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ABSTRACT 

Rich’s suggestion that the arcs of semantic nets be 
lahelletl so as to reflect confidence in the propertics they 
represent is investigated in greater detail. If these con- 
Gclcnccs are thought of as ranges of acceptable probabil- 
ities, esi$ting statistical methods can be used eflectively 
to combine them. The framework developed also seems 
to he a natural one in which to describe higher levels of 
deduction, such as “reasoning about reasoning”. 

I SEMANTIC NETS 

Rich [Rich, 19831 h as suggested labelling semantic 
nets [Quillian, 19681 with “certainty factors” indicating 
the deplh of convict,ion held in the properties they repre- 
sent. The non-monotonic rule “birds fly” would thus be 
represented not as 

birds fib flyers 

but as 
birds % flyers, (1) 

where the certainty factor of .95 indicates that 95% of 
birds 11~. Monotonic rules have certainty factors of 1, as 
in 

ostriches 7 non-flyers, (2) 

which is also written by Rich as 

ostriches 3 flyers. 

Shafer [Shafer, 19761 has argued that probabilities 
such as those above are better thought of not as specific 
values, but as ranges. It seems unreasonable to believe 
that ezncfly 95% of all birds fly-much better to believe 
that between 90% and 98% do. Instead of having the 
conditional probability p(flyer(z)lbird(z)) = .95, we take 
p(flyer(z)jbird(z)) E [.9, .98]. 

We will write such a probability range as a pair (c n), 
where c is the extent to which we believe a given propo- 
sition to be confirmed by the available evidence (-9 in the 

above example), and d is the extent to which it is dis- 
confirmed (1 - .98 = .02 above). We will also write (J for 
1 - c, d for 1 - d, etc., so that the probability interval 
referred to in the last paragraph is [c, Z] in general. 

The beliefs (1) and (2) now become 

birds 2 flyers 
(.9 .02) 

and 
ostriches 3 flyers 

(0 1) 

respectively. Since we need c _< d; we will always have 
c + d 5 1, with equality only if the probability interval 
[c, C1] is in fact a single point. As c + d = 1 corresponds to 
complete knowledge of a probability, so c + d = 0 corre- 
sponds to the interval [0, l] and therefore to no knowledge 
at all. 

To perform simple reasoning using this rcpresenta- 
tion, suppose we have 

isa 

x (iZ) y 
and 

jsa 

y (2) z, (3) 

an d want to evaluate x 5 z. From the fact that the 
minimum probability of an x being a y is a, it follows 
that the minimum probability of an x being a z is at 
least UC. The probability of an x not being a z is at least 

ad for similar reasons. Thus the value of the arc x s z 
is (ac ud) and we have, for example, that 

Tweety z birds 
(1 0) 

-3 flyers 
(.9 .02) 

gives rise to the non-monotonic conclusion 

Tweety 5 flyers. 
(.Q .02) 

(4 
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II DEMPSTER’S RULE 

The difficulties with this scheme arise when differ- 
ing applications of the rule used in (3) lead to different 
conclusions. If we have 

Tweety (?;I ostriches %+ flyers, 
(0 1) 

we obtain 
Tweety 2 flyers, 

(0 1) 

in contradiction with (4). 

This situation is typical of non-monotonic reasoning. 
Default rules by their very nature admit exceptions; what 
we need is some way to combine conflicting conclusions 
such as (4) and (5). 

Dempster [Dcmpster 1968 or Shafer 19763 has dis- 
cussed this situation in depth, and our problem is in 
fact a special case of his investigations. If we denote by 

(a b) + (c d) the inference obtained by corn bining the 
two inferences (a 6) and (c d), Dempster’s rule gives us 

This formulation has the following attractive prop- 

a. It is commutative and associative. In many non- 
monotonic systems, the order in which non-monotonic 
(or other) inferences are drawn is critical, since the ap- 
plication of one rule may invalidate another. The commu- 
tativity and associativity of (6) guarantees that we will 
be able to overcome this difficulty. 

b. (a b) + (0 0) = (a b). The probability range (0 0) 
corresponds to no knowledge at all and will result from 
any attempt to apply an inapplicable rule. We might, for 

example, generate the arc Tweety z flyers from the 
(0 0) 

pair 

Tweety E elephants % flyers. 
(0 1) (0 1) 

The point here is that such an inference (should we draw 
it) will have no effect on our eventual conclusions. 

c. (a 0) + (c 0) = (a + c - UC 0). The probability 
ranges (a 0) and (c 0) each indicate no disbelief in 
the corrcspondin g arcs; in this case, the (independent) 
probabilities combine in the usila.1 fashion. 

d. For (c d) # (0 l), (1 0) + (c d) = (1 0); for 
(c d) f (1 0), (0 1) -t (c d) = (0 1). This result 
implies that no application of a non-monotonic rule can 
ever outweigh a logical certainty. There is no danger 
when applying a non-monotonic rule to obtain (4) that 
an eventual conclusion such as (5) will bc invalidated; the 
result of combining the two results is simply (5) again. 
This allows us to avoid the most computationally ditficult 
aspect of non-monotonic reasoning--that of determining 
when it is legitimate to apply a non-monotonic rule of 
inference. 

e. (0 1) + (1 0) is undefined. Such a combination 
indicates that an arc has been proven both valid and 
invalid and as such represents a conflict in the database. 

f. + is (nearly) invertible. If we denote the inverse by -, 
we have, for (c d) # (0 1) or (1 0), 

(a b) - (c d) = ( F$--e!;!;dd *TX). 
cd - bee - ud2 

(7) 
This enables us to easily retract the conclusion of an ear- 
lier inference without influencing conclusions drawn using 
other means. 

III RULES AND METARULES 

A more efficient approach to non-monotonic deduc- 
tion is implied by McCarthy’s formulation [McCarthy, 
19841: 

bird(x) A labnormall(x) --+ flies(x) 

ostrich(x) --+ abnormall(x) 

ostrich(x) A labnormal2(x) -+ Tflies(x). 

The effect of these rules is to have the fact that Tweety 
is an ostrich invalidate not the conclusion that Tweety 
can fly, but Ihe rule which led to that conclusion. In our 
formulation we want to deactivate not the arc 

Tweety % flyers 
(.9 .02) 

but the rule corresponding to 

birds *% flyers 
(.9 .02) 

(8) 

itself. In order to see how to do this, we need first t.o 
describe the rule (8) in greater detail. 
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We will think of a rule as a triple (cz c p) where 
a is a list of antecedents, c is a consequent, and p is a 
probability interval. The intention is that if all of the 
antecedents are satisfied, then the consequent holds with 
probability range p. An example will probably provide 
the best clarification: The rule “if z is a bird, then z can 
fly” will be represented as 

(((isa x birds)) 

(isa 5 flyers){.9 .OZ)). (9) 

The antecedent list consists of the single arc (isa x birds). 
The consequent is (isa x flyers), with confidence (.9 .02). 

The rule itself is activated at the same level as the 
antecedent (for multiple antecedents, a product should 
be used). Thus if the value of (isa x birds) is (CL b), the 
ensuing increment to (isa x flyers) will be (.9a .02a). 

Returning to the ostrich case, we have the rules 

(( (isa x ostriches)) 

(isa x flyers)(O 1)) 

(( (isa x ostriches)) 

(rule ((isa x birds)) ( isa 2 flyers) (.9 .02))(0 1)). 

PW 
The first of these simply repeats the rule that ostriches 
cannot fly. The second, however, deactivates the rule (9) 
itself. If the rule has been applied, the reversability of 
Dempster’s rule ensures that the conclusions will remain 
accurate; if the rule has not been applied, WC will be saved 
the work of doing so. 

In the example we have been considering, the cer- 
tainty of the rule that ostriches do not fly guarantees 
that we will reach the same conclusion whether or not 
we apply (9) t o an ostrich. But consider the following 
example: 

Newspaper articles are true. (.9 .05) (114 
Articles in the National Enquirer are true. (.5 .4) 

W) 

If I read something in the Nat,ionnl Enquirer, both rules 
can be applied and I will believe the story to be true with 
probablity interval (.92 .07). Here we really do need a 
rule such as (lob) that ensures that (11~) will not be 
applied when (llb) can be. 

Better still would be the metarule, “Never apply a 
rule to a set when there is a corresponding rule which can 
bc applied to a subset.” WC could write this as 

(((isa x y) 

(rule (a (isa z x) b) c d)) 

(rule (u (isa z y) 6) c e)(O 1)). 
(12) 

As a special case, we have 

(( (isa Enquirer-article newspaper-article) 

(rule ((isa x Enquirer-article)) (accurate z) (.5 .4))) 

(rule ((isa x newspaper-article)) (accurate 2) (.9 .05)) 

(0 1)). 
(12’) 

Now suppose we read an article in the National Enquirer. 
Rules (11~) and (llb) are activated, with (116) activating 
the metarule (12) and therefore deactivating (11~). The 
article is now believed to be true with confidence (.5 .4). 

Equally important is what happens if we later read 
the same article in the New York Times. Now rule (11~) 
alone is applied and the article is believed to be true, 
corroborated to some extent by the Enquirer appearance. 

IV PROBABILITIES FOR RULES 

The power of the methods we have described poten- 
tially extends well beyond the examples we have given 
thus far. The best interpretation of a metarule such as 
(12), for example, is probably as a way to assign a proba- 
bility range to a rule itself. Thus in applying a rule with 
probability range (a b), we should weight its conclusion 
by 6 before updating any other probabilities, since b is the 
maximum extent to which the rule may be applicable. 

Implementation of this idea will require us to main- 
tain a list of rules which have been either used or acti- 
v&ted by other rules. There are thrne advantages to this. 
Firstly, it enables us to avoid reapplying a single rule 
without obtaining new information. Since Dcmpster’s 
rule assumes independence of the probability estimates 
being combined, multiple used of a single rule need to be 
avoided. 

Secondly, this approach enables us to purtiully de- 
activate a rule. Returning to our newspaper example, 
pcrlmps all wc should say is that the rule (11~) is not as 
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(rule ((isa 5 IlcwsI)aI)er-n~t,iclc)) (accurate x)( .9 .05)) 

(0 4. 
(13) 

If we use this rule instead of (1 I b)----note that (12’) now 
d i~~nppcars -- an article in tllc Natioin~l Enqllircr will be 
believed to be true with probability range (.54 .03). 

Bote also that the commutativity and invertability 
of Dempster’s rule mean that we need not apply (13) be- 
fore (1 la) in order to obtain this result--provided that 
we store the information that we Izave used (1 la), we 
will have no difficulty reversing the inference after a sub- 
sequent invocation of (13). 

A final (but currently unexplored) advantage of this 
approach is that it may allow us to focus the attention of 
the system. For a rule which has probability range (u b), 
we can think of u as the extent to which the rule is likely 
to be nscflrl. To focus attention on the fact that birds fly, 
we might have 

(((isa x birds)) 

(rule ((isa x birds)) ( isa x flyers) (.9 .02))( .5 0)). 

(14) 
(Such a rule will itself need a high level of activation to 
be of any use). If we are maintaining a list of rules and 
the levels with which they are expected to be useful, a 
rule such as (14) can be used to ensure, for any forward- 
chaining system, that the inference that any given bird 
can probably fly will be drawn early. 

More generally, we can translate, “n7hen considering 
an element of a group, think about properties which are 
unique to that group,” into the metarule 

(((isa x y) 

(isa 2 y)) (15) 
(rule ((isa x y)) ( isa x z) a) (-5 0)). 

If birds were the only flyers, so that flyers % birds had 
truth value (1 0)’ this would reproduce (14)) with y = 
birds and z = flyers. As it stands, the result of applying 
(15) to birds and flyers will be somewhat weaker. 

‘l‘he assignnicnt of conlidcnrc rah:;es to arcs in se- 
mantic. nets sccn~s to solve sonic of’ the pi-oblcnls which 
would otjherwisc 11~: c~;countcrcrl ire dealing n-ill1 them. 
Non-monotonic infcrcnccs can be described easily, and 
mesh neatly with their monotonic counterparts. 

Further power can be obtainctl by allowing the rules 
thcmsclves to be treat t:d as arcs, both by including them 
within other rules and by assigning them probabilistic 
weights of their own. Reasoning about reasoning can be 
discussed, and attention can be focussed. This framework 
seems to be a promising one in which to describe general 
knowledge of the type WC have been examining. 
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