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“Hard problems” can be hard because they are 
computationally intractable. or because they are 
underconstrained. Here we describe candidate generation for 
digital devrces with state, a fault localization problem that is 
intractable when the devices are described at low levels of 
abstraction, and is underconstrained when described at 
higher levels of abstraction. Previous v;ork [l] has shown that 
a fault in a combinatorial digital circuit can be localized using 
a constraint-based representation of structure and behavior. 
ln this paper we (1) extend this represerltation to model a 
circuit with state by choosrng a time granularity and 
vocabulary of signals appropriate to that circuit; (2) 
demonstrate that the same candidate generation procedure 
that works for combinatorial circuits becomes indiscriminate 
when applied to a state circuit modeled in that extended 
representationL(3) show how the common technique of single- 
stepping can be viewed as a divide-and-conquer approach to 
overcoming that lack of constraint; and (4) illustrate how using 
structural de?ail can help to make the candidate generator 
discriminating once again, but only at great cost. 

Int reduction 

Faults in combinatorial digital circuits can be localized 
using a constraint-based representation of structure and 
behavior. This fault locatizatlon procedure. c;irldtdate 
generar~on. IS revtewed below. The procedure IS general and 
should apply to circuits with state: we have extended the 
constraint-based representation to include these devices. A 
key feature of the extended representation is the use of layers 
of temporal granularities. In this paper we show a simple 
example of such a multllayered descrtption. 

But. having extended the representation. we show that the 
same diagnostrc procedure that works weil for combinatonal 
circuits becomes Indiscriminate when applied to state circuits. 
lnturtlon tells us that circuits with state are more difficult to 
diagnose than combinatorial ones: we show that this intuition 
is correct by presenting a computatlonal view of the candidate 
generation process. Intuition also tells us that single-stepping 
a circuit is a good way to localize faults: this intuition too turns 
out to have firm computational grounds. Finally, we show that 
knowledge about the substructure of a device can provide 
considerable additional discriminatory power. 
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Candidate Generation 

Given a device exhibiting faulty behavior. we wish to 
determine which of its subcomponents could be responsible 
for the misbehavior. We call these components c;lnd/dale.s. 
The most effective diagnoses are those which propose the 
fewest alternative candidates. in which the candidates 
represent the least complex hardware. and in which the 
candidates’ hypothesized mlsbehaviors are most specific. 

We represent each component of a circuit as a module [3]. 
Modules have substructure. composed of modules connected 
by wires. The primitive modules of the system are logic gates. 
The behavior of each module can be expressed as a 
constraint [-I, 51 on the values at Its terminals. The constraint 
is itself composed of a set of rules spanning the device. For 
example. the behavior of a two-input NAND-gate can be 
described as a constraint composed of the following rules: 

If both irlputs are 1, the output must be 0. 
If one input is 0, the output must be 1. 
If the output is 0. both inputs must be 1. 
If the output is 1 & one input is 1, other input is 0. 

For the sake of simplicity in this discussion, we assume that 
faults occur only in modules. This allows us to ignore some 
uninteresting details without affecting the essential nature of 
candidate generation. The process is best understood by 
considering a simple example. Figure 1 shows a 
combinatorial circuit that computes F = AC + BD and 
G = ED + CE. with inputs 3, 3. 1, 1, and 3. The modules’ 
behavioral constraints tell us that if all the modules are 
working, we can expect the outputs at F and G to be 6 and 6. 
Imagine. however, that we observe the outputs in the actual 
device to be 5 and 6. Which components could be 
responsible for this discrepancy? 

We find the potential candidates by tracing backward from 
the discre;oant output F. All modules that contnbuted to that 
output are potential candidates: in this case. MULT-1, MULT-2, 

and ADD.I. To find out which of those potential candidates 
can account for all the behavior observed. we consider each 
one in turn. suspending Its constraint [2], and asking whether 
the resulting.network is now consistent with the inputs and 
observations. 

The same procedure works under weaker assumptions, 

two points of failure we suspend pairs of constraints. 

e.g. 
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In this example we find that MULT-2 is not a consistent 
candidate. Suspending its constraint leads to a contradiction: 
the inputs at A-E and the observations at F and G are 

InconsIstent with correct behavior of the remaining four 
modules. MULT-I IS. however. a conslstent candrdate: it could 
have misbehaved by havirly 3 and 1 as Inputs and 2 as its 
output. ADD. I IS also a consrstent candidate: It could have had 
a 3 and a 3 as Inputs and a 5 as Its output. 

Having deduced these possible misbehaviors for ADD-I and 
MULT- 1. we can In ?ffect construct a new behavror for each 
candidate. This Iriforrnat:cn IS importclnt: it says not only 
cvneiher the module could be falling. but If 11 IS. ho~v It’s falling. 
Each new test then supplles addrtronal informatton about the 
module’s (mis)behavlor. in effect building up a truth table 
showing how the module must be (mis)bchaving. 

Representation of Circuits with State 

We have seen that the behavior of purely combinatorial 
devices can be modeled in a natural way using constraints. 
We model devices with state by extc?ndIng our representation 
to include constralnts that span time. To do this. we also need 
to extend our description of slgnats from single numbers to 
sequences of (val~c-.://~e) pairs. with each pair denoting the 
signal’s value at an Instant. The beh;ivior of a flipflop is then 
described as: 

If the clock input is 0 at time t- 1 and 1 at time t 
Then output Q at time f + I equals D at time t 
Else output Q at time t + I equals a at time t. 

Since a hierarchic representation of time is as useful as a 
hierarchic representation of structure. we describe the 
hehavror of modules using several different granularities of 
time. The most basic unit of time is the switching time of a 
gate. Other. coarser, units are less obvious and one of the 
difficulties we encounter lies in choosrng the appropriate 
levels of temporal abstraction. One of the secondary 
contributions of this paper is its attempt to define a number of 
levels that appear to be both useful and intuitive in the current 
domain. 

With a hierarchic representation of time. the behavior of a 
module can be described at several different levels of 
abstraction. For example, at the finest level of detail, a NOR 
gate can be modelled as having a unit delay. This would be a 
appropriate in an asynchronous feedback circuit, since the 
delay is important in understanding the behavior of the circuit. 

But a NOR gate in the combinatorial part of a properly 
designed clocked circuit can be modelled as having no delay; 
indeed, a “properly designed” clocked circuit is one in which 
the clock period IS longer than the maximum delay to 
quiescence of any combinatoriat component. 

Similarly, it is appropriate in some contexts to model a JK 
flip-flop as imposing a unit delay between its data inputs and 
its outputs: it may also be necessary to model its behavior at 
the gate-delay level. in which case the delay between the J 
and K Inputs and the outputs may be 4 or more units. We 
maintain alternative descriptions for the same type of device, 
as well as explicit mappings between those descriptions at 
different granularities. 

Different granularities of time also lead us to make use of 
symbolic values for signals in cases where transitions, rather 
than quiescent values, are important. For example, the clock 
input of a rising-edqe-triggered flipflop is described using the 
values 0 and + P, where + P denotes a rising edge followed by 

a falling edge. This abstraction allows us to describe the 
flipflop‘s behavior in part as: 

the clock input is +P at time 1, 
Then output a at time r + 7 is same as D at time t. 

A more complex example is shown in Fiyure 2. which shows 
a two bit register “TLIR” that clears itself whenever l’s are 

clocked into both Its flipflops. Figure 3 shows. at three 
different time granularities. TBR’S response to a series of 
changes on its inputs. We describe the behavior of this device 
at these multiple levels. to show how behavior at fine temporal 
granularities maps onto behavior at coarser granularities. 

Figure 3a shows the changes on TBR’S signals at the lowest 
time granularity, using delay of a gate as the basic unit (the 
small trek marks on the time axis). To represent behavior at 
this level. we use the flipflop behavior description given above 
and a description for the AND gate that imposes a unit delay 
between the Inputs and outputs: 

If both inputs are 1 at time t, output is 1 at time f t 1. 
If an input is 0 at t, the output must be 0 at t + 1. 
If the output is 1 at t, both inputs must be 1 at f-7. 
If the output is 0 at t and an input is 1 ai t-7, 

the other input is 0 at t- 1. 

At this lowest level. every transition on signals in TER is 

visible; this is a fairly contmuous view of the device’s behavior. 

Figure 3b shows the behavior at the next coarsest level, 
showing the values of all signals only at the instants of 
possible clock transitions (the large tick marks on the time 
axts). The values of DO, Dl. and Ql have been sampled at 
those points, producing the values at the next level. Here the 
basic unrt is the cycle time of the clock and the internal CLR 

signal has become mtislble. This yields the external behavior 
of the device, described as: 

If CLK is +-P at time t, 
Then QI at time t r 7 is AND(oi at t,NOT(oo at t)) 
Else QI at time t + 7 is ai at time 1. 

There are two key features to this mapping between levels. 
First, the lonrjest delay until quiescence at the finer level 
determines ho!v many fine-grain units correspond to one 
coarse-grain unrt. In this example, 5 units at the finer level 
maps onto a unit delay at the coarser level. because the 
behavior of the device normally requires at most 5 of the fine 
units to reach quiescence. 

Second, events whose duration is shorter than the current 
level of granularity are not represented. In this example the 
duration of the momentary “1” value of 01 after the second 

clock transitton is not represented at the coarser level. 
because It falls entirely L~lihln one unit of time at that level. and 
hence IS never “seen”. 

Figure 3c shows the behavior at the coarsest level of 
granularity. representing TBH’S external signals only at those 
Instants when the cloth makes a positive-going transition. 
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This hrdt?s the details of the CLK signal: we can see the 
changes that occur when thy clock makes Its transItIon. but 
have no Idea of how long It IS between transltlons. We 
represent this behavior as: 

QI at time t •f 7 is the AND of DI at I and NOT(DO at t)). 

Candidate Generation Applied to A 
Circuit With State 

We can combine the candidate generation technique 
reviewed above IwIth this reprcsentatlon of circuits with state 
as a first step in dragnosing those circuits. 

Consider for example a J-btt sequential multlplier MULT 

shown in Figure 4. MULT has P.-Jo Input registers A and B, and 
an B-bit accumulator register Q When the lrJ!T signal is high, 
the A and B inputs are loaded into the A and B registers and 
the a register IS cleared. On each clock pulse. the A register 
shifts down, the B register shifts up. and the Q register 
accumulates the product. After four clock cycles the Q 
register contains the product A ‘6. 

If we load the inputs 6 and 9 into the A and B registers on 
the first clock cycle, we expect to see 54 in register Q four 
clock cycles later. Suppose. however. we observe 58. We 
want to find out which components could have failed in such a 
way as to produce this symptom. 

To illustrate how constraint suspension can be used to find 
the consistent candidates in the circuit, we use a standard 
technique of replicating the multiplier over five clock cycles 
(as in Figure 5), producing a snapshot of the circuit behavior 
at each cycle. The ovals in the diagram represent signal 
values. Each signal is replicated five times in the diagram: 
each of these ovals represents the value of the signal at each 
of five clock pulses. The snapshots are linked by connections 
that suggest the transmission of register values from one time 
period to the next. The diagram shows that we expect the 
successive values of Q to be 0, 0. 18. 54. and 54. The CLK 

signal is implicit, just as in the layered temporal representation 
described above. The INIT signal is not shown for simplicity’s 
sake; it makes no contribution to the following analysis. 

Suppose we observe only the final contents of a, which is 
58 instead of the expected 5-I. Tracing back from the 
expected value of Q. we find that all five components of MULT 
were supposed to contrlbute to that output. Thus all five 
components are potential candidates. To check whether 
these modules are consistent candidates under the single 
point of failure assumption, we suspend each of their 
behaviors in turn, by removing the constraint that each 
component imposes in all time sttces, and check to see 
whether its removal is consistent with the incorrect output. 
Doing this, we find that register A is not a consistent 
candidate, since there is no sequence of l’s and O’s that we 
can asstgn to the least significant bit of register A that could 
explain the result of 58. 

But all four of the other devices are consistent candidates. 
Worse. we are not able to deduce any speclflc misbehavior for 
them. The reason for this can be seen by looking at the 
constraint graph In Figure 5. If we know only the inputs at the 
top and the single output at the bottom then suspending the 
constraint for the drover or the adder &connects the graph 

and the inputs become irrelevant. Suspending the B register 
constraint leaves an almost-disconnected graph. In this case 
the values of the E? register at I? and 13 can be any pair that 
sums to 58. 

The candidate generator has become indiscriminate: four 
of five modules in the multipller are candidates. This is 
significant. because this example is not a pathological one, 
The problem is intrinsic to devices with state: hypothesizing a 
failure in a part means renlot’/rrg constrainfs in many 
time-.s//ces. This in turn tends to leave large gaps in which it is 
lmposslble to deduce what actually happened. 

Intuition tells us that circuits with state are hard to diagnose; 
this intuition now has firm computational ground: circuits with 
state are hard to diagnose in part because the problem is often 
inherently underconstrained. 

Introducing More Visibility 

lntultion also tells us that single-stepping state clrcults and 
observing the IntermedIate results vastly reduces the problem. 
LZle can now see why. 

Suppose we are able to cbserve the contents of Q at each of 
the five clock cycles. and we observe that It contains 0. 1. 20. 
57 and 58 Instead of 0. 0. 18. 5-t and 5-1 3s expected. This 
provides two important sources of poj.ver. First. we have in 
each slice a strictly combmatorlal device. Since the 
subproblem of generatlng candidates in comblnatorlal circuits 
is typically sufficiently constrained. we expect to generate a 
more restricted set of candlaates in each slice. Second. we 
have four t/O pairs. HI effect four tests of the device. Since we 
are assuming a single point of failure. to be a candidate a 
component must be consistent with the observations in all four 
slices. This too will help to restrict the number of candidates 
generated. 

If we examine Figure 4, we find discrepancies at Q in the 
first through fourth time slices. In each slice we trace 
backwards from Q. yielding four sets of potential candidates. 
We intersect these sets to find the candidates consistent with 
the information in all four slices: the a register. A register, 
adder, and driver. The B register was eliminated from 
consideration because its misbehavior could not explain the 
discrepant output of Q at 12. Having determined the potential 
candidates by tracing back from discrepancies and enforcing 
consistency across time slices. we now determine which of 
these mcdules is consistent with the observations. 

l As before. register A is not a consistent candidate. 
(There is no set of assignments to its least 
significant bit over four time slices that yields the 
observed contents of Q ?vhen the B input is 9 and 
all other constraints are operating.) 

l The driver is a consistent candidate, its 
misbehavior can be partially described by the 
following truth table: 

CTL IN I OUT 
0 I 1 (should be 0) 
1 f8 1 19 (should be 18) 
1 36 1 37 (should be36) 
0 72 1 1 (should be 0) 

Table 1: Truth Table of Misbehaving Driver 



l The adder is a consistent candidate. (Note that 
removing its constraint in all four time slices 
completely disconnects each of the observed 
values from the inputs and frorn each other; for 

enabling the least significant bit ..- is a consistent 
candidate: if this AND gate’s output is always 1 no 
matter what its inputs, we get the observations of 
Table 1. 

this reason a faulty adder would explam arly 
observations.) It has the folIowIng rnlsbehavior: 

INPUT- 1 INPUT-2 IOIJ TPUT 
0 0 I 1 (sllould be 0) 
18 1 1 20 (should be 19) 
36 20 1 57 (should be 56) 
0 57 I 58 (should be 57) 

l The adder i=s composed of eight single-bit adder 
slices. (Figure 8). The least significant slice is a 
consistent candidate: its output. viewed as a 2-bit 
integer. is always 1 greater than it should be. 

The candidate set has now been reduced to only two 
modules: one AND gate in the driver and one bit-slice in the 
adder. Given the symptoms available. and excluding the 

Table 2: Truth Table of Misbehaving Adder 

l The Q register is a consistent candidate. As with 
the adder above. removing its constraint 
disconnects our observations from the inputs, so 
that this device’s failure could explain anything. 
Its truth table is: 

INPUTatf I OUTPUTatt+ 7 
0 I ’ (should be 0) 
19 1 20 (should be 19) 
56 1 57 (should be 56) 
57 1 58 (should be 57) 

Table 3: Truth Table of Misbehaving Q Register 

possibility of internal probes, it is not possible to distinguish 
between the two. 

This result illustrates the power of information about 
substructure in refining candidate generation. both in the 
number of candidates and in their complexity. The single 
point of failure assurnption and single-stepping of state 
circuits, while reducing the possible candidates considerably, 
were still not sufficient to reach a satisfactory diagnosis. 

As a fInal note of the power of thts approach. note that the 
flrlal candldate set was reached ~VC/I w/tl~vul ns,cu~~~~rq ~haf 
ttJt2 fnuit w;1s nO~J,/lter/,l,~te/Jt. The nonlnt?rrnlttency 
assiinijltlon says that the faulty module IS falling consistently, 
i.e. given the same Inputs. it produces the same (Incorrect) 
output. In our terms this amounts to insisting that the 
behrtvlors deduced for a candtdate be conststent across all 
If!e time slices. 1.e.. the tables IIke those shown In the previous 
sectlon have to be self-consistent. 

We were able to rule out many of the potential candidates 
using a weaker form of consistency Implied by the single point 
of failure assumption: we requrred only that sonle behavior of 

We have gained important information in the form of truth 
tables that describe how each candidate could have failed so 
as to produce the observed symptoms. Still. even with 
complete visibility of the outputs, under a strong set of 
assumptions. we are unable to distinguish among 3 of the 5 
components of this device. We need yet more information. 

Hierarchic Diagnosis 

The only remaining source of Information is the 
substructure of the candidates. We can use this information 
by zpplytny the candIdate yeneratlon procedure to each of the 
remaining consistent candidates. Note that we take this step 
with some reluctance, from 3 pract1031 point of vfe1.v. using 
structural Information IS expensive because the number of 
potential and consrstent candIda& tends to increase 
dramatlcally. even though the complexity of the lndlvidual 
candidates decreases. 

l The a register is built from eight D-flipflops The tenlporal abstraction described and used here is 

sharing their clock and clear inputs (Figure 6). llmlted: short events are invlslble at higher levels of 

We use the behavior deduced for Q and map down abstraction yt’t often hnrdv/arc failures involve short events. 

from our coarse-grained temporal view to the next Consider for example a gate VJhIch Ii& fal!ed by slo!.ving 

level of ternporal detail. at which the clock signal down. rather thin f;lllln<j altogether Thrs :vIIJ cause Incorrect 

is visible. Applying candidate generation to 0. we results only ivhen this stovi’riezs c‘~uses some sqnal to be 
find that there is no single flipflop whose failure sampled too soon bsfor? It h 1 ‘s 3 chance to change to its 
could explain the observed misbehavior of Q. correct value. If this nllsbehavlor IS obstzrved at a coarse 
That is. there is no single flipflop whose failure temporal granularity. it ina; appear to be Intermittent. Any 
could produce the symptoms shown in Table level or kind of abstraction. in fact. falls prey to faults that It 
3#(The discrepancies rn Q occurred in the three can represent. but not derive: a coarse gralned model of time 
low-order bits. Each of these discrepancies can represent hazards and races as rntermlttent faults. but it 
results in a set of potential candidates. 
intersection of these sets is null.) 

But the 

l The driver is composed of eight AND gates 
sharing a control input (Figure 7). Proceeding as 
above, we find that one AND gate --- the one 

each candidate be able to account for the dlscrepancles in all 
the tlrne slices. It might. for example. have been the case that 
the adder could be a candldate only if it added 0 and 0 to get 1 
in time slice 1. and added 0 and 0 to get 0 in time slice 4. Even 
with this weaker form of consistency. we were able to 
constrain the candidates we generated simply because they 
could not account for the discrepancies in all four tirne slices 
under any behavior, intermittent or not. 

Limitations and Future Work 

can t distinquish betLS!een devices that have slowed down and 
ones that are genuIneI\ unpredictable. This fact puts a 
premium on careful deflnltlon of the m apptngs between layers 
of temporal granularities. On5 goal of this research is to 
further Investigate the nature of hierarchic diagnosis 
these temporal hierarchies in addition to structural ones. 

using 
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Conclusion 

Combinatorial circuits can be modeled in a natural way 
using constraints and this reprcsentatlon can be used for 
generating candidate components. Circuits with state can 
also be modeled by constrnlnts if the representation is 
extended to use mtrltlple levels of time granularity. Intuition 
tells us that clrcutts with sta., +Q are more dlfftcult to diagnose 
than combtnatorlal ones. and we have shovln a computational 
reason for this: when /es than complete state v~srb~trty is 
ava,/ab/e. candfdate generatIon IS /nherenrly underconstrained 
and therefore /ndrscr/minnfe. lntultlon also tells us that single- 
stepping a suspect state clrcult is a good way to localize 
faults: we showed that this intuition too turns out to have firm 
computatlonal grounds: single stepping allows us to view the 
problem as a more constrained problem. that of diagnosing a 
combinatorial circuit. FInally. by using InformatIon about 
devices’ internal structure and vlewmg devices at a fine 
temporal granularity, specific diagnoses can be obtained even 
for devices with state. 
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Figure 1: Combina?orial Circuit Example 
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Figure 2: Self-clearing Two-bit Register 
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Figure 3: a,b,c: Multilevel Timing Diagrams for Device TBR 
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Figure 4: Sequential Multiplier with 8-bit Result Register 
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Figure 5: Multiplier Behavicr Viewed Over Five Clock Cycles 
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Figure 6: Eight-Bit Q Register 
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Figure 7: Eigllt-Bit Driver 

Figure 8: Eight-Bit Adder 
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