
META-LEVEL CONTROL THROUGH
FAULT DETECTION AND DIAGNOSIS

Eva Hudlicka and Victor R. Lesser
Department of Computer and Information science

university of Ma!BachuMts
Amherst, Massachusetts, 01003

ABSlTtACT

Control strategies in most compla p&lem-s0lving
systems, though highly parameter&d, are not adaptive to
the characteristics of the particular task being solved. If
the characteristics of the task are atypical, a fiied control
strategy may cause incorrect or inefficient mg. We
present an approach for adapting the control strategy by
introducing a meta-level control component into the
problem-solving architecture. This meta-level control
component is based on the paradigm of Fault
Detection/Diagnosis. Our presentation will concentrate on
modeling the problem-solving system and on the inference
techniques necessary to use this model for diagnosis. We
feel that meta-level control based on the Fault
Detection/Diagnosis paradigm represents a new approach
to introducing more sophisticated control into a problem-
solving system.

I INTRODUCTION

This paper explores the use of meta-level control in
a problem-solving system to adaptively change the
system’s control parameters in order to make problem
solving more robust and efficient. In many complex
problem-solving systems the control strategies are highly
parameterized. These parameters antrol decisions such as:

1. what importance to attach to information
generated by different sources of knowledge;

2. what type of search to perform (e.g., breadth
vs. depth first; data vs. goal directed);

3. what type of predictions to generate from
partial results;

4. what criteria to use to @dge whether a
solution is acceptable.

These parameter settings, which are often determined in
an ad hoc manner, are based on typical characteristics of
the tasks being posed to the problem-solving system and
the characteristics of the problem-solving system itself.
Even though such a parameterization makes it relatively
easy to change control strategies, the system is rarely
allowed to change its own control parameters as the task
or system characteristics change during p-g. Thus,

This research was sponsored, in part, by the National !kiencc
Foundation under Grant Mw and by the Defense
Advanced Research Projects Agency (DOD, monitored by the
Office of Naval Research under Contract N k 049441.

if the characteristics of a particular task are atypical or
the system characteristics* change during execution, the
resulting incorrect parameter settings may cause
inefficient or incorrect processing.

Our approach to adapting these problem solving
control parameters is to introduce a meta-level control
component into the problem-solving system architecture,
based on an extension of the Fault **Detection/Diagnosis
(FDD) paradigm [4, 51 to handle problem-solving control
errors resulting from inappropriate parameter settings.
The FDD system has three components: the Fault
Detection module, the Fault Diagnosis module, and the
Strategy Replanning module. See Figure 1 for a diagram
of the system architecture. The Fault Detection module
monitors the state of problem solving in order to detect
when the problem-solving system’s behavior deviates from
the expected behavior. The criteria for expected behavior
are based on standards for acceptable problem solving
performance and internal consistency in the problem-
solving system data base. Examples of detection criteria
are:

1. a large number of highly rated proces&g goals
not being achieved;

2. tasks on the problem solving agenda being too
low rated or the agenda being empty;

3. low credibility of intermediate results or
contradictory information being generated; I

4. results not being produced in a timely fashion
or no results being produced for problems
where a solution is expected.

If such a situation is encountered by the Fault Detection
module, the Fault Diagnosis module is invoked to
analyze why the situation occurred. The Diagnosis
module, using a detailed model of the problem-solving
system and the current state of problem solving,
determines which control parameter settings were
responsible for reaching the undesirable situation. A
Strategy Replanning module is then invoked to adjust the
parameters so that appropriate problem solving activities
are performed.

l Previous work has examined this approach in a distributed
problem-solving environment where it is likeIy for pocessn
communication channels, and sensors to be faulty [9]. ’

M We use the term fault in a very liberal sense to i.ncIude
inappropriate parameter values.

153

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

MET&LEVEL

COmROL

D&ii pmba of uatc Abnraacd uatc of New &tnctcl uttinpr
of problem 5olving problem wkiag

Y

>
PROBLEM SOLVING SYSTEM

Figure 1: System Archlteeture.

This approach to meta-level control, which involves
adapting the control strategies, is a generalization and
extension of earlier work by Hayes-Roth and Lesser on
policy knowledge sources for Hearsay-II [8], the
Hayes-Roths multi-level control structure for planning ml,
and Wilensky’s work on meta-level control [l3]. It is,
however, much different in character and emphasis from
the work on meta-level control by Davis [3], Genesereth
and Smith [6], and B. Smith [l2]. Though the general
frameworks they posit for meta-level control can be used
to build the type of meta-level control proposed here,
their emphasis is different. Their work is oriented more
towards how to layer control knowledge within a single
uniform inference framework to accomplish each control
decision rather than the type of knowfedge and inference
required to introspect about the behavior and the
performance of the system. It is this latter orientation
which will be the focus of the remainder of this paper.

We will illustrate the use of our approach to
adaptive control by examining the knowledge and
inference structure necessary to implement the Fault
Diagnosis module for a problem-solving system based on a
goal-directed Hearsay-II architecture, the Vehicle
Monitoring Testbed (VMT) [ll]. The task of this system
is to interpret acoustic signals produced by vehicles
moving through a twodimensional area and generate a
map of the environment, indicating what types of vehicles
there are and what paths they took. Section II
describes how we model the VMT system structure and
function. Section III illustrates by way of example how
this model is used by the Diagnosis module of the FDD
system to diagnose a faulty parameter setting. Section IV
describes the status of the system and directions for
future research.

II MODELING A PROBLEMSOLVING SYSTEM

This section describes our model of the Vehicle
Monitoring Testbed (VMT) problem-solving system and
explains how this model can be used to understand why
the system arrived at a particular state. The VMT
system derives its results from the input data (see Figure
2a) by incrementally constructing and aggregating
intermediate level hypotheses until hypotheses that
represent a complete map of the environment are
generated. As part of the processing of the system, the
creation of an intermediate hypothesis causes the
generation of several types of goals. These goals are
descriptions of the classes of higher level hypotheses that
can potentially be generated given the existence of the
newly created hypothesis [2]. Once a goal has been
generated, the system attempts to satisfy the goal by
scheduling and executing knowledge sources to produce
the higher level hypotheses. This is the basic system
cvcle.
LOW-HYP-CREATED KSI-SCHEDULED

HIGHER-HYPCREA’IED

\ \/\
PART B: THE AB.Sl-RACTED OBJECT MODEL

HYPOTHESES ->

gcamtc upcctatiw5

DATA BLACKBOARD GOAL BLACKBOARD
aI QUEUES

PART A: PROCESSING Sl-RUcTuRE OF THE VMT SYSTEM

plgorc 2: Moaellng the VMT Prohlemsolvtng System.

This figure illustrales the state

transition/abstracted object model C# the VMT
system, a high level view 4 the system
Structure, and the relmhip among them.

154

The system behavior thus consists of a series of
events. Each event results in the creation of an object
(e.g., hypothesis, goal, or knowledge source instantiation) .
or the modification of the attributes of some existing
objects. We can represent the system behavior by
specifying either the events or the changes these events
cause in the system in terms of their effects on the
attributes of the system objects. We chose the latter as
the basis for our representation and model the problem-
solving system behavior by a state transition diagram (see
Figure 2c). Each state represents a specific state of some
object in the VMT system in terms of its attribute values.
Each state is specified by a schema, which contains finks
to other states in the model (such as states prececding it
and following it), pointers to the descriptions of the
system objects the state refers to (these descriptions of the
VMT objects are called abstracted objects; see Figure 2b),
and a constraint expression over the abstracted ob@ts’
attribute values. This constraint expression is evaluated
during diagnosis to determine whether the state has been
reached by the VMT system; i.e., whether there exist
objects in the problem-solving system whose attribute
values satisfy the constraint expression associated with the
state.

For example, the process of generating a hypothesis
at a higher level of abstraction from one at a lower level
of abstraction can be described as follows: the creation of
a lower level hypothesis causes the creation of a goal to
produce a specific result (i.e., the higher level hypothesis)
that incorporates the lower level hypothesis. This causes
the scheduling of a knowledge source instantiation (KU)
which later executes and produces the higher level
hypothesis. In our model this serie!s of events is
represented as the sequence of states: LOW-
HYP-CREATED, GOAGCREATED, KU-SCHEDULED,
KSI-EXECUTES, and HIGHER-HYP-CREATED (see
Figure 2). The state transition arcs, which co~cct the
individual states in the model, represent causal
relationships among the states. In some cases there may
be more than one state transition arc coming in or out
of a given state. For example, in Figure 3, states A, B,
and C precede state D. The model needs to represent
the exact relationship among the four states. If all three
states A, B, and C are necessary before state D can be
reached, then the relationship among the three states
preceding state D is logical AND (Figure 3a). If any
one of the states A, B, or C is sufficient to reach state
D, then the relationship among the three states is logical
OR (Figure 3b).

States are related not only by their causal
connections but also by constraint relationships among the
abstracted objects associated with them. The abstracted
objects are represented as schemas consisting of
attributevalue pairs. (The three parts of Figure 2
illustrate how the State Model and the Abstracted Object
Model and the actual objecfs in the VMT system relate
to one another.) Each object contains information that
allows the system to determine the values for that
object’s attributes using objects whose attribute values are
already known. Constraints among states can then be
specified by states sharing the same object or via the

relationships among the attributes of the objects attached
to the states. For example, each HYP object (see Figure
2b and 2c) has an attribute LEVEL. The relationships
among the LEVEL attributes of the HYP objects
attached to the states LOW-HYP-CREATED and
HIGHER-HYP-CREATED is expressed by the following
sets of constraints. The value of attribute LEVEL of
object HYP attached to state LOW-HYP-CREATED is
obtained by calling the function GET-LOWER-LEVEL
with the value of attribute LEVEL of object HYP
attached to state HIGHER-HYP-CREATED. Conversely,
the value of attribute LEVEL of objxt HYP attached to
state HIGHER-HYP-CREATED is obtained by calling the
function GET-HIGHER-LEVEL with the value of
attribute LEVEL of object HYP attached to state LOW-
HYP-CREATED.

The abstracted objects either point to existing
objects in the VMT system or specify characteristics of
objects that should exist in the system. The ability to
represent not only objects that already exist in the
problem-solving system but also objects whose existence is
nece~~afy in order for the system to achieve a particular
state allows the model to serve as the basis for a high
level simulation of the underlying problem-solving system.
This simulation is accomplished by propagating attribute
values among the interrelated abstracted objects based on
the causal relationship among the states.

In addition to reasoning about system behavior in
terms of sequences of states, we also need to reason
qualitatively about how system object attribute values are
computed from the attribute values of other objxts and
from system control parameters. This requires modeling
some of the internal computations performed by the
problem-solving system. In order to model the
problem-solving system at this level, we use a model
very similar to the one used for modeling the behavior of
the system. In this case, the states represent values of
attributes of the system objects, values of controls
parameters, and values of important intermediate states of
the internal computation. The transition arcs represent
how the value of a state is computed from the values
ass&ated with the states that precede it. We are
currently using a simple causal model in which the arcs
are labelled as either having an increasing or decreasing

PART A: S~arn related by AND PART B: Stata related by OR

FIgure 3: Lqical Rclatlonshlps among States ln the
Model.

155

effect on the value of the state that represents the result
of the computation [l]. Two states are connected by an
increasing arc if an increase in the value of one state
causes an increase in the value of the other state. In
some cases not shown in this paper, we also need to
reason using the exact formula representation of the
computation.

The states in the model can thus represent different
aspects of the underlying VMT system. One of the
attributes in the state schema is the STATE-VALUE
attribute. This attribute can represent one of several
aspects of the problem-solving system. In some cases we
are interested in whether a particular intermediate state
has been reached; i.e., is there an object in the VMT
system that matches the characteristics of the abstracted
object associated with that state. In these cases the
STATE-VALUE is true if the object does exist, and false
otherwise. In other cases we need to reason about the
value of some attribute of a particular object and relate
it to the value of the corresponding attribute of another
object. For example, we need to reason about the
relatively low rating of a hypothesis with respect to
another hypothesis. In these cases the STATE-VALUES
represent the relationships among two or more objects in
the VMT system. The values of the STATE-VALUES
attributes are then low, high, or equivalent.

The model is organized into clusters of states
(Figure 4 illustrates three such clusters). Each cluster

GLHYP-- VX,HYP-m VT-ANSWEX.HYP-EXISTS

, GOALSATISRED stat-

/’ \ \ / PART A: (A Part of the) Answer Dctivrtioa MO&J
\

/ KSI-SCHEDULED HIGHER-HYtiCREATU)

GOAMXEATED / KSI-ExEcurEs

LOW-HYP-CREA~D

/’

I

I

/
PART 6: KS1 Schcduiing Mock4 I

I I
/ I

KSI-SCHEDULED K!x-u<EcurEs

PART C: KS1 Exautiw hfdd
a----

3
duuct Linl:

F’lgun 4: System Behavior Model Clusters.

represents an aspect of the system behavior at some level
of detail. The representation is hierarchical in that only
certain events are represented at any one level of the
hierarchy. For example, the Answer Derivation Mudel
represents only the answer hypotheses and their support
structure in terms of intermediate hypotheses; vehicle
track (VT) preceded by vehicle location (VL) preceded by
group location (GL). It does not represent any of the
knowledge sources scheduled and executed in the process.
This information is represented in clusters at a lower
level of the model hierarchy. Because of this hierarchical
representation two states may be contiguous in one cluster
while in fact a number of other states occur in between
which are represented by a cluster at a lower level of
the model hierarchy. Equivalent states in clusters at
different levels of abstraction are connected via cluster
links. Objects may be shared across the different clusters.
This hierarchical structure allows fast focusing into the
problem area during diagnosis by avoiding detailed
analysis until the part of the model that is relevant has
been identified.

The system model represents a subset of all the
possible system behaviors, which we think is sufficient fo!
detecting and diagnosing a significant number of faults;
We call this model the system behavior model (SBM).
The SBM is used by both the Fault Detection module
and the Fault Diagnosis module. The Detection module
identifies a specific undesirable situation in the monitored
system; i.e., a specific abstracted object along with an
associated state. This state-object pair constitutes the
symptom detected by th e Detection module, which is

passed on to the Diagnosis module. Diagnosis is
accomplished by constructing a representation of the
current system state, constructing a model of how this
state was reached and comparing this with the correct
system behavior as represented by the model. Any points
of departure from this expected behavior are traced to
the states at the lowest level in the SBM. These states
are marked as primitive. A primitive state that is found
to be false during diagnosis constitutes a reportable
failure.

The current system state representation is
constructed using information from the SBM and the
VMT system data structures. The construction begins
with locating the symptom state in the SBM. The
predecessor states of this state are then found, along with
their abstracted objects descriptions. First, the attributes
of these abstracted objects are evaluated, using the
constraint relationships between the existing abstracted
objext and the one being evaluated. once these
attributes have been evaluated, the Diagnosis module
looks for the corresponding objects in the VMT system.
If such objects are found, they are linked to the
abstracted object. Finally, for each abstracted object the
corresponding state is created and the STATE-VALUE

l The system model could be extended to represent the de
level of the VMT system. However we have not found it
==-y to represent the VMT system at such a low level
of detaiI in order to effectively reaso~l abwt iti behavior.

156

attribute is evaluated. Depending on the type of state
and its value, the type of reasoning may now change.
The next paragraph describes the different types of
reasoning.

The underlying mechanism for all the different
types of diagnostic reasoning is bidirectional constraint
propagation, which begins at one or more state-object
pairs in the SBM whose values have already been
determined. This constraint propagation m*es possible
sophisticated diagnostic reasoning. In the next section we
show how the system model supports four different types
of reasoning necessary to diagnose inappropriate parameter
settings:

1. Backward cuusul tracing: given a particular state
and its value the system can go back through
the model and explain, in terms of the model
states, why that state was reached.

2. Comptua!ive reasoning : the system can compare
two different objects and explain why they
were different, in terms of the model states.

3. Unknown value derivation: the system can
determine a value of an unknown state in the
system model by finding the value which is
consistent with the known values of the
surrounding model states.

4. Resoiving inco?uistencies : having found two
inconsistent objects, the Diagnosis module can
decide which one is correct by comparing both
objects to a model of an ideal or expected
objzct.

III AN EXAMPLE OF FAULT DIAGNOSIS

The following example (see Figure 5a) represents a
scenario in the VMT system in which the system is
receiving data from two input sources; sensors, A and B.
The two sensors overlap, so some data are sensed by
both, but because the system is more confident about
sensor B the sensor weight parameters are set such that
the data generated by that source are valued more than
the data generated by sensor A. This results in the
data from sensor B being rated high and the data
produced by sensor A in the same area being rated low.
In the example scenario the supposedly reliable source of
data for the particular task (sensor B) does not in fact
generate reliable data because it is malfunctioning. It is
instead generating very short noise segments that cannot
be incorporated into a single vehicle track. BecaUSe

sensor B’s sensor weight parameter has such a high
value, these short noise segments are very highly rated.
The goal of the diagnosis is to recog&e that sensor B is
malfunctioning and change the sensor weight parameters
so that the systems begins to process data generated by
sensor A.

A vehicle is moving through the monitored area,
from left to right, generating signals at locations 1
through 8 (see Figure 5a). Sensor A sensesall

PART A: Diagram of the signals generated by
the moving vehicle (locations I through 8) and
the sensor layout. The sensors send the sensed

SigMlS to the processing lwde.

NO“r

pm B: After some time. the system ger~ates

a vehicle track (VT) hypothesis connecting
/oca.tiorrr I through 4 sensed 6~ SEIVSOR A. It

also generates several short track scgment~

which are the result of the ~&SC generated b

the faulty SENSOR B.

Figure 5: Faclk sanrrto.
locations but, becuse of the sensor-weight parameter,
locations 5 through 8 are rated low. Sensor B, because
it is malfunctioning, is not sensing the vehicle SigndS
but rather is generating very highly rated noise segments.
The VMT system generates a vehicle track (VT)
hypothesis connecting locations 1 through 4 based on
the strong data from sensor A (see Figure 5b). As a
result of sensor A’s data being weighted low in the area
where SigdS 5 through 8 appear, sensor B
malfunctioning, and sensor BS sensor weight parameter
being high, the knowledge source instantiation (ICSI) that
would extend the partial track to include the location in
time 5 is rated low.’ Because the short segments of
noise generated by sensor B are rated high, they cause

the scheduling of knowlege sources which are highly
rated. The system queue ha- a number of these highly
rated KSIs that delay the execution of the low rated
K!%s which would extend the true vehicle track
hypothesis. As a result, the system spends all its time
forming short segments from the noise signals and the
true vehicle track remains unextended.

b A KS1 rating is a function of, among other things, the input
data.

157

This situation can generate a number of symptoms.
Due to lack of space we will illustrate the diagnosis by
pursuing only one of the symptoms. The symptom we
pursue here is a highly rated goal, VMT-GOAL#l, which
represents the system’s intent to extend the existing
vehicle track hypothesis connecting locations 1 through 4
to include location 5 (see Figure 5b). This goal has
remained unsatisfied for a long time and has therefore
been selected by the Fault Detection module as a
representative symptom. Diagnosis begins with the arrival
of the symptom from the Detection module. A symptom
consists of a stateobject pair; the unachieved state is
GOAL-SATISFIED and the abstracted object is GOAL-
OBJECT, which points to the object VMT-GOAL#l in
the VMT system.

v-r-IIYP-Exlsn VT-HYP-Eixsn GOALSATISFED

\
PART A (A Par-~ of the) Anrwcr Dcrivaticm Mcdcl \

LOW-HYP-CREATED / I

Fii, the SBM cluster that contains the state
GOAL-SATISFIED and its associated abstracted objects
must be located. This is the Answer Derivatbn Model
cluster. The relevant. objects and states in this cluster are
evaluted, using the constraint expressions in the SBM and
the already evaluated attributes of the symptom state and
its object. The values of the states in this cluster can be
either true or false depending on whether objects of the
desired characteristics exist in the VMT system or not.
In this case the state GOAL-SATISFIED is false because
the associated object (VMT-GOAL#l) has not been
satisfied in the VMT system (i.e., there is no vehicle
track hypothesis connecting locations 1 through 5). We
continue backward causal tracing through the SBM model
to the state preceeding the GOALSATISFIED state: the
state VT-HYP-EXISTS and its associated object, VT-HYP.
The attribute values of this object are determined from
the attribute values of the object VMT-GOAL#l using
the constraint relationships described in the previous
section. The state VT-HYP-EXISTS evaluates to false,
since no VT hypothesis of the desired characteristics exists
in the VMT system. The reasoning continues backwards
through the SBM attempting to find the first state that
evaluates to true (i.e., the last point where desired system
behavior stopped). Because a vehicle track can be
formed from a shorter vehicle track or a set of vehicle
locations (VL) the state VT-HYFEXISTS is preceeded
by the states VT-HYP-EXISTS or VCHYP-EXISTS.
The objects associated with these states are VT-HYP and
VL-HYP respectively. Again, we Look for the associated
objects in the VMT system in order to evaluate the
states. In this case the objects are track fragments
containing locations 1 through 5, or the locations 1
through 5 themselves, which could lead to the desired
hypothesis. This brings us to another instantiation of the
state VT-HYP-EXISTS and object VT-HYP, this time
with the hypothesis connecting locations 1 through 4.
E3ecause such a hypothesis does exist in the VMT system,
this state evaluates to true. This is where the
generation of the vehicle track that would satisfy the goal
VMT-GOAL#l stopped. The evaluated model is in Figure
6a.

/
PART B, KS1 Scheduling Model

I
I I

KSI.SCHEDULED Ksr-ExEcuxEs

----- 3
PART C: KS1 ticcuriw Mdd

TRUE STATE

El

FALSE STATE

Figure 6: Evaluated System Model.

At this point we cannot continue reasoning using
the Answer Derivatbn Mudef cluster because it does not
represent the events occurring in between the last true
state (VT-HYP-EXISTS; VT hypothesis connecting
locations 1 through 4) and the first false state (V’I-HYP-
EXISTS; VT hypothesis extending the hypothesis l-4
through location 5). Anytime such a truestate/falsestate
pair is found, we must find the cluster which represents
the states occurring between those two states. The
cluster pointed to by the VT-HYP-EXISTS state is the
KSI Scheduling Model cluster shown in Figure 4b.

We continue determining the types of objects and
evaluating the states. The result is the evaluated model
in Figure 6b. We find another gap in the expected
processing: the KS1 that would produce the desired
hypothesis was scheduled but did not execute. Again,
following the cluster links, we switch to a cluster that
describes in more detail what occurs in between the true
state (KSI-SCHEDULED) and the false state (K!31-
EXECUTE!S). This is the cluster KSI Execution Modcf in
Figure 4c. We eventually arrive the state KSI-RATED-
MAX. This state represents the fact that a KS1 must be

“The state VT-HYPEXBTS represents aU track h
!I-

h-up
to sqne fixed track length. Therefore it is a re exive state,

*Comparative reasoning contains many complexities which we

poixihg back to itself.
cannot go into in tls paper.
of the types of re awning

For more detailed descriptien
mentioned in this paper set [lOl

158

rated the highest of all the KsIs on the queue in order
to execute. This state is false since the KS1 that could
extend the l-4 VT hypothesis is rated low with respect to
the other KSIs on the queue. The evaluated model is in
Figure 6c.

The state KSI-RATED-MAX is a different type of
state. Unlike the states mentioned so far, which
represent the existence of some object in the VMT
system, the state KSI-RATEIMfAX represents a
relationship among a group of objects; in this case, the
relationship among the knowledge source instantiations on
the scheduling queue. Whenever this type of a state is
reached, the system switches to compurative remming.*
This involves comparing some attributes of two objects in
the system: one that achieved a desired state (in this
case, the KS1 that is maximally rated) and one that did
not (in this case the low rated KS1 that would extend
the VT hypothesis 14 to include location 5). The
system builds a model of how those objects were created
and attempts to discover what differences along the object
creation paths were responsible for the different
outcomes. Two slots in the state schema are important
here: the ACTUALVALUE! slot, which repraents the
value of the attribute of interest, and the RELATIVE-
VALUE slot, which represents the relationship among
the ACTUAL-VALUES of the two objects in the parallel
investigation. In this type of reasoning the states do not
represent the existence or non-existence of some ob+t
but rather the relationship among the values of a
particular attribute of some object (for example the
rating of a knowledge source or a hypothesis) as
compared to the corresponding attribute of the other
object in the parallel investigation. In this case the
relevant attribute is the RATING attribute of the KS1
object. The two objects being investigated here are the
two KSIs (the low rated KS1 to create a hypothtsis
connecting locations 1 through 5 and the KS1 which is
rated the highest on the scheduling queue). We
investigate, in parallel, how the ratings of the two KSIs
were derived in an attempt to identify what caused the
lower rating of the KS1 that would extend the 14 track.

We first switch to a cluster where the attribute of
interest (IN-RATING) is represented by a state. This
is the KS1 and Hy~hesis Rating Model in Figure 7.
Because we are investigating two objezts we must
instantiate two copies of this cluster. One copy wilI
represent the creation of the low rated KS1 that would
extend the VT hypothesis through location five (we will
call this the low hi path). The other will represent the
creation of the highest rated KS1 on the queue (we will
call this the high ksi path). We begin with the state
KSI-RATING. Because the rating of the KS1 of interest
is lower than the highest rated KS1 we assign the value
low to the RELATIVE-VALUE attribute of the state
representing the relationship among the two values. We
go back through the SBM and find that what
determines a KS1 rating is the DATA-COMPOlUENT-
RATING of the ICSI. We compare the data components
of the two KSIs and again find that the DATA-
COMPONENT-RATING of the low-rated KS1 is lower

than the corresponding DATA-COMPONENT’-RATING of
the high-rated KSI. We continue evaluating the model
for the derivation of the KS1 rating for both K.SIs, via
the KS1 data components at various levels of abstraction
(vehicle location, VL, preceeded by group location, GL,
preceeded by signal location, SL) arriving finally at a
point that represents how the sensor weights and the
strength of the data signal determine the value of the
sensed signal for each sensor.

Because the signal location rating on the low Rsi
path is lower than the signal location rating on the high
ksi path, the value of the state SL-HYP-RATING for
the low-rated KS1 is low. We reason that in order for
this value to be lower than the corresponding value in
the high ksi path, the two .objects that influence this value
(sensed-value by sensor A and sensed-value by sensor B)
must be rated lower than the corresponding objects on
the other path. When we enumerate the relationships
among the two pairs of sensed-values we get four
relationships:

KS,.MGG
RE~TWEVALUE: LOW

DATA-CbPOkNT-RAmG

,tCl-UALVAL~: INCONSlSIFKT

PART A: THE LOW KS1 PATH PART B: n-(E HIGH KS1 PATH

Ffgun 7: Parallel Investigation of two KSI Rating
DerlvatIon Paths.

159

1.

2.

3.

4.

In this

Sensed-value for sensor A on the low ksi path
< sensed-value for sensor B on the high ksi
path-

Sensed-value for sensor A on the low ksi path
> sensed-value for sensor A on the high ksi
prh.

Sensed-value for sensor B on the low ksi path
= sensed-value for sensor A on the high ksi
path. (They are both 0 because no signal was
sensed at that place by the other sensor.)

Sensed-value for sensor B on the low ksi path
< sensed-value for sensor B on the high ksi
path-

case the RELATIVE-VALUE attribute of the
state SENSED-VALUE for SENSOR A can have two
values, depending on which of the corresponding sensed
mlues in the other path we compare the state to: the
values are low for case 1 above and high for case 2
above. Because we are trying to determine why the SG
HYP-RATING is lower, we follow paths to any states
that contain a lower relationship. In this case, both the
state SENSED-VALUE of SENSOR A and the SENSED
VALUE of SENSOR B contain a lower relationship so
both are followed in parallel.

We have two paths to follow now: investigating
why the SENSEDVALUE for SENSOR A was low with
respect to SENSED-VALUE for SENSOR B in the high
ksi path investigation and investigating why the SENSED
VALUE for SENSOR B was low, again with respect to
SENSED-VALUE for SENSOR B in the high ksi path
investigation. We fii follow the path from state
SENSED-VALUE for SENSOR A backwards. We reason
that the senmr weight was low, the data signal was low,
or both. We then find that value for SENSOR-
WEIGHT for SENSOR A is indeed low compared to the
SENSOR-WEIGHT for SENSOR B. Because this state is
a primitive state (no transition or cluster arcs connect it
to any other part of the model), we can report this
finding as one fault responsible for the low KS1 rating
that led to the original symptom. We have found one
problem that explains the low KS1 rating but the
investigation is not complete. We still need to fiid the
value for the state DATA-SIGNAL and follow the path
of LOW SENSEDVALUE by SENSOR B. This latter path
also leads to the state DATA-SIGNAL since it is one of
the predecesso r states of the state SENSED-VALUE for
SENSOR B.

Since there is no way of knowing what the actual
data signal was, we must employ the tinown value
derivation type of reasoning where an unknown value is
determined by examining the values of the neighboring
states. This type of reasoning is necessary anytime the
state value cannot be determined from the problem-
solving system-s data base. In this type of reasoning the
ACTUAL-VALUE (or STATE-VALUE) attributes of the
states represent the value that is derived by looking at
the surrounding states. Depending on the types of values

represented by those states, this value can be either the

value the states agree on or inconsistent if contradictory
values can be determined from the surrounding states.
The unknown state is DATA-SIGNAL. We attempt to
derive the value for this state, which represents the actual
value of the data signal in the environment, by
examining the ACTUALVALUE slots in its surrounding
states: SENSOR-WEIGHT for both sensors and SENSED
VALUE for both sensors. In fact we cannot fiid a
consistent assignment for all these states. According to
sensor A the value sensed is low; according to sensor B,
no value is sensed at all. The value for the state
DATA-SIGNAL is therefore INCONSISTENT. In a case
where an inconsistency is discovered among two objects in
the VMT system we have to use incons%ency resolving
reasoning in which we compare the two objects (in this
case the two disagreeing sensors) with a model of the
expected behavior of that object (a sensor) and try to
determine which one is correct. In this case we compare
the characteristics of each of the two sensors with the
characteristics of an ideal sensor which mu-
correlated data. We determine that data from sensor A
is welI correlated (all data fits into one track) whereas
data from sensor B is only correlated for at most 2
location track segments. We therefore conclude that
sensor B is faulty.

We have now found both reasons for the initial
symptom (unsatisfied goal): the faulty sensor B in
conjunction with the low SENSOR-WEIGHT parameter
for sensor A.

IS’ STATUS ANDFUTURE RESEARCH

The basic model and the constraint propagation
mechanisms have been implemented. We are currently
extending the system to handle the comparative reasoning.
Currently the system behavior model represents only the
system behavior. It does not make an attempt to
represent the reasons for the expected behavior in terms
of the system architecture (e.g., a goal represents the
intent to produce a hypothesis in the goal’s area) or in
terms of the assumptions about the domain (e.g., the
characteristics of goals based on hypotheses that led to
them). We believe that such deeper models of both the
architecture and the domain would increase the PDD
system’s expertise by allowing it to detect more subtle
errors (e.g., redundant satisfaction of goals) and to detect
a wide range of faulty assumptons about the task domain.
An example of the latter case is having a model of how
the goal characteristics depend on the hypothesis
characteristics, for example, the maximum acceleration of
a vehicle and its turning radius. We also believe that
such a deeper model of the problem-solving system could
serve as a knowledge-base that the system could use to
automatically generate the complex criteria necessaq for
fault detection and the knowledge needed to implement
the Strategy Replanning module.

160

We feel that meta-level control based on the Fault
Detection/Diagnosis paradigm represents a new approach
to introducing more sophisticated control into a problem-
solving system. In addition, the system can be of great
help in debugging complex problem-solving systems. It
also presents interesting issues in modeling and reasoning
about a problem-solving system.

ACKNOWLEDGEMENTS

We would like to thank Daniel Corkill for his help
in developing the ideas and implementation presented in
this paper.

V REF’ERENCES

1. Stephen E. Cross. Qualitative sensitivity analysis: A
new approach to expert system plan justification.
Technical Report, AI Lab., Dept. of Electrical
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, 1983.

2. Daniel D. Corkill, Victor R. Lesser, and Eva
Hudlicka. Unifying data-directed and goaldirected
control: An example and experiments. In Proceedings
of the National Coufere~~ce on Artifidal htdfgencc,
pages 143-147, August 1982.

3. R. Davis. Meta-Rules: Reasoning about control.
Artificial Intelligence, 15179222, 1980.

4. R. Davis, H. Shrobe, W. Hanscher, K. Wieckert,
M. Shirley, and S. Polit. Diagnosis based on
descriptions of structure and function. In Proceedings
of Proceedings of the National Conference on Artif iciaf
Intelligence, pages 137-142, August 1982.

5. M. Genesereth. Diagnosis using hierarchical design
models. In Proceedings of Proceedings of the
National Conference on Artificial Intelligence, pages
278-283, August 1982.

6. Michael R. Genesereth and DE.Smith. Meta-Level
Architecture. Heuristic Programming Project Memo
HPP-81-6, Stanford University, December 1982.

7. Barbara Hayes-Roth and Frederick Hayes-Roth. A
cognitive model of planning. Cognitive Science,
3(4)275-310, October-December 1981.

8. Frederick Hayes-Roth and Victor R. Lesser. Focus
of attention in the Hearsay-II speech understanding
system. In Proceedings of the Fifth lnternatibnaf Joint
Conference on Artif iciaf Intelligence, pages 27-35,
August 1977.

10. Eva Hudlicka and Victor Lesser. DiQllOStiC
reasoning in fault detection and diagnosis for
problem-solving systems. COINS Technical Report (in
preparation).

11. Victor Lesser and Daniel DCorkill. The Distributed
Vehicle Monitoring Testbed: A tool for investigating
distributed problem solving networks. AI Magazine
4(3):lS-33, Fall 1983.

12. B. Smith. Reflection and Semantics in a Procedural
Language. Artificial Intelligence Laboratory Memo
AI-m-272, MIT, January 1982.

13. Robert Wilensky. Meta-planning: Representing and
using knowledge about planning in problem solving
and natural language understanding. Cognitive
Science, 5(3):X%233, July-September 1981.

9. Eva Hudlicka and Victor Lesser. Design of a
knowledgebased fault detection and diagnosis system.
In Proceedings af the 17th Hawaii International
Conference on System Sciences, Vol l., pages 226230,
January 1984.

161

