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Abstract 

A theory of action suitable for reasoning about events 
in multiagent or dynamically changing environments is pre- 
scntcrl. A device called a process model is used to represent 
the observable behavior of an agent in performing an ac- 
tion. This model is more general than previous models of 
act ion, allowing sequencing, selection, nondeterminism, it- 
eration, and parallelism to be represented. It is shown how 
this model can be utilized in synthesizing plans and rea- 
soning about concurrency. In parbicular, conditions are de- 
rived for determining whether or not concurrent actions are 
free from mutual interference. It is also indicated how this 
theory pro!.ides a basis for understanding and reasoning 
about act,ion sentences in both natural and programming 
lariguagcs. 

1. Introduction 

If intelligent agents are to act rationally, they need to 
be able to reason about the effects of their actions. Fur- 
thermore, if the environment is dynamic, or includes other 
agcmls, they need to reason about the interaction between 
their actions and events in the environment, and must be 
able to bynchronize their activities to achieve their goals. 

hlost previous work in action planning has assumed a 
:,iIlglc agrnt acting in a static world. In such cases, it is suf- 
ficicut to represent actions as state change operators (e.g., 
[-I], 191). llowcvcr, as in the study of the semantics of pro- 
gramming languages, the interpretation of actions as func- 
tions or relations breaks down when multiple actions can 
be performed concurrently. The problem is that, to reason 
about the effects of concurrent actions, we need to know 
hog t hc act ions are performed, not just their final effects. 

Some attempts have recently been made to provide a 
better underlying theory for actions. McDermott [lo] con- 
siders an action or event to be a set of sequences of states, 
and describes a temporal logic for reasoning about such ac- 
tions and events. Allen [l] also considers an action to be a 
set of sequences of states, and specifies an action by giving 
the relationships among the intervals over which the ac- 
tion’s condibions and effects are assumed to hold. However, 
while it is possible to state arbitrary properties of actions 
and events, it is not obvious how one could use these logics 

in synthesizing or verifying multiagent plans. ’ 

In a previous paper [5], we proposed a method for form- 
ing synchronized plans that allowed multiple agents to a- 
chieve mult.iplc goals, given a simple model of the manner in 
which the actions of one agent interact with those of other 
agents. In this paper, we propose a more general model 
of action, and show how it can be used in the synthesis or 
vcrificat ion of multiagent plans and concurrent programs. 

2. Process Models and Actions 

Agents are machines or beings that act in a world. We 
distinguish between the internal workings of an agent and 
the external world that affects, and is affected by, that 
agent. All bhat can be observed is the external world. At 
any given instant, the world is in a particular world state, 
\vhich can be described by specifying conditions that, are 
true of that state. 

Let us assume that the world develops through time by 
undergoing discrete changes of state. Some of these changes 
are caused by agents acting in the world; others occur “nat- 
urally,” pc)rhaps as a result of previous state changes. Ac- 
tions and events arc considered to be composed of prim- 
iti\-e objects called atomic fmnsitions. An atomic transi- 
tion is a relation on the set of world states. Any sequence 
of states resulting from the application of some specified 
atomic transitions will be called an event. Note that we do 
not rcquirc that atomic transitions be deterministic, but we 
do require that t,hey terminate. 

An action is a class of events; viewed intuitively, those 
that result from the activity of some agent or agents in 
accomplishing some goal (including the achievement of de- 
sired conditions, the maint,enance of desired invariants, the 
prevention of other events, etc.) 

‘Allen [2] proposes a method for forming multiagent plans that is based 
on his representation of actions. However, he does not use the tem- 
poral logic directly, and actions are restricted to a particularly simple 
form (e.g., they do not include conditionals). 

121 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



Usually we do not have access to this internal structure. 
However, since we are interested only in the observable be- 
havior of the agent, we do not need to know the internal 
processes that govern the agent’s actions. Thus, to rea- 
son about how the agent acts in the world and how these 
actions interact with events in the world, we need only an 
abstract model that explains the observable behavior of the 
agent. 

We shall specify the class of possible and observable be- 
haviors of an agent when it performs an action by means 
of a device called a process model. A process model con- 
sists of a number of internal states called control points. At 
any moment in time, execution can be at any one of these 
control points. Associated with each control point is a cor- 
rectness condition that specifies the allowable states of the 
world at that control point. 

The manner in which the device performs an action is 
described by a partial function, called the proceaa control 
function, which, for a given control point and given atomic 
transition, determines the next control point. A process 
model can thus be viewed as a finite-state transition graph 
whose nodes are control points and whose arcs are labeled 
with atomic transitions. 

A process model for an action stands in the same re- 
lationship to the internal workings of an agent and events 
in the external world as a grammar for a natural language 
bears to the internal linguistic structures of a speaker and 
the language that is spoken. That is, it models the observ- 
able behavior of t.he agent, without our claiming that the 
agent actually possesses or uses such a model to generate 
behaviors. 

3. Formal Definition 

A process model describes an action open to an agent. 
Formally, a process model is a seven-tuple 
A = (S, F, C, 6, f, q, CF) where 

l S is a set of world atatea 

0 F : SXS is a set of atomic transitions 

0 C is a set of control point8 

l S : C X F -+ C is a process control function 

l P : C - P associates subsets of S with each control 
point; values of this function are called correctness 
conditions 

l CI E C is the initial control point 

l cF E C is the final control point. 

In general, 6 is a partial function. If for a control point 
c and atomic transition tr, (c, tr) is in the domain of 6, we 
say that tr is applicable at c. 

We are now in a position to define the execution of a 
process model. Let A be a process model as defined above. 
We first define a state of execution of A to be a pair (u, c), 
where * c E C and u E S’. We say that a state of execution 

2S* is the set of all finite sequences over S. 

el = (usI, cl) directly generates a state of execution e2 = 
(us~.s~, c2), denoted el bA e2, if either 

I. 3tr . S(c,,tr) = c2 and (s~,~2) E tr, or 

2. Cl = cg 

In (I) we say that the transition is effected by the agent ex- 
ecuting A, while in (2) we say that the transition is effected 
by the environment. 

We now define a restriction on the relation bA. If, 
for el and e2 defined above, el bA e2 and 92 E P(Q), we 
say that el successfully generates e2, denoted el =+A e2. If 
s2 e P( c2), execution is said to fail. 

Let =s> denote the reflexive transitive closure of the 
relation *.Q. Then the action generated by A, denoted a~, 
is defined to be 

aA = (6 1 (8, CI) =+> (b, CF) and 8 E P(Q)} 

Each element of Q# is called a behavior or act of A. The 
action o itself is the set of all behaviors resulting from the 
execution of A. 

Viewed intuitively, the device works as follows. If it is at 
control point cl and the world is in a state si satisfying the 
correctness condition P(Q), the device can pass to control 
point c2 and t.he world to state 52 as long as there exists an 
applicable atomic transition tr between states a1 and s2 and 
S(Cl) tr) = cg. Alternatively, the device can stay at control 
point cl and some transition or event occur in the world 
(perhaps resulting from the action of some other agent). In 
either case, for the execution to be successful (not to fail), 
the new world state must satisfy the correctness condition 
at c2, i.e., s2 must be an element of P(Q). 

In performing t’he action cr, the device starts at control 
point cf. The action terminates when the device reaches 
CF. Given an initial state of the world 8, various sequences 
of world states can be generated by the process model a8 it 
passes from the initial to the final control point. The set of 
all such sequences constitute the action itself. 

This is the same general view of action as presented 
by Allen [I] and McDermott [lo]. However, our theory 
differs in t,hat it allows us to distinguish between transitions 
effected by the agent and those effected by the external 
world. This is particularly important in the synthesis and 
verification of multiagent plans and concurrent programs 

(e-g-, PI)* 
Note that we do not require that a state satisfying the 

correctness condition at a control point be in the domain 
of some atomic transition applicable at that control point. 
Thus, it is possible for the agent to arrive at an intermediate 
control point and not to be able to immediately effect a 
further transition. In such cases, the environment must 
change before the action can progress. This could occur, for 
example, if an agent nailing two boards together expected 
another to help by holding the boards. Only when the 
“holder” (who is part of the environment) has provided the 
necessary assistance (and moved the state of the world into 
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the domain of an applicable transition) can the “nailer” 
proceed with the action. 

Neither do we require that an atomic transition per- 
formed by an agent always be successful i.e., the transition 
could sometimes leave the agent in a state that violated 
the current correctness condition. A process model that al- 
lowed such transitions could sometimes fail. In most cases, 
this is undesirable (though it may be unavoidable), and for 
the rest of the paper we will assume that this cannot hap- 
pen. That is, we will assume that only the environment (or 
another agent) can cause an action to fail. 

It should also be noted that the correctness conditions 
say nothing about termination - it may be that an action 
never reaches completion. This can be the case if the action 
is waiting for a condition to be satisfied by the environment 
(so that a transition can be effected), it loops forever, or 
the environment is unfair (i.e., does not give the action a 
chance to execute). 

In many cases, we wish to model actions that proceed 
at an undetermined rate and fail if they are ever forced to 
suspend execution. For example, it is difficult to hit a golf 
ball if the environment is allowed to remove and replace the 
ball at arbitrary times during one’s swing. Such uninter- 
ruptable actions require that, for any control point c, any 
state that satisfies the correctness condition at c also be in 
the domain of some atomic transition applicable at c. 

4. Composition of Actions 

A plan or program for an agent is a syntactic object 
consisting of primitive operations combined by construc- 
tions that represent sequencing, nondeterministic choice, 
iteration, forks and joins, etc. If we intend the denotations 
of such plans to be process models, we need some means of 
combining the latter in a way that reflects the composition 
operators in plans. 

Of special int,erest, and indeed the motivation behind 
the model presented here, is the parallel-composition oper- 
at,or. We define this below. 

Let Al = (S, FI : C1, &, PI, cfl, cF1) and A2 = 
(S, F21 G, 6211’2, c12, cF2) be two process models for actions 
o1 and a=, respectively. Then we define a process model 
representing the parallel composition of Al and AZ, denoted 
Al 11 A*, to be the process model (S, F, C, 6, P, CI, CF), where 

l F = FI u F2 

l c  = Cl ⌧ c, 

l For all cl E C1, cz E C2 and tr in F1, 
~((c1,c2)Jr) = (~&lr~~),C2) 

l For all cl E C,, c2 E C2 and tr in F’, 

~((cI, CZ), tr) = (h 62(c2, tr)) 

l For all cl E C, and c2 E C2, 
pk, c2)) = Pl(cl) n p2(c2) 

It is not difficult to show that the action a generated 
by A, 11 AZ is exactly (1: n y 1 I E CQ and y E ~2). 

Note that the projection of S onto CI and C2 gives ex- 
actly the control function for the component process mod- 
els. At any moment, each component is at one of its own 
control points; the pair of control points, taken together, 
represents the current control point of the parallel process. 

Furthermore, the behaviors generated by these two pro- 
cesses running in parallel are also generated by each of them 
running separately. This means that any property of the 
behaviors of the independent processes can be used to de- 
termine the effect of the actions running in parallel. This 
is particularly important in providing a compositional logic 
for reasoning about such actions (see [3]). 

The above model of parallel execution is an interleav- 
ing model. Such a model is adequate for representing al- 
most all concurrent systems. The reason is that, in almost 
all cases, it is possible to decompose actions into more and 
more atomic t,ransitions until the interleaving of transitions 
models the system’s concurrency accurately. The nondeter- 
ministic form of the interleaving means that we make no as- 
sumption about the relative speeds of the actions. We can 
also define a parallel composition operator that is based on 
communication models of parallel action, in which commu- 
nication acts are allowed to t,ake place simultaneously. This, 
together wit,h other composition operators, is described by 
me elsewhere [6]. 

5. Freedom from Interference 

In plan synthesis and verification it is important to be 
able to determine whether or not concurrent actions inter- 
fere with one another. In the previous section we defined 
what it meant for two actions (strictly speaking, process 
models) to run in parallel. Now we have to determine 
whether execution of such a parallel process model could 
fail because of interaction between the two component pro- 
cesses. 

Consider, then, two actions a and p generated by pro- 
cess models A and 8, respectively. The process model cor- 
responding to these actions being performed in parallel is 
A /) 8. In analysing t,his model, however, we will view it in 
terms of its two component process models (i.e., A and 8). 

Assume that we are at control points cl in A and c2 in 8, 
and that tr is an atomic transition applicable at ~2. Clearly, 
if the process has not failed, the current world state must 
satisfy both P(cl) and P(c2). Now assume that process 
B continues by executing the atomic transition tr. This 
transition will take us to a new world state, while leaving 
us at the same control point within A. From A’s point of 
view; this new state must still satisfy the condition P(cl). 
Thus, we can conclude that the transition tr executed at 
control point c2 will not cause A to fail at cl if the following 
condition holds: 

l CI = (01, CI2) 

l CF = (cFl~~F2) V’s1 S? . s1 E P(cl)nP(c2) and (Q,s~) E tr implies 82 E f(q) 



We say that the transition tr at control point ~2 does not 
, interfere with A if the above condition holds at all control 

points in A, i.e., for all correctness conditions associated 
with A. 

We are now in a position to define freedom from in- 
terference. A set of process models Al,. . . A, is said to be 
interference-free s if the following holds for each process Ai: 
for all control points c in A; and all transitions tr applicable 
at c and for all j, j # i, tr at c does not interfere with Aj. 

Thus, if some set of actions is interference-free, none can 
be caused to fail because of interaction with the others. Of 
course, any of the actions could fail as a result of interaction 
with the environment. 

From this it follows that, for ascertaining freedom from 
interference, it is sufficient to represent the functioning of 
a device by 

1. A set of correct,ness conditions, and 

2. A set of atomic transitions restricted to the correct- 
ness condition of the node from which they exit. 

Knowledge of a process model’s structure (i.e., the pro- 
cess control function), is unnecessary for this purpose. In 
a distributed system, this means that an agent need only 
make known the foregoing information to enable it to in- 
teract safely with other agents. We call such information a 
reduced specification of the action. 

Let us consider the following example. Blocks A, B and 
C are currently on the floor. We wish to get blocks A and B 
on a table, and block C on a shelf, and have two agents, X 
and Y, for achieving this goal. Agent X has not got access 
to block B, but can place block A on the table and block C 
on the shelf. He therefore forms a plan for doing so. Agent 
Y cannot reach block A, but is happy to help with block 
B. Unfortunately, in doing so, he insists that the floor be 
clear of block C at the completion of his action. 

The plans for agent X and Y are given below. The 
correctness conditions at each control point in the plans 
are shown in braces, “{” and “}“. The “if” statement is 
assumed to be realized by two atomic transitions. The first 
of these is applicable when block C is on the floor, and 
results in block C being placed on the table, The second 
is applicable when block C is not on the floor, and does 
nothing (i.e., is a no-op). The process models corresponding 
to these plans should be self-evident. 

Plan for agent X: 

{(clear A) and (clear C)} 
(puton A TABLE) 
{(on A TABLE) and (clear C)} 
(puton C SHELF) 
{(on A TABLE) and (on C SHELF)} 

‘This definition of the notion “interference-free” generalizes to arbi- 
trary transitions that used by Owicki and Gries[llj for verifying con- 
current programs. Synchronization primitives have not been included 
explicitly, but can be handled by conditional atomic transitions IS]. 

Plan for agent Y: 

{(clear B) and (clear C)} 
(puton B TABLE) 
{(on B TABLE) and (clear C)} 
if (on C FLOOR) then 

(puton C TABLE) 
{(on B TABLE) and not (on C FLOOR)} 

It is clear from the definition given above that these ac- 
tions are interference-free. However, they interact in quite 
a complex manner. In some circumstances, agent Y will put 
block C on the table, which would seem to suggest interfer- 
ence. Nevert,heless, interference freedom is assured because 
the only time that Y can do this is when it does not matter, 
i.e., before X has attempted to put C on the shelf. Note 
that if the test and action parts of the “if’ statement were 
separate atomic transitions, rat,her than a single one, then 
the actions would not be free from interference. 

6. General Reasoning about Actions 

So far we have been interested solely in reasoning about 
possible interference among actions. For many applica- 
tions, we may wish to reason more generally about actions. 
One way to do this is to construct, a logic suitable for rea- 
soning about process models and t’he behaviors they gener- 
ate. That is, we let process models serve as interpretat,ions 
for plans or programs in the logic. An interesting compo- 
sitional temporal logic has been developed by Barringer et 
al [3]. Because it is compositZional, process models provide 
a natural interpretation for the logic. 

One may well ask what role process models play, given 
that the only observables are sequences of world states and 
that a suitable temporal logic, per se, is adequate for de- 
scribing such sequences. However, in planning to achieve 
some goal, or synthesizing a program, we are required to 
do more than just describe an action in an arbitrary way 
- we must. somehow form an object that allows us to choose 
our nest action (or atomic t#ransition) purely on the basis 
of the current execution state, without any need for further 
reasoning. 

We could do this by producing a temporal assertion 
about the action from which, at any moment of time, we 
could directly ascertain the next operation to perform (e.g., 
a formula consisting of appropriat,ely nested “next” opera- 
tors). Thus, in a pure t,emporal logic formalism, plan syn- 
thesis would require finding an approriately structured tem- 
poral formula from which it was possible to deduce satis- 
faction of the plan specificabion. However, instead of view- 
ing planning syntactically (i.e., as finding temporal formu- 
las with certain structural properties), it is preferable, and 
more intuitive, to have a model (such as a process model) 
that explicitly represents the denotation of a plan or pro- 
gram (see [6]). 

Process models serve other purposes also. For example, 
interference freedom is easily determined, given a process 
model, but it is less clear how this could be achieved ef- 

124 



ficiently, given a general specification in a temporal logic. 
Even so, one would need to construct an appropriate pro- 
cess model first (or its syntactic equivalent in a temporal 
logic), as the implementation of the specifications might 
make it necessary to place additional constraints upon the 
plan. 

In combination with a temporal logic such as suggested 
above, the proposed theory of action provides a semantic 
basis for commonsense reasoning and natural-language un- 
derstanding. Process models are more general than previ- 
ously proposed models (e.g., [7]), particularly in the way 
they allow parallel composition. They can represent most 
actions describable in English, including those that are prob- 
lematic when a&ions are viewed as simple state-change op 
erators, such as “walking to the store while juggling three 
balls” [I], “running around a track three times” [lo], or 
“balancing a ball” (which requires a very complex process 
model despite the apparent simplicity of its temporal spec- 
ification). The theory also allows one to make sense of such 
notions as “sameness” of actions, incomplete actions (like 
an interrupted painting of a picture) and other important 
issues in natural-language understanding and commonsense 
reasoning. 

Process models are also suitable for representing most 
programming constructs, including sequencing, nondeter- 
ministic choice (including conditionals) and iteration. Par- 
allelism can also be represented, using either an interleaving 
model, as described in section 4, or a communication model. 
The model used by Owicki and Gries [ 1 l] to describe the se- 
mantics of concurrent programs can be considered a special 
case of that proposed herein. 

7. Conclusions 

A nascent theory of action suitable for reasoning about 
interaction in multiagent or dynamically changing environ- 
ments has been presented. More general than previous the- 
ories of action, this theory provides a semantics for action 
statements in both natural and programming languages. 

The theory is based on a device called a process model, 
which is used to represent the observable behavior of an 
agent in performing an action. It was shown how this model 
can be utilized for reasoning about multiagent plans and 
concurrent programs. In particular, a parallel-composition 
operator was defined, and conditions for determining free- 
dom from interference for concurrent actions were derived. 
The use of process models as interpretations of temporal 
logics suitable for reasoning about plans and programs was 
also indicated. 
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