
TOWARDS A BETTER UNDERSTANDING OF BIDIRECTIONAL SEARCH 

Henry W. Davis 
Randy B. Pollack 
Thomas Sudkamp 

Wright State University 

ABSTRACT 

Three admissible bidirectional search 
algorithms have been described in the literature: 
A Cartesian product approach due to Doran, Pohl's 
BHPA, and Champeaux and Sint's BHFFA2. This paper 
describes an algorithm, GP, which contains the 
latter two and others. New admissibility results 
are obtained. A first order analysis is made 
comparing the run times of Cartesian produc$ 
search, two versions of GP, and unidirectional A . 
The goal is to gain insight on when bidirectional 
search is useful and direction for seeking better 
bidirectional search algorithms. 

1. INTRODUCTION 

A problem with Pohl's BHPA [7,8] was that 
search trees did not meet near the middle and the 
algorithm performed poorly. To remedy this, 
Champeaux and Sint [2,3] proposed using a "front- 
to-front" heuristic. Their first algorithm based 
on this, BHFFA, solves the problem of the search 
trees meeting in the middle and generally gives a 
higher "quality" of solution than unidirectional 
A. Unfortunately it runs longer and is not 
admissible. To deal with the admissibility problem 
Champeaux Cl] has described a somewhat complicated 
algorithm, BHFFA2, which also uses "front-to- 
front" heuristics. 

The algorithm of section 2, GP ("generalized 
Pohl"), restates Pohl's BHPA with greater 
generality and adds additional features. One 
feature (step (2.2)) gives high symmetry to the 
search. The result is that GP includes BHFFA2, as 
well as BHPA. For completeness we add a feature 
which allows GP to be used with graphsearch as 
well as ordered search procedures. We consider 
other dynamic heuristics than the one used by 
Champeaux and Sint. One of them ((2) in section 
2.3) makes Pohl's original BHPA admissible while 
assuring that the search trees meet in the middle, 
the major goal of BHFFA2. Another (GP2 in section 
4) reduces some of the list processing and H- 
calculation overhead from the traditional OPEN- 
OPEN approach. In section 3 we show that GP is 
admissible in a variety of situations not 
previously considered. We also state a result that 
one may prune OPENU CLOSEDin the latter stages 
of a GP-search without affecting admissibility. 

Section 4 makes a first order analysis of 
where several algorithms spend their run time. Two 
versions of GP, Cartesian product search, and 

unidirectional A i are compared in several 
heuristic situations. The number of nodes 
expanded, the number of H-calculations made, and 
the amount of list processing are examined in a 
worst case analysis using a search space 
previously considered by Pohl, Champeaux, and 
Sint. The results suggest that, compared to 
unidirectional search, GP performs favorably with 
respect to nodes expanded and list processing, but 
unfavorably with respect to H-calculations unless 
the heuristic is very weak. The fact that in most 
of the categories considered (Table 3) some 
bidirectional algorithm performs better than 
unidirectional search suggests that substantial 
improvement in admissible bidirectional search 
algorithms may be possible. 

We have provided a proof of the main 
admissibility theorem. Due to a shortage of space 
we do not include proofs for other results 
mentioned. They will be submitted for 
publication. 

2. A GENERALIZED POHL ALGORITHM FOR BIDIRECTIONAL 
SEARCH 

2.1 Assumptions and Notation. 

Assume that the search space is a locally 
finite graph, G, whose arc lengths are bounded 
uniformly above zero. Arcs may be traversed in 
either direction. We seek a path connecting s, t 
& G. 

The 
X 
F 
x EXPAND 
x-OPEN - 

x CLOSED - 

H*(m,n) 

H(m,n) 
g,(m) 

g:(m) 

h*(m) 
hi(m) 

f,(m) 

following notation is used: 
s or t 
s if x denotes t and t if x denotes s. 
A node expansion routine described later. 
Set of nodes which have been discovered 
(generated) by x EXPAND and are awaiting 
possible expansron. 
Set of nodes which have been x-expanded 
(and are not currently in X-OPEN in the 
ordered search case). 
Actual cogt of a least cost path from m 
to n. H (m,n) =a~ if no such path 
exists. 
Heuristic estimate of H*(m,n). 
Cost of least cost path so far found 
from x to,m by GP. 
Same as H (x,m). 

Same as H*(m,?). 
sheuristic function which estimates 
h,(m). 
g,(m) + hx(m> 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



c(p,m) Cost of a least cost arc from pto m in 
G when such an arc exists. Assume c(p,m) 
q  c(m,p>. 

PTx(m) Parent of m with respect to a search 
tree rooted at x. 

AMIN Cost of least cost path between s, t 
which the algorithm has so far 
discovered. Initially AMIN = w . 

x TESTi x TESTi is one of the sets x OPEN, - 
X-CLOSED, x OPENLI x CLOSED, x CLOSED 
u {xl, i=172. These-sets are used to 
determine when to update AMIN. 
Admissibility results hold for 
different combinations of x TESTi - 
values, i=1,2. 

2.2 GP - 

We use the following node expansion routine: 
X-EXPAND a node p& x-OPEN 
For each neighbor m of p do 
If rn+ x-OPEN\> x_CLOSEythen 

-~~?lYZg"(,, + c(p m> 
x OPEN+ :: OPENd &1 

Ifi. x OPfiti X-CLOSED with g,(p) + 
c(p,m)< g7m) then 

g (m)ulS g (p> c(p,m> 
+f (mk- t: 
IfXm & x CLOSED then 9-evitalize mtr via 
ordered-search or graphsearch (see 
below) 

Remove p from x-OPEN 
x-CLOSED+ x_CLOSEDU (~1 

If ordered search is being used then llrevitalize 
m I1 means to place m into x OPEN. In the 
graphsearch case it means to recursively update 
the gx and PT, values of all of m's G-neighbors 
and whatever of their G-neighbors that have been 
so far generated. See [6;2.2.21. 

Algorithm GP 

(1) x-OPEN+ (x}, gx(x)Q- 0, PTx(x)+ x, x=s,t. 
AMIN+&> . 

(2) Do steps (2.1) through (2.4) until either 
(a) or (b) is true: 

(a) x OPEN = 6, x=s or t. 

(2.1) 
(b) AqIN5 min Ifx(y): YE X-OPEN), X=S or t 

For x=s or t choose some w & x OPEN 
such that fx(w) = min {fx(yT: y 
E X-OPEN). X-EXPAND w. In steps (2.2)- 
(2.4) x has the value assigned in this 
step (s or t). 

(2.2) [This step is optional.] If ordered 
search is being used then anFor all of 
(a), (b), (c) below may be performed. 
(b),(c) may be performed many times. 
(a) If w E F OPEN then x EXPAND w. 
(b)Anode Tin x'?&Ejb is removed 

from ?? CLOSEDand placed in T OPEN 
provided that (within thissame 
instance of the step 2 do-loop) 
either g,(n) is lowered or n is 
assigned its first glF Value. 

(c) Same as (b) with x, x interchanged. 
(2.3) For each new member y& x_TESTlfljT TEST2 

AMIN+ min(AMIN, g,(y) + g,(y)>. - 

(2 

(3) 

.4) [This step is only needed if graphsearch 
is being used] for each y& x TESTlA 
!? TEST2-such that g,(y) has been lowered 
ApIN&-- min(AMIN, g,(y) + g,(y)). 

If AMINdocl then report the solution path 
associated with the current AMIN; else report 
failure. 

2.3 Special Cases of GP ---- 

To obtain Pohl's BHPA [7,81 set x TEST1 = 
x CLOSED, x TEST2 = x CLOSEDUix), omit steps 
(2.2), (2.4)and use ordered search. The reason 
x TEST2 must be x CLOSEDU 1x1 and not x CLOSED is 
so that GP works-when it is run unidirectionally. 
Pohl got around this by initially closing both 
s,t. This technical alteration is the only way GP 
differs from BHPA when steps (2.2), (2.4) are 
omitted. Pohl showe$ 
optimistic 

that when the h, are 
(ie h, $ hx) BHPA is admissible. (In 

F.81 consistency is also assumed but C7;page 991, 
points out that consistency is not required.) 

The Champeaux-Sint tlfront-to-frontll heuristic 
function is given by 
(1) h,(z) = min{H(z,y) + 

gp(y): ye Y-OPEN]. 
To obtain BHFFA2 from GP one uses (1) and makes 
appropriately a number of the choices left 
arbitrary in GP, namely: 
(a> 

lb) 

cc> 
(4 

(e> 

In (2.1) choose x=s or t so as to avoid 
expanding a node from s OPENn t OPEN 
whenever possible. 
When in (2.1) GP is forced to expand a node w 
G s-OPENP\t-OPEN it chooses w to be that 
node (or one of those nodes) in {y: yc 
x OPEN, fx(y) is minimum) whose g,(w) + g,(w) 
value is as small as possible. 
(2.4) is omitted and ordered search is used. 
Champeaux's routines EXPAND1 and EXPAND2 are 
obtained in GP by performing steps (2.2a), 
(2.2b), and (2.2~) whenever possible, 
Set x TESTi = x-CLOSED, i=1,2, x=s,t. 

It is shown in Cl] that if H is optimistic 
(2, Hs H ) then BHFFA2is admissible. It is not 
hard to find examples of H being optimistic while 
the heuristic function 
holds) is not optimistic. 

h, based on H (ie (1) -m 
Interestingly there is a 

simple "front-to-front" heuristic function which 
is optimistic. Therefore it makes Pohl's BHPA 
admissible while assuring that the search trees 
meet in the middle. We show in an appendix that 
when H is optimistic so is 
(2) h,(z) = 

I- 
min(H(z,y) + g?(y): Y G K-OPEN} 
if z & Y-CLOSED 

1. 
min{gz(z))W IH(z,y) + g?(y): 
y&;ji OPEN) otherwise 

The definition of equation (1) can be 
extended as follows: 
Let S(x)C x OPENLIx CLOSED, x=s,t. Define - - 

(3) h S'H(z> X = min(H(z,y) + 
g;;(y): ye S(K)} 

We call S(x) a target set and say S is admissible -- 

if GP has an admissibility theorem for h, SfH hen 
H is optimistic, This does not imply that hx '9' is 

69 



optimistic, although it may be. Pohl and 
Champeaux, respectively, showed that {x1 and 
x OPEN are admissible. Another admissible set is 
S;-(x) = {x1U x-CLOSED; in fact, for this S, h S#H 
is optimistic (see appendix). An advantagz of 
Sl(x) over x OPEN is that it's smaller. The 
problem with such a relatively static non-frontal 
target set is that H-calculations may become fixed 
to an interior node (eg, s or t) which erroneously 
looks close to the opposite front due to an unseen 
hill. S2(x) = {PTx(y): y& x-OPEN1 is smaller than 
Sl(x) and doesn't have the interior node problem. 
It is admissible. One may extend the notion of 
target set to allow dependence on two variables 
and, thereby, incorporate (2) into (3). Let 

S(j;,zi = 
( 
i OPEN if z$ F CLOSED 
{?,c/ ? OPEN otherwise 

Then S is admissible: Replacing S(x) in (3) with 
S(j;,z) gives (2). 

3. ADMISSIBILITY 

3.1 Admissibility Theorem. 

Theorem GP is admissible is either (i) or (ii) 
hold: 
(i) h, is optimistic and x-TEST2 f x-CLOSED, x=s, 

t (~0;l&pPA). 
(ii) h is given by (3) in section 2.3; H 

ixS optimistic; S(x) is either x OPEN or 
IPTx(Y) : yc X-OPEN); and at leafi one of 
(a) or (b) hold: 
(a) Ordered search is used and (2.2a), 

(2.2b), (2.2~) of GP are executed 
whenever possible (Champeaux's BHFFA2). 

(b) It is the case that 
(bl) x TEST2 f x CLOSED, x=s,t, and 
(b2) either x-TEST13 x-OPEN for x=s,t 

or x-TEST23 x OPEN for x = s,t. - 

The theorem may be proven by technical 
modifications of the original admissibility 
arguments in [53, a testimony to the robustness of 
those arguments. One first proves the classical 
"partial solution on open" lemma and uses it to 
eliminate each of the following cases: (1) GP 
never halts; (2) GP halts with no solution; and 
(3) GP halts with a non-optimal solution. We 
prove here GP admissibility only for assumptions 
(ii). Assumption (i) may be handled along the 
lines of [7;pp 98 ff]. 

Lemma Assume (a) there is a path in G connecting 
s,t; (b) GP has not yet found a minimal cost path; 
(c) GP has just completed step(l) and zero or more 
iterations of the outer loop. Then, if (i) or 
(ii) holds, there are nodes m(x) 4 x OPEN such 
that f,(m(x)) f L, where L is the cost of an 
optimal path (x=s,t). 

Proof We give the proof for (ii) using 
Champeaux's argument in [l;Lemma 11. Assume, 
first, case (iib). Let// = (.3=x0, xl,...,xm = t) 

70 

be an optimal path. Not all the x are in 
x CLOSED because otherwiseA would hgve been 
discovered (x=s,t): this is because (bl) assures 
that at least ji& x_TESTlf? z-TEST2 so steps 
(2.3), (2.4) would have foundp . Take j least and 
k greatest such that x.f s-OPEN and xk& t OPEN. 
j f- k because otherwi -d e, by (b2), /o wouldhave 
been discovered. %ince x1 is s CLOSED for all 
1 < j, g (X.) 
Assuming 

= g (x.) and siFilarly for xk. 
8(x-3 = x-O?'ENj we have fs(xj) = gs(xj) + 

hs(Xj) C go + H(xj, 'k) + gt(xk) C go + - 

H*b 
(PT ?;) 

x 
k 

> + g,i(x ) = L. The argument for S(x) = 

r t. 
yc x-0 b EN) uses x instead of xk if 

'k The argument for ft !z'similar. 

Now assume (iia). The reason we don't need 
(bl) to assure that not all x QJJ are x CLOSED is 
that, due to GP's step (2.2a)q if x' werex CLOSED 
it would also be x' CLOSED causing,/to be 
discovered in step (2.3). The reason' we don't 
need (b2) to assure that j ,C k is that steps 
(2.2a), (2.2b), (2.2c), together, assure us that 
x OPEN.0 x' CLOSED =,K The rest of (iia) is like 
(Eb). The-completes the lemma's proof. 

To prove the admissibility theorem for GP we 
must eliminate the three cases mentioned above. 
Cases (1) and (2) are handled as in the proof of 
theorem 1 in Cl]. To dispose of case (3) we must 
show that it is impossible for GP to halt with a 
non-optimal solution. Suppose that, on the 
contrary, GP halts with a path of cost L'> L. 
Then AMIN=L'. GP has not found a path of cost less 
than L' because otherwise AMIN would be less than 
Lt and the corresponding path would be reported in 
step (3). But then, by the lemma, when GP finished 
its last outer loop there were nodes m(x)& x OPEN 
satisfying fx(m(x))5Lc:Lt = AMIN, x=s,t. This is 
impossible because then the halting condition at 
step (2) could not be triggered. Thus case (3) is 
impossible. This completes the admissibility 
proof. 

3.2 Admissible Pruning 

The final GP search stage begins when some 
solution is found, at which point AMIN becomes 
finite. One may now prune x OPENU x CLOSED 
reducing target set sizes and the amount,f list 
processing: It can be shown that, under 
assumptions (i) or (ii) of section 3.1, GP remains 
admissible if (a) new nodes with f,-values >, AMIN 
are not kept, and (b) old nodes with f -values 
1 AMIN are removed from x OPENux CLOSE:. - - 

4. A FIRST ORDER COMPARISON 

In order to get a first order comparison of 
the total run time of several bidgectional search 
algorithms and unidirectional A (UNI) the worst 
case behavior of these algorithms was analyzed in 
a particular search space. The results are 
summarized here. To a first approximation the run 
time may be written as an expression of the form 
* N + .3 H + r"L, where uc.,fl , r are problem 
specific parameters, N is the number of nodes 



expanded, H is the number of H-calculations 
performed, and L is the total length of all lists 
searched. For example, if H-calculations are cheap 
while node expansion requires a lot of computer 
time,theno( should be large andfl small. Our 
analysis focuses on the values of N, H, L for 
several algorithms. 

The search space used was also studied by 
Champeaux and Sint [31 and Pohl [7;Chapter 71, all 
of whom calculated N for several algorithms: Let G 
be an undirected graph containing a countable 
collection of nodes; two nodes, s, t, have b edges 
(b > 1) and there is a path of length K between 
them. From all other nodes emanate b+l edges. 
There are no cycles and all edge costs are one. 

We have tabulated data about four algorithms: 
UNI, X, GPl and GP2. X is a bidirectional search 
obtained by performing UN1 on G x G. It is 
apparently due to Doran [43 and we use the 
precise description found in C2;section 2.11. GPl 
is a version of GP which uses ordered search, 
skips steps (2.21, (2.4) and sets x TESTi = 
x OPEN, i=1,2. We assume the front-to-front 
heuristic (1) of section 2.3 and alternating 
direction. When direction is changed GPl never 
recalculates H-values. Instead it searches a 
matrix it maintains of relevant H-values. This 
method was used in a program by Champeaux and Sint 
[33. We assume that either H(u,v) = H(v,u) or, if 
not, H returns both values. 

We include GP2 to illustrate what happens 
when crucial changes are made in GPl. It is like 
GPl except that a smaller target set is used and 
it handles differently the problem of updating f- 
values on OPEN when direction changes. When a new 

TABLE '1 GPl 1 GP2 
1 v (b2-b)N'/4 (2b-1>N2/4 

X UN1 

b2N bN 

(b2+b-l)N2/2 (b4+b2-1)N2/2 (b2+b-1)N2/2 

node is generated its H-values are calculated 
against the target set S(x) = IPT,(y): y 
G x OPEN). Suppose we change direction to ‘j7 and 
mustlow obtain the new f-values for nodes on K 
-OPEN. Instead of recalculating H(u,v) for all u 
E F-OPEN, v& S(x), we update each hjl(u) with 
respect to the new members of S(x) that were added 
since we were last going this direction. The 
effect is that hji(u) is being calculated with 
respect to a target set larger than S(x), but this 
does not effect admissibility. Old nodes have f- 
values which are a little out-of-date but, if they 
are erroneously expanded, the children will have 
accurate information, hopefully preventing the 
faulty behavior from continuing. The purpose of 
this is to cut down on the list processing GPl 
does to maintain its matrix of H-values. 

Table 1 shows H, L values for the various 
algorithms in terms of N. We have kept only the 
highest order terms in N so the entries reflect 
assymptotic behavior. The X entries are closely 
related to the UN1 entries because X behave 
essentially like UN1 with a branching factor of b ,3 
instead of b. The H(GP2) calculations were made 
using a worst case assumption that 
G x-OPEN11 = I {PTx(Y): Y Ix-CLOSED). The smaller GP2 target 
set unsurprisingly caused H(GP2) to be smaller 
than H(GP1) by essentially a factor of b. The 
casual update procedure for GP2 versus GPl 
the list processing from O(N3) to O(N2). 

reduces 
While 

these appear good, one must remember that one or 
both may significantly reduce the heuristic power 
of GP2 causing N(GP2) to be greater than N(GP1). 
We have only begun empirical studies which would 
reveal if this is true. 

TABLE 

2 

! Perfect Knowledge * H**/(~+s) H*?L 6 No Knowledge 

GP K 2b(K-l)S -p Kbr5 1 &K/2)-1 

X K/2 i 
bK$ -2/4 (K/2)b16] bK 

UN1 K bkb -P KbC6 1 bK 

Perfect Knowledge H**/(l+$ > H*+ d No Knowledge 

TABLE N X<GP=UNI GP<X<UNI X<GP=UNI GP<<X=UNI 

3 H UNIiX<<GP X<UNI<<GP X<UNI<<GP GP<UNI<X 
ifS>\r27 

UNI<X<<GP 
if'i;<p 

X<UNI@S> J 
L GP=UNI<X GP<UNI^Z>1/2 GP=UNI<X GP<<UNI<X 

GP < X 

71 



Table 2 shows the value of N for different 
algorithms and different heuristic situations. We 
have kept only the highest order terms ialKK (gath 
length). Also expressions of(,t_hle,forrn b /(b -1) 
have been approximated byb . GP represents 
either GPl or GP2 since both have the same N 
values given our heuristic assumptions. Our 
heuristic assumptions are as follows: &olumns 1, 
4, respectively, assume perfect (H=H ) and no 
(HrO) heuristic information. (In the latter case 
we assumed K even and that the solution is found 
as late as possible.) Columns 2, 3 assume worst 
case bounded errgr; column 2 is relative: 
H(m,n) q  

( 

H (m,n)* (1+6), if both m, n 
age on the solution path 
H (m,n)/(l+ S), otherwise; 

column 3 is absoAute: 
H(m,n) = 

( 

H (m,n) + s , if both m, n 
aie on the solution path 
H (m,n) - 5 , otherwise. 

We assumes > 0, j3 = 6 (6+1)/(5+2), and CS 1 is 
the integer part of 5 . We were surprised at how 
closely all the algorithms performed except when 
HE 0; in this case GP excells. We were also 
surprised at the good performance of X. 

Table 3 summarizes how the algorithms compare 
relative to N,H,L in various heuristic situations. 
The results are obtained by substituting Table 2 
entries into Table 1. We set GP = GP2 since its 
Table 1 entries are best. If A,B are algorithms 
then A < B means that B performs worse than A by a 
constant factor; A<<B means that B performs worse 
than A by a factor that grows exponentially in K. 

In Table 3 GP generally performs as well or 
better than UN1 with respect to N and L. 
Unsurprisingly, the problem lies in time spent 
doing H-calculations. The table suggests that when 
heuristics are worse than bounded error we could 
expect GP to perform better than UN1 with respect 
to N,L and comparably with respect to H. In only a 
very few entries does UN1 beat both X and GP. This 
plus the better Table 1 performance of GP2 over 
GPl suggests two directions for improving 
bidirectional search: Look for smaller accessible 
admissible target sets and combine the ideas of GP 
with those of X. 

Appendix Proof that (2) is optimistic and that 
(3) is optimistic when S(x)=(x) 
u X-CLOSED; H is assumed optimistic. 

Consider the case of (2) figst. Take z g G. 
If z is not connected to si then h,(z)=@ and there 
is nothing to prove. Otherwise let ~~=Y~,...,Y,=z 
be an optimal path connecting z, x. If y. 
G jT_CLOSE$ for alJ i, then g-(z)=g*(z) so h (z) t 
g$z) = g,-(z) = h (z), as isxdesiTed. Othe?wise 
letl;j be least sue 'hthat y.~ x' OPEN. Then g-(y.) 
= g-(Y.) SO h (z) < H(z,y?) + g;;(y.) ~ H*(z,Xyj)J+ 
gK TY .? = d 
betwe n Id 

h*(g), srnce yjJ 
z azd ?. 

is on a optimal path 

The proof of (3) when S(x)={x)U x_CLOSEDis 
similar except that the role of yj is now played 
bY Yj,19 or W if j=O. 

BIBLIOGRAPHY 

[ll de Champeaux, D., Bidirectional heuristic 
search again, J. ACM, Vol. 30, 1983 (22-32). 

[2l de Champeaux, D., and Sint, L., An improved 
bi-directional heuristic search algorithm, 
IJCAI, 1975 (309-314). 

[31 de Champeaux, D., and Sint, L., An improved 
b&directional heuristic search algorithm, J. 
ACM, Vol. 24, 1977, (177-191). 

C41 Doran, J., Double tree searching and the 
graph traverser, Res. Memo EPU-R-22, Dept. of 
Machine Intelligence and Perception, 
Edinburgh University, Scotland, 1966. 

C5I Hart, P., Nilsson, N., and Raphael, B., A 
formal basis for the heuristic determination 
of minimum cost paths, IEEE Transactions on 
Syst. Science and Cybernetics, SSC-4(2), 19% --- 
(100-107). 

E61 Nilsson, N., Principles of Artificial 
Intelligence, Tioga Publishing Co., Palo 
Alto, CA, 1980. 

171 Pohl, I., Bi-directional and heuristic search 
in path problems, SLAC Report No. 104, 
Stanford Linear Accelerator Center, Stanford, 
CA, 1969. 

[81 Pohl. I., Bidirectional search. Machine 
Intelligence, Vol. 6, edited by B. Meltzer 
and D. Michie, 1971 (127-140). 

72 


