
QUALITATIVE REASONING 

WITH HIGHER-ORDER DERIVATIYES 
Johan dc Klccr and IIanicl G. IIobrow 

lntclligcnt Systems I.aboratory 
XJ’ROX Palo Alto Rcscarch Center 

3333 Coycjtc I Iill I<oild 
Pal0 Al to, Cillif0l~llia 94304 

Considcriiblc progress has been made in qualit‘ltivc rcnsoning 

;ibout phycic;rl systems (dc Klccr and Ill-own, 1984) (dc Klccr and 

I~II)\+ II. 1953,) (J’~rbu~. 1982) (I IilycC, 1979) (Kuipcrs. lS)SZa) (Williams. 

1984iI) (Williams, 1984b). IIcscription. cxJ>l;lnation ilnd prediction of 

cvcnts which occur over short time intcrv,lls is filirly well understood. 

I lOWC\Cr-, WhCll CnOLl@ time PilSSCS thC lillldillllC~ltill lllOdC Of bC- 

h;lvi()r of the dckicc may change. IIiscovcring lilWS which govern 

this gross scale time bchuvior IlilS proven illusive. At first sight it 

ilppcars that the inhcrcnt iimbiguity of qualitative analysis makes it 

impossible to formulntc pnwcrful Jaws. ‘I’his is not the cast, and 

wc h,ivc idcnlificd six fundanlcntal IilWS which govern tIlc gross-time 

behavior of a dcvicc nAic+ rely otl qualiltrtive irtforttlnlion alotte. 

WC ~;IVC built iI computer progrilm bilscd 011 thcsc laws and tcstcd 

it out on many cxaniplcs. FOr pLlrJ>OSCS Of CXJ?~illldtiO~l. WC drilW 

all our cxnmplcs from a simple fluid-mechanical prcssurc-regulator 

illustrntcd in Figure 1. 

(dc Klccr and Brown, 1982) prcscnts a theory of causal analysis 

aJ>plicablc for small time Scales using the prcssurc rcguJ:Hor as an 

cxamplc. Using that theory it is possible to dctcrminc the direction of 

change for iIll dcvicc quantities. causal cxplnnations for their change, 

ilnd idcntificiltion of the ncgativc fccdbnck. In this paper WC address 

prcssurc regulator cvcnts occurring over a longer time scale. If the 

input prcssurc rises indcfinitcly, will the valve cvcntually complctcly 

close? Dots the valve oscillate when a sudden input is applied? 

Figure 1 : t’rcssurc Regulator 

Quiilit;ltivc cillctlltls uscs ;lltcrn;\ting quillitativc v<~lL~cs consisting 

of i1ItCWillS SCJTKltYltCd by points (flWl1 (Williams, 1934a) (Williams, 

1984b)). ‘I’hc points arc landmark vnlucs whcrc tmnsitions of intcrcst 

occur. ‘l’llc qlMlitiltitC valLlC of 5 is dCllOtCd [z]. OllC quantity SJXlCC 

(t:orbus, 1982) of particulnr intcrcst is [z] = + iff z > 0. [z] = 0 iff 

z = 0, and [z] = - iff z < 0. (Notice thilt to 1liIvC ;I lilndmiIrk Of k 

WC use the qualitntivc space of [z - k].) 

~J‘hc bchilvior of dcvicc cotnponcnts is dcscribcd by qualitative 

C~UilliOllS. Arithmetic is stl’;lightf~)rw~rrd. cxccpt for the cast of 

addition of opposite signs when the result is ambiguous. ‘I’hc 

qLl~~lllitiltiVC law hilt flow through 3 constriction is proportional to 

the prcssurc across it (i.c., F = kP) is rcprcscntcd qualiLltivcJy as 

[F] = [PI. k drops out as it is alwavs positive. 

‘I‘hc val\c of the prcssurc regulator (Figure 1) has three opcmting 

regions each charactcri;rcd by diffcrcnt equations. When lhc valve 

closes, the qu;llitativc equation [F] -= [P] no longer holds as the nrca 

a\ilil;\blc for flow ([A] = 0) and flow is zero ([F] = 0) no matter what 

the prcssurc across the vaivc ([PI). ,Innlogously, when the valve is 

cotnplctcly open thcrc is no longer any restriction to fluid flow (F] 

but the prcssurc across the valve is zero ([PI = 0). 

Ot’EN:[A = A,,,,], [P] = 0 

WORKING:[o < A < A,,,], [F] -= [I=] 

CLOSED:[A = 01, [Q] = 0 
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‘l‘hc other important component of the prcssurc-regulator is the 

sensor which measures the output pressure to set the size of the valve 

opening. The sensor acts by converting the output prcssurc to a force 

with diaphragm F,, and pushing down on the spring. So incrcascd 

pressure causes decreased valve arca. The diaphragm moves to a 

position such that spring force (ks) bahnccs the force cxcrtcd by 

the prcssurc on the diaphragm (PA,I,,,I,,,,,,II,,,). Thus. the distance 

the spring comprcsscs (5) is proportional to the prcssurc (P). ‘the 

arca obstructed by the valve A irI,s,rrrl Ir,l is proportional to Z. ‘I’hc 

arcn available for flow (A) is A,,,, - Al,b~,rrr,.,r,~r thus qualitatively 

[P] = [A,,,,,., - A] = [A,,,I,J] - [A] = [-+I -- [A]. (WC usually USC -+- 

as a qualitative Filluc, but in ambiguous contexts such as this equation 

WC USC “[ j-1” instead.) 

‘l‘hc abobc models dctcrminc the relationships bctwccn qualitative 

\ ~IUCS of the prcssurcs and flows of the ~I‘CWIIT regulator. WC arc 

intcrcstcd in developing a model to predict how a change in any one 

of thcsc quantities cilllscs changes in the others. t:or this WC need to 

dcfinc a qu,rlit;htivc dcriv;\livc of ;I quc\ntify. Just ;IS WC write [:c] Ibr 

the qualitative vnluc of z we write [$] for the qunlitativc KIILIC of 2: 

or ilbbKViillCd. az. 

In the WORKING mode of the pressure rcguIi)tor, the qualitative 

diff‘crcntial equations for ~hc V:IIVC and sensor arc aF = aP -+ aA 

and aA =-T -aPot‘,. ‘I’hcsc equations arc both dcrivcd from the 

quantitatiic equations rcl,lting thcsc varinblcs. ‘I’hc form of the 

quantitative equation is P’ = AD, thlls 

dF 
- = p+ $$,P > 0. dt 

AS A and P arc always positive. this rcduccs to the simpler qualitative 

equation 

aF = aA{- aP. 

Notice that if WC tried to dcrivc the qualitative relation of the 

dcrivativcs from the previously given qualitative equation rclnting flow 

and prcssurc ([F’] :- [PI) i\nd difTcrcntiatcd, WC WOUICI get aF = aP 

which is incorrect. 

By definition of prcssurc aP = LIP,,, - ap,,,,. Presumably the 

prcssurc-regulator dclivcrs an output to ;I load which demands more 

flow as prcssurc incrcascs, since i3PoTL1 = aF. Using thcsc it is 

possible to dctcrminc the quahtativc response to an input prcssurc 

rise aP,, = +: apt,, = +. apout = +,aP=+,aF=+,aA= 

-. This sol;ltion indicates that although the output prcssurc rises, 

the drop across the valve incrcascs and the arca available for flow 

dccrcascs thcrcby reducing the amount of the output rise. I-Iowcvcr, 

the qualitative solution ncithcr addrcsscs how the prcssurc-rcgula?tor 

achicvcs this behavior nor its gross time behavior such as whcthcr it 

completely closes, opens or oscillates. See (de Klccr and Brown, 1984) 

for a discussion of causal explanation; hcrc WC provide a framework 

for reasoning about its gross time behavior. 

SI M ULA’I’ION 

arca available for flow continues to drop. Conversely, if the prcssurc 

drops, the arca incrcascs. If enough time passes the valve may 

complctcly CLOSE (aA = - causes A to reach threshold 0) or OPEN 

(aA = + causes A to reach threshold A ,,,,,,), the qualitative equations 

change and hcncc the behavior change. ‘I’hc basic simulation loop 

analyxcs the behavior over time as follo:vs: 

(1) Start with some initial StiltC. 

(2) Solve for the qualitative ChilllgCS in each quantity. 

(3) Identify those quantities which arc moving to lhcir rhrcsholds. 

(4) Construct a set of the possible next states from thcsc transi- 

tions. 

(5) I:or C,lCll IlCXt StiltC IlOt YCt illlilly7Cd, rcciirsi\cly g0 to (2). 

This nondctcl-ministic simulation ;llgorithm idcntifics all of the states 

rc,lchi~blc ~~-OITI L~C initial state ;Ind iIll possibic transitions bctwccn 

them. ‘Ik device Ciln be in Cach state for an interval of time. So 

the time-lint of thu dcvicc is a simply a scqucncc of intervals, CilCh 

associated with SOITIC state. 

Step 4 is Cxpandcd into the followings gcncratc and test scqucncc. 

(4il) Construct iI pilrti;ll description of succeeding (continuous) 

sIi)tcs from threshold information (Rule 0): the plausible next 

StiltCS arc ~CIlCKltCd using tllC qLLllitiltiVC illtC_SlYltioll cquntion fOl* 

each significiint’ device quantity [z,,,,~] = [z~,,, rr.r,l] + az,,,,,,,!. 

(4b) Gcncratc ~~o~l~o~~tri~di~to~~y sliltcs (I<u~c I) which m;ltCh the 

pAal descriptions gcncratcd in step 4a. 

(4~) Cheek 311 transitions from the current stdtC to potential 

successors using rules 2 through 6. 

WC summari/.c the rules for gcncration and testing hcrc and 

explain ilnd cxcmplify each more cxtcnsively aftcrwnrds. 

0 Rule (0) V~l/UC L’millUilJ: VillUCS IlllISt Ch:lllgC continuously 

over a transition. 

0 Rule (1) C’orrlrtrtficliort uvuidntiw. ‘I’hc system CilllllOt transition 

to a state which is inconsistent with rcspcct to the qUillit;ltiVC equations. 

l I<ulc (2) Itlstnttt change ruke. Changes from zero happen 

inst;rntancously and IIO other chilngcs ~a11 hilppcn at an instnnl. 

l Rule (3) Dcrivafive cotr/ittui/y. Rule 0 also applies to dcrivativcs. 

0 RUlC (4) Dcrivnrive itlSlOtl1 ChCltlgP W/P. RlllC 2 ills0 ilppliCS t0 

dcrivntivcs. 

l Rule (5) Hi$ercor&r deriva/ives. Rules 0 and 2 apply to all 

orders of dcrivativcs. 

a liulc (6) Chatlge lo all zero &rivn/ives i&y itttpossiblc. A quantity 

which is non-zero at some instant cannot cvcr bccomc identically zero. 

WC list out rules 3 through 5 scparatcly from 0 and 2 to give 

cxamplcs of diffcrcnt lcvcls of analysis. 

RUI,P:(O) : \‘AI,UE: CONIINUI’I’Y 

WC define continuity for qualitative variables. A change is 

continuous if the value goes from an interval to its bounding point(s), 

or from a point to one of its two neighboring intervals. In the quantity 

As the input pressure rises, the output continues to rise and the IA significant 
variable. 

quantity dciincs component operating or is an indcpcndcnt state 
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space used hcrc the continuous changes arc bctwcen 0 and + or - 

(in cithcr direction), but not bctwcen + and -. 

The continuity rule is: no quantity may change discontinuously 

in any transition bctwccn states. 

RULE:(l): C:ON’I’RhIXTlON AVOII)ANCE 

Step 4 of the siiniilatio1~ algorithm gives il partial description of 

potential next stdtcs. ‘l’hc qualitative equations dctcrminc the values 

of the rcmC1inilig quantities. In many cnscs lhcre arc no possible values 

which arc consistent with both the qL1alitativc equations and the partial 

description gc1lcri1tcd by stclj 4. ‘I’his climinatcs poLcntial transitions 

gcncratcd in step 4n. ‘l’his often avoids having to dccidc which possible 

transition occurs first ((Williams, 1984a) LISCS transition-ordering in his 

analysis instead). 

WC Ciltl LISC this rule to prove tllilt tllc valve can’t CIOSC, i.e., 

cvcn though the arca availi1blc for flow is dccrcnsing it will ncvcr 

KilCll /cro. If the valve is closed tllc11 [A] = 0; then by the VLIIVC 

cquntion [r] = 0. ‘HIC load is passive [F] == [P,,,,t] SO [PC,,,/] = 0. 

Substituting into the sensor equation [A] = -[PC,“,] $- [-I-] WC get 

[0] = -[O] $- [+] a contradiction. 

In the prcssurc regulator it is possible to argue that the valve 

cannot close in the following way. Every incrcmcnt in input prcssurc 

causes sm,1llcr and s1nallcr dccrcments in valve WX; thcrcforc the 

arca npproaches zero asynlptotici1lly (i.c., bccomcs arbitrarily close to 

XTO but ncvcr rcachcs ;Icro). ‘l’his asymptotic nrgumcnt is unncccssary 

if one sees that the closed state is inconsistent. Thus, contradiction 

avoidance substitutes for. iIll sorts of sophisticated reasoning. 

An altcrnativc to the simulation algorithm. the envisioning algo- 

rithm provides a computation~llly tnorc clcgant mctlwd of climinnting 

transitions to inconsistent states. As a precursor to the loop, the 

envisioning algorithm idcntifics all nossiblc legal dcvicc states. ‘I’hcn 

step 4 only considers transitions to legal dcvicc states. Another ad- 

vantage to gcncrating all states is that when all legal transitions have 

been idcntificd, one can easily notice unrcachablc sets of states and 

orphaned singlets. 

QUAI,l’I’A’I‘I\‘P: AMI~IGUI’I’Y 

‘l’hc power of the remaining rules arc illustrated by cxnmining 

the diaphragm-spring-stc1n fragment of the pressure regulator. If the 

input prcssurc incrcascs. the output prcssurc incrcasc, producing a 

force on the diaphragm. This force acts against the spring force and 

friction. The valve slowly gains velocity as it closes; howcvcr, by the 

time it rcachcs the position whcrc the force cxcrtcd by the prcssurc 

balances the restoring force of the spring, the valve has built up 

a momentum causing it to move past its equilibrium position, thus 

reducing the prcssurc below what it should bc. As it has overshot 

its equilibrium the spring pushes it back: but by the same reasoning 

the valve overshoots again, thcrcby producing ringing or oscillation. 

Figure 2 illustrates the csscntial details: a mass situated on a spring 

and shock absorber (i.e., friction). 

x=0 

Figure 2 : Mass-Spring-Friction System 

‘I’hc behavior of the 1nass is dcscribcd 

qunlitativcly [F] = 8~. Hooke’s I.aw 

by Newton’s I,aw 

for the spring F 

F = ma 

or = -kz 

bccvmcs 3F = --[VI. ‘I’hc resistance of the shock absorber is mod&d 

by [F] = --[VI and i3F = -8~. For simplicity sake. dcfinc z = 0 

as the m;~ss position with the spring at equilibrium, and z > 0 to bc 

to the right. ‘I’hc net force on the mass i? provided by the spring 

and shock absorber: F,,,,lhS = J’,pr,7,y -t- F,r,l.l,,,7, or qualitatively 

[Km,] = [Fsprrng] + iFI rtcfton]. ‘I’his system of four qualitative 

cqL1;1tions hiIs thirteen possible solutions (intcrprctations) (XC ‘I’ablc 

1). 

12 345 6 1 8 

[F,,,,,,,]- 0 - - - 0 + + + 

[F,r,<.hL>,,] ==o - o++ + + + 

[F.,,,,,‘,] = 0 - - - - - 0 + 

[“I- 0 + o-- - - - 

I‘,lblc 1 : Sdut~orls to hIas-Spnng F.qwtions 

12 345 6 7 8 

1 123 1 1 1 123 123 123 

aF ,,,R,, = 0 +o- + + + +o- +o- +o- 

aFjr,,,,,, =o + ++o - - - 

aF,,,r,nq = 0 - o+++ + + 

au = 0 - --0 + + + 
I‘,lblc 2 : State Splitting By Dcrivativcs 

9 10 11 12 

++o - 
o-- - 

+++ + 

o++ + 

9 10 11 12 

1 1 1 123 
- - - +o- 
--0 + 
I)-- - 

++o - 

13 

123 

+o- 

In many casts of qualitati 

is correct, the remaining arc 

ve reasoning, one of the interprctntions 

thcorctically possible but unintcndcd 

modes of operation (dc Klccr, 1984). Howcvcr, the mass-spring 

system oscillates by tnoving bctwccn thcsc in tcrprctations. Movcmcnt 

bctwccn intcrprctations is govcrncd by the dcrivativcs of the quantities 

which arc dctcrlnincd by the equations: dv = [F,,.,], t3Fsprr,zy = 

-[VI, aFfrlCtlorL = ---au = -[F7,L,155], d aF,,,,,, = aFfrlctton + 

aFsprt,rg = [F,,,,,,] - [v]. ‘I’ablc 2 gives the values of the derivatives. 

Note that the dcrivntivcs themsclvcs arc somctimcs ambiguous. 

‘t’ablc 2 illustrates how much work WC get from the contradiction 

avoidance rule. For cxamplc, state 6’s derivative equations have three 

intcrprctntions 

prctations arc 

which WC notate 6-1, 6-2, and 6-3. 

only alnbiguous in aF,,,,,, so state 

Dcrivativc intcr- 

6-3 rcfcrs to the 

state in which aF,,,,,, - - In state 6-3, cvcry quantity -- . 
ing its lcro threshold, since [ZC] = -ax for all quantities. 

is approach- 

As we have 

no information about which can happen first, or happen together, all 

possible combinations of transitions need to be considered. As there 

88 



arc 4 possible transitions, thcrc are 24 - 1 possible choices. Only 3 of 

those 15 possibilities arc rcaliyablc bccausc 12 of the resulting states 

arc contradictory. 

This simple rule eliminates the need for more sophisticntcd rules 

often used for transition ordering. For cxamplc, (Williams, 1984a) 

(Williams, 1984b) uses the rule: if z and y arc heading for a threshold, 

and z = f(y) holds at the threshold as well. transitions in z and y 

co-occur. All applications of this spccialiLcd rule as well as many 

others are covcrcd by the contradiction avoidance rule. 

Figure 3 illustrates sonic of the possible states and all state 

transitions gcncratcd by the algorithm using just rules 0 and 1. As we 

don’t I~;I\,c any information about the 2nd order dcrivativcs. WC first 

ass:nnc all transitions bctwccn first order solutions arc possible. 

Figure 3 : State Transitions of the Spring-Mass System 

After applying contradiction avoidance rule, thcrc arc still a large 

number of impossible transitions shown in this graph that can be 

climinntcd by rule? 2 through 6. Each numbcrcd arc is impossible, 

the number indicates which rule climinatcs it. 

x = k > 0, thus if $ > --00, it will take some time for z to drop for 

zero. J-lowcvcr. y bccomcs grcatcr than 0 in an arbitrarily short time 

period, so this happens first. In thd case of state 3, [v] = 0, &J = - 

and [La3,] = --,W,,ass = + so [TJ] = - occurs first. Thus, state 

3 can transition to 4 but not 5. ‘l’his is cquivalcnt to cast (a) of the 

equality change rule of qualitative process theory (Forbus, 1982). 

RULE(3): D~RIVA’I’IVE CONTINUITY 

All dcrivativcsf must bc continuous in a continuous system 

with well-behaved inputs. This rule has conscqucnccs even if the 

derivatives arc not computed. Although the dcrivativcs may bc 

unknown, the quantities must still vary continuously. 

This rule has consequcnccs both within intcrprctntions and bc- 

twccn intcrprctations. All transitions bctwccn stntcs labclcd n-l and 

n-3 arc impossible bccausc aF,,,,, cannot continuously change bc- 

twccn $- 2nd -. More intcrcstingly, this rule imposes a scnsc of 

direction on the state diagram. State 5 can transition to state 6-1, but 

not vice versa. f-or state 5 to transition to state 6. aF,,,,,5, must bc + 

so that [F,,,(L,5b] can change from 0 to +. For [F,,,,,..] to change back 

to zero, aF,,,, ,, must bc - (i.e., system must bc in state 6-3. For, 

6-3 to transition to 5, LiF,,,,,.5,5 must change from - to + which is 

ruled out by the rule. As a conscquencc of this rule it is possible to 

prove that oscillation bctwccn two st;ltcs is not possible unless both 

of their dcrivativcs arc ambiguous. 

RUIX(4) : l)l~~l~I\‘/\‘I’I\‘C: INS’I’AN’J CJIANGl’ RUM: 

All quantities must obey rule 2, cvcn if their dcrivntivcs arc 

unknown. Thus transitions between a situation whcrc &c = 0, ay = 

-/- and 32 = -/-, dy = 0 arc impossible. As a conscqucncc transitions 

bctwccn states 5 and 6-2 arc impossible. This contradicts cast (b) of 

the equality change law of qualitative process theory (I’orbus, 1982), 

and thus WC product a diffcrcnt analysis than hc dots. 

JIy rules 1-4 it is possible to prove that oscillation rcquircs a 

minimum of 8 states. 

I NS’L’A NTS 

RUIX(2): INS’J’AN’I’ CJIANGK RULE: 

In state 3, the mass is not moving, but the force of the spring is 

pulling to the left. ‘I’hu~, the mass has moved as fihr as possible to the 

right. Envisioning predicts states 4 and 5 as possible successors. ‘J’hc 

transition from state 3 to state 5 is impossible. In stntc 4, the mass has 

stnrtcd moving to the left in rcsponsc to the spring pulling it towards 

the wall. In state 5 the mass has a velocity to the Icft, but there is 

no net force on the mass. l’hus the mass must have moved close 

to its equilibrium position whcrc the weakened spring force pcrfcctly 

balances friction. To transition from 3 to 5 the mass would have to 

have moved close to its equilibrium position at the same instant it 

began to move. 

More formally, any change in any quantity from zero happens 

before any change of a quantity to zero. Consider two quantities (at 

some time) [z] = +,ax = - and [y] = O,r3y = +. As [x] = +, 

Any state in which a quantity is constant and its dcrivativc non- 

zero is momcntnry (e.g.. [x] = 0, 3.~ = +). Marc gcncrally, if arty 

zero quantity changes. the state is momentary. As a conscquencc the 

ontology for time is expanded to instants (corresponding to momentary 

states) and intervals. If more than one zero quantity has a non-zero 

dcrivativc, WC can cithcr think of them changing one at a time or all 

at once. 11~ modeling what happens as a scrics of instants we get an 

intuitively satisfying scnsc of causality: by grouping thcsc instants in a 

single instant WC get consistent transitions with simultaneous changes 

from instant to following time interval. 

As a conscqucncc of rules 2 and 4, if [z] changes from 0, no other 

ay can change back to 0, so any tcndcncics to change will persist, 

*Some transitions corresponding to operating region shifts (not nmbiguitics) need to 
bc handled with some cart. 1:or cxamplc. a piccc-wise linear model has undcfincd 
dcrlvativcs at the joints. 



and the ultimate effect remains the same. In fact, it is intcrcsting to 

note that if some non-zero quantity has a non-zero dcrivativc, neither 

the quantity nor its dcrivativc can change in the instant(s), and the 

transition is considered in the following interval. 

Unfortunately, the qualitntivc integration equation [z,,~~~) = 

[hLrmLt] + a%ment is invalid for instants (it can be proved for 

intcrvnls using the Mean Value ‘I’hcorcm). Suppose one drops a 

ball. At the moment the ball is rclcascd, it can’t be moving, but 

immcdintcly thcrcaftcr it is. At the moment of rclcasc it cannot have 

moved, has zero velocity. and ncgativc accclcration. Qualitatively, 

[z] = 0, a~ = 0. and a2z = -. So [z] becomes - cvcn though 

L3z = 0. ‘I’llC correct qlLllitiitiVC integration fill’ illStililtS is [z,,,,r(] = 

lx current] + anhL,rent whcrc PZ is the first non-zero dcrivativc. This 

result can bc proven using the Taylor expansion of z(t). 

‘1%~ difliculty with applying this rule is that higher-order dcriva- 

tives may not bc known. Fortunately. it is often easy to tell what 

order n is ncccssary. n is the qunli&ltivc order of the system which can 

be dctcrmincd directly from the variables mcntioncd in the equations. 

‘I’hc spring-mass equations only rcfcrcnccd forces and vclocitics thus 

11o information about instants is to bc gained from SCCOII~ dcrivativcs. 

‘I’hc dropping ball cxamplc, mentions three orders of dcrivativcs and 

thus rcquircs solving for second dcrivativcs. Notice that as the spring- 

mass system is a second order system WC arc guaranteed that if the 

system is in state 1, it cannot move out by itself. 

An alternate solution suggested by (Williams, 1984a) (Williams, 

1984b)is to rcwritc the integration rule for instants as [z,,,~] = 

[%urrentl + ax,,ezt (which cm bc proven from the Mean Value 

‘I’hcorcm). If and only if thcrc is any non-%cro Pz at the instant, 

xnezt, %d, *a*, an-1x7Lczt will be non-zero in the following interval 

(by integration). The two problems with Williams’ formulation are: 

first, it rcquircs knowing what happens next to know what happens 

next; second. it is conscqucntly dificult to tell whether the current 

state is momentary or not. Hc avoids the second problem by an 

axiom requiring that intervals and illStilIltS must altcrnatc. l’hcreforc 

it is always possible to tell whcthcr the current state is momentary. 

13~ rules 2 and 4, if &E is non-zero at an instant, it is non-zero in the 

interval after. so the only difficult case occurs if [z] = ax = 0. This 

cast is handled by considering all states that satisfy [z,,,,,] = altnczt 

as possible next states. 

Rules 0 through 4 apply to all dcrivativc orders. Recall that 

higher-order qualitative derivatives arc not dcfincd in terms of lower 

order qualitative dcrivativcs as is done in conventional calculus. a(&)) 

makes no scnsc. This was illustrated for the valve equation. The 

higher-order qualitative dcrivativc must bc defined in terms of the 

quantitative dcrivativc. Ps = [$$I. For brevity wc somctimcs use 

aox = Ix]. 

For linear systems, computing higher-order derivatives is easy. 

DifTcrcntiating a linear equation products a linear equations so the 

form of the equations dots not change. As thcrc arc finitely many 

sohtions to t.hCSC equations, it is easy to represent in a finite structure 

all higher order derivatives. 

h the mass-spring system is linear, diffcrcntiating the models 

does not change their essential form: LM-*v = p~~,,~~~, ~~~~~~~~~~~~ = 

-Pv, a"+'F frrchon = -ant-l v = -PF,,rass, and a"+'F tnass = 
anflFj,tctm + a7'+1J?~,,,,, = PF,,j, - PV 

‘l’ablc 3 summarizes the solutions for state 6. 

1 2 3 3 3 

au = +++++ 

aF/rrcttun = - - - - - 

a&mng = +++++ 

aFnLas.9 = + 0 + 0 - 

1 1 1 3 3 

a2v = +o--- 
a2Ffr*ctron =- 0+++ 
a'LFsprrny = - - - - - 
a"F,,*,, = - - + 0 - 

Table 3 : Higher-Order IIcrivativcs of State 6 

‘I’hcsc second-order dcrivativcs SINJW tililt state 6-1-l CiII1 transition to 

stale 6-2-1, but that 6-2-l cannot transition back. 

In terms of higher-order dcrivativcs the rules can bc summnri/.cd 

succinctly: 

(0,3) ang,,,,t = a7h,,,,,,,,t -1 a~+~~~~,.vrrrr,l, 772 first non-zero 

derivative. 

(1) Avoid contradictions at all dcrivativc orders. 

(2,4) Any change from Tcro happens first. 

‘I’wo states arc difl’crcnt if they dill’cr in any known Pz. A state is 

momentary iff a% = 0 and a”+’ z # 0. whcrc n+l is the qualitative 

order of the system. 

RULK(6): NO CHANGK ‘I‘0 ALI, %I’RO I)I’RIVA’fIVES 

A transition (subject to the same caveats as rule 3) cannot go 

from a state whcrc a quantity is non-zero to one whcrc it and all 

of its dcrivativcs arc zero. ‘I’his rule climinntcs tlic transitions from 

states 6-3 and 12-1 to state 1. because all Pz arc zero in state 1. 

This rule is justified by the Taylor expansion. ‘I’akc for cxamplc [v]. 

v(t) and all its dcrivativcs arc continuous over all the states (thcrc 

is no change in operating region so there is no possible way for a 

discontinuity to occur). In state 1, v and all its dcrivativcs arc zero. 

Howcvcr, WC can write v as a ‘l’aylor expansion around some time 

point when the dcvicc is in state 1. As all the derivatives of v arc 

zero, v must ncccssnrily bc zero cvcrywhcrc. ‘l’hus, if the dcvicc is in 

state 1 it will always remain in state 1 and has al~trz),s beers irl sfaie /. 

‘I’hcrcforc the transition from 6-3 to 1 is impossible as v is non-zero 

in state 6 and zero in state 1. 

QUA LI’l’h’l’IVl+: vs. QUAN’l’I’I‘A’I’IVE 

‘I’hc quantitative solution to the spring-mass system is of the 

form evkt&n(wt), i.c.. a damped sine wave (Figure 43). Figure 4b 

illustrates the qualitative shtc diagram after all the rules have been 

applied. Qualitative reasoning obtains a qualitative description of the 
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behavior of the mass-spring system without recourse to quantitative 

methods. 

Figure 4 : Qualitative and Quantitative Behavior 

13clow we give an English description of the states indicated in 

Figure 4. If the system starts in State 1 it remains thcrc, and if the 

system starts in any other state it cycles through states 2 through 13 

( “*” indicate instants). 

(1) A quicsccnt state which the system cannot Icave. 

(2) ‘I’hc mass is to the right of equilibrium and dccclcrating. 

(3) The whole system is stationary at the cxtrcmc right end of 

motion.* 

(4) The spring pulls back the the mass towards equilibrium. 

(5) Near equilibrium spring force has become weak, equaling 

friction.* 

(6) l:riction dominntcs spring force. 

(7) Mass rcachcs equilibrium position, but momentum carries it 

past.* 

(8) Spring begins to compress, system dccclcrates. 

(9) Spring is completely comprcsscd to the left, mass stationary.* 

(10) System begins rightward movcmcnt towards equilibrium. 

(11) Near equilibrium spring force has bccomc weak, cqualling 

friction.* 

(12) 1;riction dominates spring force. 

(13) Mass reaches equilibrium, but momentum carries it past to 

the right.* 

OWN PRORI,l’MS 

WC prcscntcd the fundamental laws of time-like behavior: qualita- 

tivc integration/continuity, contradiction avoidance, moving off in- 

stants and moving to zeros. ‘I’hcsc simple, but gcncral and powerful 

laws capture what would othcrwisc rcquirc sophisticated infcrcncc 

tcchniqucs. 

Figure 4b dots not include possible transitions to quiescence. 

This is technically correct (using Newton’s Law, Hooke’s Law, and 

Friction) - the exponential decay in oscillation amplitude approaches 

zero asymptotically. However, common-sense tells us that the oscilla- 

tion must cvcntually halt. What kind of qualitative equations correctly 

model the common-sense physics that a transition towards quiescence 

is possible: perhaps a model of Coulomb friction, or some sort of 

qualitative “quantum” mechanics? (Forbus, 1982) and (Williams, 

1984a) dcfinc this problem out of cxistcncc by assuming an axiom 

that all approached thresholds arc cvcntually rcachcd. 

Although 

guarantee no thil t any particular interval will end. ‘I‘hc ambiguity 

of qualitative analysis dots not allow us to deduce that state 2 

ends. For cxamplc, WC could design a spring whose restoring 

force rapidly damped out to zero asymptotically with time. Such 

a spring still obeys the qualitative Hookc’s I,aw, but the system might 

ncvcr stop moving to the right (i.c.. the velocity would approach 0 

the momentary states of Figure 4b must end, there is 

asymptotically producing no oscillation). Of course, if WC knew the 

spring constant was greater than some fixed landmark (true for non- 

pathological springs) thcrc would 

that oscillation is mandatory - 

bc enough information to dctcrmine 

sophisticated this rcquircs a more 

qualitative physics. 
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