanding - the kibitzer does not think the 
result is trivial. Typically, such a result follows trivially from a 
belief on the part of the user which is not shared by the kibitzer. If 
the specification is taken to be definitive, this indicates an 
unjustified assumption on the user’s part. If the user is 
debugging the specification, this indicates an omission. 

The ship example comes from a Gist specification which 
declared grain and fuel as subtypes of cargo, but failed to declare 
them as disjoint. Notice that this is not discovered until we 
suppose that there is a ship carrying cargo. FIE tends not to 
“speculate” very far by imagining situations. Rather the user 
guides its exploration by providing explicit suppositions. 

Finally we present an example in which an expected result is 
not found: 

>every party has exactly one candidate. 
>the president is the candidate of the winning 
party. 
>if the republican party wins, reagan is the 
president. 
> 

When I wrote this example, I expected to be told that Reagan was 
the Republican candidate. It turns out that this expectation 
(which is widely shared) rests on an interpretation of “if . . . then 
. . . ” which does not correspond to classical implication: the formal 
specification does not match our intent, 

The failure of an intelligent kibitzer to report an expected result 
suggests that the user may be wrong to expect it. This may be a 
symptom of the user’s incorrect reasoning or of a missing axiom. 

At this point a user would probably like to ask why the expected 
result does not hold (or whether it does). Another way to phrase 
this question, is under what circumstances would the expected 
result nol apply. This could be (but has not yet been) 
implemented by supposing that the result is false, and reporting 
any interesting consequences, i.e., using the kibitzer as a weak 
refutation theorem prover: 

>when woul dn’ t reagan be the republ ican 
candidate? 
SUPPOSE THE REPUBLICANS DO NOT WIN. 
> 
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With the exception of English input, all the pieces of the above 
system exist in prototype form. Instead of English input, we 
currently use either Gist or predicate calculus. FIE discovers the 
consequences. In the examples above (except for the 
unimplemented “Why not ?” segment) it reported all the results 
shown and no others. The Gist behavior explainer [Swartout 831 
is capable of converting the results to English, and to some extent 
can explain proofs. 

For an extended example that illustrates FIE’S role in symbolic 
execution of Gist specifications [Cohen 831, see [Swartout 831. 

3. Requirements for an Effective 
Kibbitzer 

FIE is the theorem proving component of the kibitzer illustrated 
above. Unlike a conventional theorem prover, it has no specific 
target theorem, but rather the more general goal of finding the 
interesting consequences of its input axioms. 

We will not attempt to formally define interestingness. 
Informally, a user should feel that it’s worth his time to read the 
output. One heuristic is that a result is nof interesting if it follows 
trivially from other known results. FIE therefore tries to suppress 
closely related results. The meaning of “closely related” and the 
user’s influence over it are described later. 

Other heuristics are related to symbolic execution. For 
example, Gist allows descriptive reference. It is therefore 
important to know whether two descriptions refer to the same 
object. We feel that these heuristics will not prevent FIE from 
being useful for other applications, though additional heuristics 
might well be appropriate. 

In order to provide useful interactive assistance, FIE must be 
fairly fast . it should rarely take more than a minute or so. This 
precludes the sort of “deep” consequences that challenge 
today’s theorem provers. However, shallow consequences may 
still surprise or interest a user. (After all, human kibitzing is useful 
even in the absence of deep consequences.) 

4. Overview 
FIE can be viewed as a function that accepts a set of “old” facts, 

modeling a state of understanding, and a set of “new” facts to be 
integrated into that model. It returns a set of facts equivalent (in 
the sense of two way implication) to the union of these input sets. 
The “interesting results” are the output facts that were not in 
either of the input sets. 

Initially the “old” set is empty. Subsequently it contains the 
results of previous calls. The advantage of dividing the input into 
two sets is that FIE need not consider interactions among already 
integrated facts. It simply integrates one new fact at a time. (For 
efficiency, FIE integrates simpler facts first.) 

We now describe how FIE integrates new facts. (If you don’t 
want to see technical details, skip to the end of the paper.) We 
use terminology common in the literature of logic and automatic 
theorem proving. Definitions of these terms can be found in 
[Loveland 781. FIE relies heavily on well known techniques from 
resolution theorem proving. Most of this paper describes 
additions and alterations to these techniques that have been 
useful in the kibitzing application. 

Facts are represented as clauses. A clause, current, is added 
to the set of old clauses, old, in three phases, which are 
described in detail in the following sections: 

1. Consider current in isolation: it is simplified and 
canonicalized, and its factors are found (they will 
also be added). 

2. Consider interactions between current and members 
of old which justify simplifications (of either). 
Whenever a clause is simplified, the unsimplified 
version is discarded and the simplified version is put 
into the set of clauses to be integrated. 

3. Consider interactions between current 
of old to generate new consequences. 

members 

4.1. Logical language 
FIE uses a typed version of first order logic: every variable and 

object has a type. It is assumed that there is at least one object of 
each type. (If not, the type should be replaced by a new predicate 
on objects of a super-type and all inputs should be changed 
accordingly.) FIE relies on external decision procedures to tell 
whether two types are disjoint and whether one type is a subtype 
of another. Some objects are further classified as literals which 
are assumed to be distinct objects. All other objects (including 
skolem functions) are essentially names which may or may not 
refer to distinct objects. In the examples below we will use letters 
near the end of the alphabet (e.g., x, y, z) for variables. Function 
and predicate names can be distinguished by position. Literals 
will be capitalized. Where appropriate, terms will be subscripted 
to indicate type. 

5. Processing a Clause in Isolation 
In the first phase, current (the new clause to be integrated) is 

simplified. This is important, but mostly mundane from a 
technical standpoint, e.g., -True --+ False, (P V False V Q) -+ (P 
V Q), (P V C V P) + (P V Q), (P V Q V -P) --+ True. 

5.1. Equality Simplification 
The algorithm for simplifying equalities makes use of the type 

structure decision procedures. If the types of the two objects are 
incompatible the equality is False. If the two objects are different 
literals the equality is False. Other cases specific to symbolic 
execution are also recognized. For example, in Gist it is possible 
to create and destroy objects. An object that is created must be 
distinct from any object that was known to exist before. If none of 
these apply. the equality is ordered so as to make it preferable to 
substitute the first term for the second: constants are preferred to 
variables, terms of more specific type are preferred to terms of 
more general type, etc. As a last resort, all expressions are 
ordered alphabetically.** 

5.2. Substitution for Restricted Variables 
The next two steps simplify results that don’t seem to arise very 

often in normal theorem proving. The first substitutes for 
variables in inequality literals, e.g., -( = a x) V (P x) is rewritten 
as (P a). In particular, if the inequality is between a variable, x, of 
type tl, and a term, a, of type t2, where a contains no variables 
and t2 is a subtype of tl, then the inequality literal is discarded 
from the clause, and all occurrences of x in the remaining literals 
are replaced by a. In part, this rule is used to apply substitutions 
computed in the generalized resolution procedure described 
below. 

5.3. Equality Canonicalization 
The next step is analogous but allows inequalities between non- 

variables, e.g., -( = a b) V (P b) becomes -( = a b) V (P a). 
Intuitively, someone who knows “if a= b then (P b)” also knows 
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“if a = b then (P a)“. In this case the inequality literals must be 
kept. While the previous rule is a clear simplification, this one is a 
canonicalization, allowing clauses to be recognized as 
equivalent. 

6. interactions that Simplify 
The second phase uses information in one clause to simplify 

another clause. We describe modifications to the standard 
procedures for subsumption and equality substitution. 

6.1. Conditional Equality Canonicalitation 
First the clauses in old are used to further simplify and 

canonicalize current via substitution of equalities. This may be 
regarded as an efficient restriction of paramodulation - doing in 
parallel all paramodulations which can be viewed as simplifying. 
A special case is demodulation: if we know (= a b), the clause (P 
b) is rewritten as (P a). 

More generally R V ( = a b) can be used to rewrite R V (Q b) as 
R V (Q a). The intuitive justification is that someone who knows 
“if P then a= b” will consider “if P then Q(b)” equivalent to “if P 
then Q(a)“. As the name suggests, conditional equality 
canonicalization is especially valuable to FIE in dealing with 
conditional statements. 

In general, we argue that if the clauses C and D combine to 
yield E, then A V C should combine with A V D to yield A V 
E. This holds for FIE’S generation of new consequences 
(described later), and we think that it would be appropriate for 
resolution theorem provers in general. (Note that this is not true 
of ordinary demodulation.) 

Incidentally, these substitutions do not always yield unique 
results. Given P V (= a c) and Q V ( = b c) we can rewrite P V 
QV (R c) in two different ways. We have done nothing about this. 

The final generalization is that if Rl X2, then Rl V ( = a b) can 
be used to rewrite R2 V (Q b) as R2 V (Q a). The previous rule is 
obtained if implication is only recognized between identical 
formulae. Subsumption is the obvious candidate for a stronger 
recognizer of implication. recognizer of implication. 

As an example, suppose 1. no box has two distinct locations, As an example, suppose 1. no box has two distinct locations, 
and 2. every box is at locationl. These imply 3. no box is at rn~y and 2. every box is at locationl. These imply 3. no box is at rn~y 
location other than locationl. location other than locationl. One feels intuitively that fact 3 One feels intuitively that fact 3 
implies fact 1. The general rule allows fact 3 to rewrite fact 1 and implies fact 1. The general rule allows fact 3 to rewrite fact 1 and 
subsume the result: subsume the result: 

l* (= Yloc ‘& v -tLoc ‘box $0,)) ’ 1. (= Yloc qoc) v -(Lot Xbox Y,& v 

-tLoc ‘box ‘,,,c) -tLoc ‘box ‘,,,c) 
is canonicalized by is canonicalized by 

2. (= 2. (= lo” Y,,,) v -lLoc ‘box Y,,,) loci Y,,,) v -lLoc ‘box Y,,,) 
to yield (we have arranged to use the null substitution) to yield (we have arranged to use the null substitution) 

( q  lo c i �&  v --CL� � b o ⌧ Y,o,)) v (= loci ‘,oc) v --CL” ‘box Y,o,)) v 

-tLo c  � b o ⌧ �,o c) -tLoc ‘box ‘,oc) 
which is subsumed by clause 2 (using xlnp for y,,,) which is subsumed by clause 2 (using xloc for y,,,) .-I .W” 

This final generalization is relatively expensive in execution This final generalization is relatively expensive in execution 
time. For example, one subsuming substitution may fail while time. For example, one subsuming substitution may fail while 
another succeeds, e.g., Px V a= b can be used to rewrite Pa V another succeeds, e.g., Px V a= b can be used to rewrite Pa V 
Pb only by substituting a for x. However, it is easy to devise cheap Pb only by substituting a for x. However, it is easy to devise cheap 
algorithms that obtain part of the benefit. The current version of algorithms that obtain part of the benefit. The current version of 
FIE requires Rl and R2 above to be identical. FIE requires Rl and R2 above to be identical. This is usually This is usually 
sufficient, because they are typically (e.g., in the case of branch sufficient, because they are typically (e.g., in the case of branch 
conditions from conditional statements) single literals immune conditions from conditional statements) single literals immune 
from substitution. from substitution. 

6.2. Su bsumption 
Next, FIE checks to see if current is subsumed by any clauses in 

o/d. In general, FIE deletes any clause subsumed by a known 
clause. Thus FIE should recognize Cl as subsuming C2 in just 
those cases where a person who knows Cl will consider C2 as 
redundant. 

To test whether clause Cl subsumes clause C2, the inequality 
literals of C2 are first used to rewrite Cl as in equality 
canonicalization. This, in combination with equality 
canonicalization allows (P tl) to subsume any clause (regardless 
of equality ordering) of the form “if tl = t2 then (P t2)“. 

The resulting clause Cl’ subsumes C2 if it has no more literals 
than C2 and some substitution maps each literal of Cl’ to a literal 
of C2 (a standard definition). In particular, a clause does not 
subsume its factors. Factors are often not obvious to humans, 
and thus constitute interesting results. 

6.2.1. Reordering Arguments 
When a relation is intuitively commutative, such as the Spouse 

relation, the commutative variants of known facts cease to be 
interesting. The user can declare a predicate to be intuitively 
symmetric (and other properties corresponding to permuting 
arguments), so that FIE will consider the variants to be “obvious” 
consequences of each other. The subsumption algorithm 
computes the variants of each literal and accepts a substitution 
for any of them. Perhaps other common properties would also be 
worth recognizing, but we have not had to deal with them yet. 

6.2.2. Uniqueness Properties 
We have described some additions to a large bag of previously 

known tricks for dealing with equality. The way FIE deals with 
commutativity is important for its application, but nothing new. In 
contrast, uniqueness does not seem to have been much studied. 
We feel we have made progress in building an understanding of 
uniqueness into FIE. In each case, the ability to discard a result 
that is too easily derived requires compensation (described later) 

the component that finds new consequences must be 
strengthened to avoid losing the consequences of what has been 
discarded. 

When a relation is intuitively single valued, such as the Location 
relation, negative instances become uninteresting in the face of 
positive instances, If we know where an object is. there is no 
need to list all the other locations as places where it is not. The 
user can tell FIE that he understands certain uniqueness 
properties of a predicate. (In the case of symbolic execution, this 
information is already in the specification and the user need not 
restate it.) 

The uniqueness properties are of the form: V x,y,z,u,v (P<uu> 
A P<zv>)Iu = v 
where x,y and g represent vectors of variables distinct from each 
other and from u and v (y and I of the same length), and <mu> is 
some permutation of the variables in the concatenation of x, y 
and (the single variable) u. A given uniqueness declaration must 
specify the predicate P, the permutation < > and the size of x. The 
literal P<&c> is considered to subsume the literal -P<deD (here 
we use c and f to stand for terms and 2, b, d and .e as vectors of 
terms) if there is a substitution 8 which maps _a to d and 8 maps c 
to a term known not to be equal to f. (The current implementation 
just checks whether (= c f) simplifies to False. We have seen 
cases where this was inadequate.) 
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6.3. New Facts Simplify Old 
If current (the clause being integrated) is still not simplified, it is 

used to simplify all the other clauses of old. Any clauses that are 
rewritten (where we regard subsumption as rewriting to True) are 
removed from old and the new version is put into the list of 
clauses to be added. Finally current is inserted into old. 

7. Deriving New Consequences 
In the final phase, current is combined with each clause of old 

to find new results. This is done with two rules, both closely 
related to binary resolution. Note that if clauses Cl and C2 are 
known to be true, and clause C3 is a resolvent of Cl and C2, then 
C3 must be true. 

7.1. Resolution 
The major difference between normal resolution and the first 

rule (which we will refer to simply as resolution) stems from our 
interest in equality. In normal resolution, it is impossible to 
resolve P(a) with -P(b). In our case this is allowed, with the result 
of -( = a b). Deriving inequalities may seem odd from a theorem 
proving point of view, but the results can be interesting to a 
person. They also serve as a communication mechanism in 
symbolic execution: the distinctness of two objects may be 
important at one time, but only derivable at another time. 

In general, from the clauses P V (R t, . . . t”) and Q V -(R u, . . . 
un) (where ti and ui are terms and P and Q are clauses), we derive 
P V Q V -( = t, u,) V . . . V -( = tn un). Notice that the 
substitution is stored in the inequality literals of the clause (which, 
of course, tend to simplify). 

7.2. Uniqueness Resolution 
The other rule uses the uniqueness information described 

above, Given that box1 is at N.Y. and box2 is at L.A., it directly 
derives that box1 and box2 are distinct. Also, given that Joe is at 
location1 and that Joe is at location2, it directly derives that 
location1 and location2 are identical. In fact, given a uniqueness 
declaration, an explicit axiom, such as -(Lot x y) V -(Lot x z) V 
( = y z) adds very little in terms of interesting consequences. 

From the clauses P V R<au> and Q V R<sv> uniqueness 
resolution derives 
PVQV-(= xdV(= uv), 
where -( = x.d means -(.= x, w,) V . . . v -(= XmWm)’ 

In the case of Location, y and z are empty, x and w are the 
terms representing objects and u and v are the terms 
representing locations. 

(Lot box1 N.Y .) combines with 

(Lot box2 L.A.) toyield 

-(= box1 box2) V (= N.Y. L.A.) 

which simplifies (assuming L.A. and N.Y. are known to be 
distinct) to 

-(= box1 box2) 
A more impressive example: 

(Lot Xbox N .Y. ) V (= box1 xboX) every box otherthan 

box1 is at N.Y. 

( Lot box2 L. A. ) yields by uniqueness resolution 

-( q  box2 xbox ) V (= N.Y L.A.) V (= box1 xbox) 

which simplifies in two steps to (= box1 box2) 
The reordering properties of predicates (e.g., commutativity) 

are used in resolution (and uniqueness resolution) in the same 
way as in subsumption. 

8. Filtering New Consequences 
The two rules above can, of course, generate many new 

consequences. Some of these will be recognized as closely 
related to known facts, but in general this is not sufficient to 
prevent an explosion in the number of clauses. FIE adopts a very 
simple (and severe) strategy to ensure termination: it considers 
any resolvent that is more complex than either parent to be 
uninteresting. Higher complexity is defined as greater nesting of 
functions*** or more literals**** 

Different “versions” of FIE, corresponding to a tradeoff between 
power and selectivity may be obtained by varying some 
implementation parameters. The first of these is where to draw 
the boundary between “more literals” (uninteresting) and 
“fewer” (interesting). We have tried three solutions: 

- the result 
parent 

-the result must contain 
literals as one parent 

strictly than one 

number of 

. the result must either contain strictly fewer literals, or 
the same number of literals but strictly more equality 
(inequality) literals than one parent. 

The standard setting for symbolic execution has been the third. 
How much the results differ, and whether the difference is for 
better or worse depends on the problem. 

The other, and perhaps more interesting parameter, is how 
much simplification is done before deciding whether a result is 
interesting. FIE’S results would be fairly predicatable (and dull 
from a theorem proving point of view, though perhaps still 
interesting to the user) if the decision were made directly on the 
results of resolution. Often, however, complex results simplify 
enough to be considered “interesting”. So far, we have only 
processed resolvents in isolation before deciding whether to keep 
them, but we have seen cases where interactions with other 
known clauses would have allowed resolvents to be kept. The 
most complete version (classified as future work) would be to 
keep “uninteresting” clauses for simplification, but not resolve 
them unless (until) they were simplified to the point of 
“interestingness”. 

It must be mentioned that FIE still can not guarantee a small 
number of consequences. Knowing of n boxes at different 
locations will generate n2 inequalities, all of which FIE considers 
interesting. Actually, it is proper to consider as interesting the 
fact that these n boxes are all distinct. The “problem” is that 
predicate calculus cannot express that fact succinctly. One 
could imagine building a new representation for such a fact, 
extending the subsumption algorithm to recognize it, and building 
a special inference mechanism to use it. This would be a useful 
addition for some domains, but other forms of the same problem 
would remain, such as transitivity: given the axiom that a relation 
R is transitive, a set of axioms of the form (R ai ai7 ,) implies all 
results of the form (R ai ai) for i<j. 

to generate new 

knew how to add 

(P 1) would have 

l l l *We mention in passing that the complexity cutoff can be programmed to 

some extent by altering the input clauses. For example, given a clause C 

containing the literal L, and another clause D which does not contain a literal that 

unifies with L, one can disjoin L to D to effectively raise the complexity limit 

without losing termination. 
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We have not tried to deal with the problems above (or related 
problems). This is partly due to the fact that in exploring sets of 
axioms (including symbolic execution, where individual examples 
are normally small), one rarely needs many instances: in order to 
explore the axioms of ordering, we would probably consider three 
or four objects, not twenty. However, other problems have arisen 
in practice. These have been solved without new representations 
or inference mechanisms. 

8.1. Conditionality, again 
In symbolic execution, a conditional statement (If P then Sl else 

S2) can be intuitively understood as two possible worlds. There is 
one set of theorems of the form -P V Ci (for results of Sl) and 
another set of the form P V Cj (for results of S2). Resolving on P 
produces a cross product of clauses. These always seem 
uninteresting - they intuitively amount to the case split: P V -P. 

The symbolic evaluator generates a new literal, L, meaning “the 
THEN branch was taken”. (It needs a way to refer to that bit of 
history anyway - the expression P is insufficient since it refers to 
mutable domain relations.) FIE discards any result of resolving on 
L unless it has strictly fewer literals than one of its parents, This 
accepts consequences that can be derived independent of L, and 
if L can be proven True or False it allows the appropriate set of 
clauses to be deconditionalized (and the others to be subsumed). 
In another setting, the user could tell FIE which literals intuitively 
correspond to case splits. 

8.2. Skolem functions 
FIE filters out a large class of consequences that contain skolem 

functions. In essence, the skolem functions offer alternative 
representations for certain facts. We prefer to represent these 
facts only once in the original (and more natural) way. 

As an example, consider the’ clause that every box has a 
location, (Lot x (fx)). This clause is useful, e.g., if we find a box 
with no location it would be nice to notice the contradiction. 
However, it interacts with -(Lot box1 L.A.) to yield -( = L.A. (f 
boxl)), which a person would consider redundant. Given that 
locations are unique, (Lot box1 N.Y.) implies (= N.Y. (f boxl)). 
As another example, given that every person has a Gender, (Gen 
x (gx)), and that spouses cannot share a gender, we can derive 
-(Sp x y) V -(Gen y (gx)), which is hard to explain in English in 
any terms other than the original axiom, that spouses cannot 
share a gender. FIE discards all of these (and other similar) 
results. 

9. Related Work 
FIE resembles Eurisko [Lenat 831 (and AM [Lenat 761) in that it 

searches for interesting extensions to an initial knowledge base. 
However, Eurisko is meant to find deep results in many hours of 
exploration, whereas FIE is meant to quickly point out a few 
consequences that the user should probably know. Furthermore, 
Eurisko’s results are empirically justified conjectures, whereas 
FIE’S results are theorems. 

Forward inference is quite rare in programs with general 
theorem proving capability, except on a special case basis. 
Programs like [Nevins 751 use forward inference rules whose 
form is carefully designed to generate certain types of results. On 
the other hand, [Bledsoe 783 provides various types of forward 
reasoning as user options, with no guarantee that they will lead to 
reasonable behavior - the responsibility belongs to the human 
user. [Cohen 811 is much closer in spirit to FIE in that it takes total 
responsibility for deciding which inferences to make. However, it 
uses forward reasoning purely to integrate new knowledge into 
its own database. It is not trying to interest an external user. 

FIE has strong ties to the large body of work on resolution 
theorem proving [Loveland 781. It uses clause representation, 
and resolution is its primary rule of inference [Robinson 651. 
Also, we share with much of this work an emphasis on techniques 
for recognizing and deleting useless or redundant information, 
e.g., canonicalization and subsumption. 

IO. Conclusions 
FIE automatically generates interesting consequences from a 

set of input axioms. One measure of success is that the symbolic 
evaluations we have tried have reported nearly all the results we 
expected, and some that were not expected. 

FIE works hard to avoid uninteresting consequences. The 
notion of interestingness is heavily dependent on context. In 
particular, a fact is considered uninteresting if it is too easy to 
derive from other known facts. 

FIE finds mostly shallow consequences, but finds them quickly. 

In the longest symbolic execution to date of a Gist specification, 
the average call to FIE integrated 10 new clauses with 23 old ones 
to yield 27 clauses in less than 10 CPU seconds on a VAX750 
running Interlisp. 

FIE has been used successfully in a symbolic evaluator. The 
specified domains have included a file system, a package router, 
a world of people (marriages, children, etc.), and a world of ships 
(cargoes, ports etc.). In the future we hope to adapt it to other 
purposes (e.g., debugging and explaining database schemas). 

Acknowledgements: This work was done in the context of a 
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paper was greatly improved by the suggestions of members of the 
group, especially Jack Mostow. 
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