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ABSTRACT

The goals of qualitative physics are o identify the distinctions
and laws which govern qualitative behavior of devices such that it is
possible 1o predict and explain the behavior of physical devices without
recourse lo quantitative methods. Although qualitative analysis lacks
quantitative information, it predicts significant characteristics of device
Sunctioning such as feedback, ringing, oscillation, etc. This paper
defines higher-order qualitative derivatives and uses them 1o formulate
six fundamental laws which govern the gross-time behavior of physical
devices. These qualitative laws are based on the Mean Value Theorem
and Taylor’s Fxpansion of the quantitative calculus.  They substitute
Jor what ofien reguires sophisticated problem-solving.  We claim they

are the best that can be achicved relying on qualitative information.

INTRODUCTION

Considerable progress has been made in qualitative rcasoning
about physical systems (de Kleer and Brown, 1984) (de Kleer and
Browin, 1982) (Forbus, 1982) (Hayces, 1979) (Kuipers, 1982a) (Williams,
1984a) (Williams, 1984b). Description, explanation and prediction of
events which occur over short time intervals is fairly well understood.
However, when cnough time passes the fundamental mode of be-
Discovering laws which govern
At first sight it

havior of the device may change.
this gross scale time behavior has proven illusive.
appears that the inherent ambiguity of qualitative analysis makes it
impossible to formulate powerful laws. This is not the case, and
we have identified six fundamental laws which govern the gross-time
bchavior of a device which rely on qualitative information alone.

We have built a computer program based on these laws and tested
it out on many cxamples. For purposcs of cxplanation, we draw
all our cxamples from a simple fluid-mechanical pressure-regulator
illustrated in Figure 1.

(dc Klcer and Brown, 1982) presents a theory of causal analysis
applicable for small time scales using the pressure regulator as an
cxample. Using that theory it is possible to determine the direction of
change for all device quantitics, causal explanations for their change,
and identification of the negative fecdback. In this paper we address
pressure regulator events occurring over a longer time scale. If the
input pressure riscs indefinitely, will the valve cventually completely
close? Docs the valve oscillate when a sudden input is applied?
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Figure 1 : Pressure Regulator

QUALITATIVE MODELING

Qualitative calculus uses alternating qualitative values consisting
of intervals separated by points (from (Williams, 1984a) (Williams,
1984b)). The points are landmark values where transitions of intcrest
occur. The qualitative value of z is denoted [z]. Onc quantity spacc
(Forbus, 1982) of particular interest is [z] = + iff £ > 0, [z] = 0 iff
z =0, and [z} = — iff z < 0. (Notice that to have a landmark of k
we use the qualitative space of [z — k].)

The behavior of device components is described by qualitative
Arithmetic is straightforward, except for the case of
The

quantitative law that flow through a constriction is proportional to

cquations.
addition of opposite signs when the result is ambiguous.

the pressure across it (i.c., 7' = k) is represented qualitatively as
[F] = [P]. k drops out as it is alwavs positive.

The valve of the pressure regulator (Figure 1) has three operating
regions cach characterized by different cquations.  When the valve
closes, the qualitative equation [F] = [P] no longer holds as the arca
available for flow (JA4] = 0) and flow is zcro ([F'] = 0) no matter what
the pressure across the valve ([P]). Analogously, when the valve is
completely open there is no longer any restriction to fluid flow [F]
but the pressure across the valve is zcro ([P] = 0).

OPEN:[A = A,ne.], [P] =0

WORKING:[0 < A < Amaz), [F] = [P]

CLOSED:[A=10],[Q] =0



The other important component of the pressure-regulator is the
sensor which measures the output pressure to sct the size of the valve
opening. The sensor acts by converting the output pressure to a force
with diaphragm E, and pushing down on the spring. So incrcased
pressure causes decrcased valve arca. The diaphragm moves to a
position such that spring force (kz) balances the force cxerted by
the pressure on the diaphragm (PAgiapiragn). Thus, the distance
the spring compresses (z) is proportional to the pressure (P). ‘the
arca obstructed by the valve Agusirucied 1S proportional to z. The
arca available for flow (A) is Anar — Aopstirucieas thus qualitatively
[P] = [Apur — A] = [Asas] — [A] = [+] -~ [A]. (We usually use -+
as a qualitative value, but in ambiguous contexts such as this cquation
we use “[+]" instcad.)

The above maodels determine the relationships between qualitative
values of the pressures and flows of the pressure regulator. We are
interested in developing a model to predict how a change in any one
of these quantities causes changes in the others. For this we need to
define a qualitative derivative of a quantity. Just as we write [«] for
the qualitative value of z we write [4¢] for the qualitative value of 4%
or abbreviated, dz.

In the WORKING mode of the pressure regulator, the qualitative
differential cquations for the valve and sensor are 9F = 3P -+ dA
and 84 = —39P,u.
quantitative cquations relating these variables.

These cquations arc both derived from the
The form of the
quantitative cquation is # = AVP, thus

dF dA ~— A dP

i \71_571?' P >0
As A and P arc always positive, this reduces to the simpler qualitative
cquation

OF = 0A - OP.

Notice that if we tried to derive the qualitative rclation of the
derivatives from the previously given qualitative equation relating flow
and pressure ([F] = [P]) and differentiated, we would get 9F = oP
which is incorrect.

By definition of pressurc P = 8P;,, — 0P,y Presumably the
pressure-regulator delivers an output to a toad which demands more
flow as pressure increascs, since 8P, = dF. Using these it is
possible to determine the qualitative responsc to an input pressure
risc 8P, = +: 0Py, = +, OPout = +, OP =+, 80F = 4, dA =
—. This solution indicates that although the output pressurc rises,
the drop across the valve increases and the arca available for flow
decreases thereby reducing the amount of the output rise. However,
the qualitative solution neither addresses how the pressure-regulator
achicves this bchavior nor its gross time behavior such as whether it
completely closes, opens or oscillates. See (de Kleer and Brown, 1984)
for a discussion of causal cxplanation; here we provide a framework
for rcasoning about its gross time behavior.

SIMULATION

As the input pressure riscs, the output continues to rise and the

87

arca available for flow continues to drop. Conversely, if the pressure
drops. the arca increases. If cnough time passes the valve may
completely CLOSE (8A = — causes A to reach threshold 0) or OPEN
(8A = + causcs A to reach threshold A,,,,.), the qualitative equations
change and hence the behavior change. The basic simulation loop
analyzces the behavior over time as follows:

(1) Start with some initial state.

(2) Solve for the qualitative changes in cach quantity.

(3) Identify those quantitics which arc moving to their thresholds.

(4) Construct a sct of the possible next states from these transi-

tions.

(5) IFor cach next state not yet analyzed, recursively go to (2).
‘This nondeterministic simulation algorithm identifics all of the states
reachable from the initial state and alt possible transitions between
them. ‘T'he device can be in cach state for an interval of time. So
the time-line of the device is a simply a sequence of intervals, cach
associated with some state.

Step 4 is expanded into the following generate and test sequence.

(4a) Construct a partial description of succeeding (continuous)

states from threshold information (Rule 0): the plausible next

states are generated using the qualitative integration equation for

cach significant! device quantity [ZToer] = [Feurrent] + 0Zcurrent-

(4b) Generate noncontradictory states (Rule 1) which match the

partial descriptions gencrated in step 4a.

(4c) Check all transitions from the current state to potential

successors using rules 2 through 6.

We summarize the rules for generation and testing here and
explain and exemplify cach more extensively afterwards.

o Rule (0) Value continuity. Values must change continuously
over a transition.

e Rule (1) Contradiction avoidance. The system cannot transition
to a state which is inconsistent with respect to the qualitative equations.

e Rule (2) Instant change rule. Changes from zcro happen
instantancously and no other changes can happen at an instant.

o Rule (3) Derivative continuiry. Rule 0 also applies to derivatives.

o Rulc (4) Derivative instant change rule. Rule 2 also applies to
derivatives.

e Rule (5) Higher-order derivatives. Rules 0 and 2 apply to all
orders of derivatives.

o Rulc (6) Change to all zero derivatives is impossible. A quantity
which is non-zero at some instant cannot ever become identically zero.

We list out rules 3 through 5 scparately from 0 and 2 to give
examples of different levels of analysis.

RULE(0) : VALUE CONTINUITY

Wc define continuity for qualitative variables. A change is
continuous if the value goes from an interval to its bounding point(s),

or from a point to onc of its two neighboring intervals. In the quantity

1A significant quantity defincs a component operating region or is an independent state
variable.



space used here the continuous changes are between 0 and + or —
(in cither direction), but not between 4+ and —.

The continuity rule is: no quantity may change discontinuously
in any transition between statcs.

RULE(1): CONTRADICTION AVOIDANCE

Step 4 of the simulation algorithm gives a partial description of
potential next states. The qualitative cquations determine the values
of the remaining quantitics. In many cases there are no possible values
which arc consistent with both the qualitative equations and the partial
description generated by step 4. This climinates potential transitions
generated in step 4a. ‘This often avoids having to decide which possible
transition occurs first ((Williams, 1984a) uses transition-ordering in his
analysis instcad).

We can usc this rule to prove that the valve can't close, i.e.,
cven though the arca available for flow is decreasing it will never
= 0; then by the valve
cquation |F] == 0. The load is passive [F] == [Pyut] SO [Pout] = 0.
Substituting into the scnsor cquation [A] = —[Pour] + [4] we get
[0] = —[0] 4 {+] a contradiction.

In the pressure regulator it is possible to argue that the valve

reach zcro. 1f the valve is closed then [A]

cannot close in the following way. Every increment in input pressure
causes smaller and smaller decrements in valve arca; therefore the
arca approaches zero asymptotically (i.c., becomes arbitrarily close to
7ero but never reaches zero). This asymptotic argument is unnccessary
if one sces that the closed state is inconsistent. Thus, contradiction
avoidance substitutes for all sorts of sophisticated reasoning.

An alternative to the simulation algorithm. the cnvisioning algo-
rithm provides a computationally more clegant method of climinating
transitions to inconsistent states.  As a precursor to the loop, the
envisioning algorithm identifics all nossible legal device states. Then
step 4 only considers transitions to legal device states. Another ad-
vantage to gencrating all states is that when all legal transitions have
been identified, one can casily notice unrcachable sets of states and

orphaned singlets.

QUALITATIVE AMBIGUITY

The power of the remaining rules arc illustrated by cxamining
the diaphragm-spring-stem fragment of the pressure regulator. If the
input pressure increases, the output pressure increase, producing a
force on the diaphragm. This force acts against the spring force and
friction. The valve slowly gains velocity as it closes; however, by the
time it rcaches the position where the force cxerted by the pressurc
balances the restoring force of the spring, the valve has built up
a momentum causing it to move past its cquilibrium position, thus
reducing the pressure below what it should be. As it has overshot
its cquilibrium the spring pushes it back: but by the same reasoning
the valve overshoots again, thercby producing ringing or oscillation,
Figure 2 illustrates the cssential details: a mass situated on a spring
and shock absorber (i.c., friction).
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Figure 2 : Mass-Spring-Friction System

The behavior of the mass is described by Newton'’s Law F = ma

or qualitatively [F] = 8v. Hookc's Law for the spring F = —kz
becomes 9F = —[w]. 'The resistance of the shock absorber is modeled
by [F] = —[v] and 8F = —8v. For simplicity sake. define z = 0

as the mass position with the spring at cquilibrium, and z > 0 to be
to the right. The net force on the mass is provided by the spring
and shock absorber: Fuss = Fopring -+ Frriction 0F qualitatively
[1",,,“5] = [Fsprinn] + {Ffriz:f,zon.]-
cquations has thirteen possible solutions (interpretations) (see Table

1).

This system of four qualitative

1 2 3 4 5 6 7 8 9 10 11 12 13
[Fouss) = ¢ — — — 0 + + + + + 0 — -
[Frriction] = — 0 + + + + + 0 - - - —
[Fagprngl =0 —  — — — - 0 -+ + + + + 0
{v} == 0+ 0 - — — — - o + + +

Table 1 Solutions to Mass-Spring Fquations

1 2 3 4 5 6 7 8 9 10 11 12 13

1 123 1 1 1 123 123 123 1 1 1 123 123
Fasy= 0 40— + + + 40— 40— 40— — — — +0— +0—
Frreon=0 + + + 0 — - - — — 0 + +
OFspring = 0 — 0+ +  + + + ¢ - - - -
v = 6 - — — 0 -+ + + + + 0 - —

Table 2 : State Splitting By Derivatives

In many cascs of qualitative rcasoning, one of the interpretations
is correct, the remaining arc theoretically possible but unintended
modes of opcration (de Kleer, 1984). Howcver, the mass-spring
system oscillates by moving between these interpretations. Movement
between interpretations is governed by the derivatives of the quantities
which arc determined by the equations: 8v = [Fiass], 8Fspring =
-8v = —([Fuqasl, and 8Fpacs = OFpriction +
[v]. Table 2 gives the values of the derivatives.

—[v]. OFpriction = —
BF ipring = [Finass) —
Note that the derivatives themselves are sometimes ambiguous.
Table 2 illustrates how much work we get from the contradiction
avoidance rule. For example, state 6’s derivative cquations have three
interpretations which we notate 6-1, 6-2, and 6-3.
pretations are only ambiguous in 8F,,,ss, so state 6-3 refers to the
state in which 8F,,...s = —. In state 6-3, every quantity is approach-
ing its zero threshold, since [z] = —dz for all quantitics. As we have
no information about which can happen first, or happen together, all
possible combinations of transitions neced to be considercd. As there

Derivative inter-



are 4 possible transitions, there are 2% — 1 possible choices. Only 3 of
those 15 possibilities are realizable because 12 of the resulting states
are contradictory.

This simple rule climinates the need for more sophisticated rules
often used for transition ordering. IFor cxample, (Williams, 1984a)
(Williams, 1984b) uscs the rule: if z and y arc heading for a threshold,
and z = f(y) holds at the threshold as well, transitions in = and y
co-occur.  All applications of this specialized rule as well as many
others are covered by the contradiction avoidance rule.

Figure 3 illustrates some of the possible states and all state
transitions generated by the algorithm using just rules 0 and 1. As we
don’t have any information about the 2nd order derivatives, we first
assume all transitions between first order solutions are possible.

Figure 3 : Statc Transitions of the Spring-Mass System

After applying contradiction avoidance rule, there are still a large
number of impossible transitions shown in this graph that can be
climinated by rules 2 through 6. Each numbcered arc is impossible,
the number indicates which rule climinates it.

RULE@2): INSTANT CHANGE RULE

In state 3, the mass is not moving, but the force of the spring is
pulling to the left. Thus, the mass has moved as far as possible to the
right. Envisioning predicts states 4 and 5 as possible successors. The
transition from state 3 to statc 5 is impossible. In state 4, the mass has
started moving to the left in response to the spring pulling it towards
the wall. In state 5 the mass has a velocity to the Ieft, but there is
no nect force on the mass. Thus the mass must have moved close
to its cquilibrium position where the weakened spring force perfectly
balances friction. To transition from 3 to 5 the mass would have to
have moved closc to its cquilibrium position at the same instant it
began to move,

More formally, any change in any quantity from zero happens
before any change of a quantity to zero. Consider two quantities (at
some time) [z] = 4,0z = — and [y] = 0,8y = +. AS [z] = -+,
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=4k >0, thusif 4 > —oo, it will take some time for z to drop for
zero. However, y becomes greater than 0 in an arbitrarily short time
period, so this happens first. In the case of state 3, [v] == 0, v = —
and [Flass) = —,0Fmass = + S0 [v]
3 can transition to 4 but not 5. This is equivalent to case (a) of the
cquality change rule of qualitative process theory (Forbus, 1982).

— occurs first. Thus, state

RULE(3): DERIVATIVE CONTINUITY

All derivatives2 must be continuous in a continuous system
with well-behaved inputs.

derivatives arc not computed.

This rule has conscquences even if the
Although the derivatives may be
unknown, the quantitics must still vary continuously.

This rule has conscquences both within interpretations and be-
tween interpretations. All transitions between states labeled n-1 and
n-3 are impossible because 8F,,,s¢ cannot continuously change be-
tween 4- and —. More interestingly, this rule imposes a sense of
dircction on the state diagram, State S can transition to state 6-1, but
not vice versa. For state 5 to transition to state 6, 8F,,.,, must be -+
s0 that [£,,45] can change from 0 to +. For [Finq,) to change back
to 7¢10, AF,qss Must be — (i.c., system must be in statc 6-3. For,
6-3 to transition to 5, 8F,,.ss must change from — to + which is
ruled out by the rule. As a consequence of this rule it is possible to
prove that oscillation between two states is not possible unless both

of their derivatives arc ambiguous.

RULY() : DERIVATIVE INSTANT CHANGE RULE

All quantities must obcy rule 2, cven if their derivatives are
unknown. Thus transitions between a situation where 8z = 0,9y =
-+ and dz = -+, By = 0 arc impossible. As a consequence transitions
between states 5 and 6-2 are impossible. This contradicts case (b) of
the cquality change law of qualitative process theory (Forbus, 1982),
and thus we producce a different analysis than he docs.

By rulcs 1-4 it is possible to prove that oscillation requires a

minimum of § statcs.

INSTANTS
Any state in which a quantity is constant and its derivative non-
-+). More generally, if any

zero is momentary (c.g., {z] = 0,8«
zero quantity changes, the state is momentary. As a consequence the
ontology for time is expanded to instants (corresponding to momentary
states) and intervals. If more than onc zero quantity has a non-zero
derivative, we can cither think of them changing onc at a time or all
at once. By modcling what happens as a serics of instants we get an
intuitively satisfying sensc of causality; by grouping thesc instants in a
singlc instant we get consistent transitions with simultancous changes
from instant to following time intcrval.

As a conscquence of rules 2 and 4, if [z] changes from 0, no other
8y can change back-to 0, so any tendencics to change will persist,

2Some transitions corresponding (o operating region shifts (not ambiguitics) need to
be handled with some care. l'or example, a picce-wise linear model has undefined
derivatives at the joints.



and the ultimate effect remains the same. In fact, it is interesting to
note that if some non-zcro quantity has a non-zero derivative, ncither
the quantity nor its derivative can change in the instant(s), and the
transition is considered in the following interval.

Unfortunately, the qualitative integration cquation [Zpez] =
Teurrent] + 8Tcurrent is invalid for instants (it can be proved for
intervals using the Mcan Value Theorem). Suppose onc drops a
ball. At thc moment the ball is relcased, it can’t be moving, but
immcdiately thercafter it is. At the moment of release it cannot have
moved, has zero velocity, and negative acceleration.  Qualitatively,
[z] = 0, 8z = 0, and 3%z = —. So [z] becomes — cven though
8z = 0. The correct qualitative integration for instants is [ZTyert] ==
[Zeurrent] + 8™ Tewrrent Where 8"z is the first non-zero derivative. This
result can be proven using the Taylor expansion of z(¢).

The difficulty with applying this rule is that higher-order deriva-
tives may not be known. Fortunately, it is often casy to tell what
order n is necessary. n is the qualitative order of the system which can
be determined directly from the variables mentioned in the equations.
The spring-mass cquations only referenced forces and velocities thus
no information about instants is to be gained from second derivatives.
‘The dropping ball example, mentions three orders of derivatives and
thus requires solving for sccond derivatives. Notice that as the spring-
mass system is a sccond order system we are guaranteed that if the
system is in state 1, it cannot move out by itsclf.

An alternate solution suggested by (Williams, 1984a) (Williams,
1984b)is to rewrite the integration rule for instants as [Zpez] =
[Zeurrent] + 8Tneze (which can be proven from the Mecan Value
Theorem). If and only if there is any non-zero 8™z at the instant,
Tneat, OTnezty oy O 1Ty Will be non-zero in the following interval
(by intcgration). The two problems with Williams™ formulation are:
first, it requircs knowing what happens next to know what happens
next; sccond, it is conscquently difficult to tell whether the current
statc is momentary or not. Hc avoids the sccond problem by an
axiom requiring that intervals and instants must alternate. Therefore
it is always possible to tell whether the current state is momentary.
By rules 2 and 4, if 8z is non-zcro at an instant, it is non-zcro in the
interval after, so the only difficult case occurs if [z] = 8z = 0. This
casc is handled by considering all statcs that satisfy [Tnest] = 0Znezt

as possible next states.

RULE (5): HIGHER-ORDER DERIVATIVES

Rules 0 through 4 apply to all derivative orders. Reccall that
higher-order qualitative derivatives arc not defined in terms of lower
order qualitative derivatives as is done in conventional calculus. 8(8z))
makes no sense. This was illustrated for the valve cquation. The
highcr-order qualitative dcrivative must be defined in terms of the

quantitative derivative. 8"z = [4:2]. For brevity we sometimes use
%z = [z).

For lincar systems, compuling higher-order derivatives is casy.
Differentiating a linear cquation produccs a lincar equations so the

form of the equations docs not change. As there arc finitely many
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solutions to these cquations, it is casy to represent in a finite structure
all higher order derivatives.
As the mass-spring system is lincar, differentiating the models

doces not change their essential form: 9" +1y = 9" F,,, ., Ot pring =
—3d"v, an+lF/rictwn = —grtly = —O0"Fpass, and an+1Fmass =

an+lanct|on + an+11'-‘spring = 0"Fppa,s — O™v
Table 3 summarizes the solutions for state 6.
1 2 3 3 3

Ov = + + + 4+ +
OFfriction= — — — — —
apsprmg = + + 4+ + +
OFpass =+ 0 + 0 —

1 1 1 3 3
9%y = + 0 — — —
PFrriction=—0 + + +
32anrmy =- - - — -
P Fpass = — — + 0 —

Table 3 : Higher-Order Derivatives of State 6

These second-order derivatives show that state 6-1-1 can transition to
state 6-2-1, but that 6-2-1 cannot transition back.

In terms of higher-order derivatives the rules can be summarized
succinctly:

(0,3) 8"Znezt = 0™ Teurrent + 8" " Loyrrenr, m first non-rzero
derivative.

(1) Avoid contradictions at all derivative orders.

(2,4) Any change from zcro happens first,
Two states are different if they differ in any known 8™z. A state is
momentary iff 8%z = 0 and 8" +'z £ 0, where n+1 is the qualitative
order of the system.

RULE(6): NO CHANGE TO ALL ZERO DERIVATIVES

A transition (subject to the same caveats as rule 3) cannot go
from a statc where a quantity is non-zcro to one where it and all
of its derivatives arc zcro. This rule climinates the transitions from
states 6-3 and 12-1 to state 1, because all 8%z arc zero in state 1.
This rule is justified by the Taylor expansion. Take for example [v].
v(t) and all its derivatives are continuous over all the states (there
is no change in operating region so there is no possible way for a
discontinuity to occur). In state 1, v and all its derivatives arc zero.
However, we can write v as a ‘laylor expansion around some time
point when the device is in state 1. As all the derivatives of v are
zero, v must necessarily be zero everywhere. Thus, if the device is in
state 1 it will always remain in state 1 and has always been in state I.
Therefore the transition from 6-3 to 1 is impossible as v is non-zero
in state 6 and zcro in state 1.

QUALITATIVE vs. QUANTITATIVE

The quantitative solution to the spring-mass system is of the
form e~ *tsin(wt), i.c., a damped sine wave (Figure 4a). Figure 4b
ilfustrates the qualitative state diagram after all the rules have been
applicd. Qualitative rcasoning obtains a qualitative description of the



behavior of the mass-spring system without recourse to quantitative
methods.

Figure 4 : Qualitative and Quantitative Bechavior

Below we give an English description of the states indicated in
Figure 4. If the system starts in State 1 it remains there, and if the
system starts in any other state it cycles through states 2 through 13
(**” indicatc instants).

(1) A quicscent state which the system cannot leave.

(2) 'The mass is to the right of equilibrium and decclerating.

(3) The whole system is stationary at the extreme right end of
motion.*

(4) The spring pulls back the the mass towards equilibrium.

(5) Near cquilibrium spring force has become weak, cqualing
friction.*

(6) Friction dominates spring force.

(7) Mass reaches cquilibrium position, but momentum carries it
past.*

(8) Spring begins to compress, system decclerates.

(9) Spring is completely compressed to the left, mass stationary.*
(10) System begins rightward movement towards cquilibrium.
(11) Near cquilibrium spring force has become wcak, cqualling
friction.*

(12) Friction dominates spring force.

(13) Mass reaches cquilibrium, but momentum carrics it past to
the right.*

OPEN PROBLEMS

We presented the fundamental laws of time-like behavior: qualita-
tive integration/continuity, contradiction avoidance, moving off in-
stants and moving to zeros. These simple, but general and powerful
laws capture what would otherwise require sophisticated inference
techniques.

91

Figure 4b does not include possible transitions to quicscence.
This is technically correct (using Newton'’s Law, Hooke’s Law, and
Friction) — the exponential decay in oscillation amplitude approaches
zcro asymptoticatly. However, common-sense tells us that the oscilla-
tion must cventually halt. What kind of qualitative cquations correctly
model the common-sense physics that a transition towards quiescence
is possible: perhaps a model of Coulomb friction, or some sort of
(Forbus, 1982) and (Williams,
1984a) dcfinc this problem out of cxistence by assuming an axiom

qualitative “quantum’ mechanics?

that all approached thresholds are cventually reached.

Although the momentary states of Figure 4b must end, there is
no guarantce that any particular interval will end. The ambiguity
of qualitative analysis docs not allow us to deducc that state 2
For cxample, we could design a spring whose restoring
Such

a spring still obeys the qualitative Hooke’s 1.aw, but the system might

cnds.
force rapidly damped out to zero asymptotically with time.

ncver stop moving to the right (i.c., the velocity would approach 0
asymptotically producing no oscillation). Of course, if we knew the
spring constant was greater than some fixed landmark (true for non-
pathological springs) there would be enough information to determine
that oscillation is mandatory — this requircs a more sophisticated
qualitative physics.
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