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ABSlTtACT 

Control strategies in most compla p&lem-s0lving 
systems, though highly parameter&d, are not adaptive to 
the characteristics of the particular task being solved. If 
the characteristics of the task are atypical, a fiied control 
strategy may cause incorrect or inefficient mg. We 
present an approach for adapting the control strategy by 
introducing a meta-level control component into the 
problem-solving architecture. This meta-level control 
component is based on the paradigm of Fault 
Detection/Diagnosis. Our presentation will concentrate on 
modeling the problem-solving system and on the inference 
techniques necessary to use this model for diagnosis. We 
feel that meta-level control based on the Fault 
Detection/Diagnosis paradigm represents a new approach 
to introducing more sophisticated control into a problem- 
solving system. 

I INTRODUCTION 

This paper explores the use of meta-level control in 
a problem-solving system to adaptively change the 
system’s control parameters in order to make problem 
solving more robust and efficient. In many complex 
problem-solving systems the control strategies are highly 
parameterized. These parameters antrol decisions such as: 

1. what importance to attach to information 
generated by different sources of knowledge; 

2. what type of search to perform (e.g., breadth 
vs. depth first; data vs. goal directed); 

3. what type of predictions to generate from 
partial results; 

4. what criteria to use to @dge whether a 
solution is acceptable. 

These parameter settings, which are often determined in 
an ad hoc manner, are based on typical characteristics of 
the tasks being posed to the problem-solving system and 
the characteristics of the problem-solving system itself. 
Even though such a parameterization makes it relatively 
easy to change control strategies, the system is rarely 
allowed to change its own control parameters as the task 
or system characteristics change during p-g. Thus, 
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if the characteristics of a particular task are atypical or 
the system characteristics* change during execution, the 
resulting incorrect parameter settings may cause 
inefficient or incorrect processing. 

Our approach to adapting these problem solving 
control parameters is to introduce a meta-level control 
component into the problem-solving system architecture, 
based on an extension of the Fault **Detection/Diagnosis 
(FDD) paradigm [4, 51 to handle problem-solving control 
errors resulting from inappropriate parameter settings. 
The FDD system has three components: the Fault 
Detection module, the Fault Diagnosis module, and the 
Strategy Replanning module. See Figure 1 for a diagram 
of the system architecture. The Fault Detection module 
monitors the state of problem solving in order to detect 
when the problem-solving system’s behavior deviates from 
the expected behavior. The criteria for expected behavior 
are based on standards for acceptable problem solving 
performance and internal consistency in the problem- 
solving system data base. Examples of detection criteria 
are: 

1. a large number of highly rated proces&g goals 
not being achieved; 

2. tasks on the problem solving agenda being too 
low rated or the agenda being empty; 

3. low credibility of intermediate results or 
contradictory information being generated; I 

4. results not being produced in a timely fashion 
or no results being produced for problems 
where a solution is expected. 

If such a situation is encountered by the Fault Detection 
module, the Fault Diagnosis module is invoked to 
analyze why the situation occurred. The Diagnosis 
module, using a detailed model of the problem-solving 
system and the current state of problem solving, 
determines which control parameter settings were 
responsible for reaching the undesirable situation. A 
Strategy Replanning module is then invoked to adjust the 
parameters so that appropriate problem solving activities 
are performed. 

l Previous work has examined this approach in a distributed 
problem-solving environment where it is likeIy for pocessn 
communication channels, and sensors to be faulty [9]. ’ 

M We use the term fault in a very liberal sense to i.ncIude 
inappropriate parameter values. 
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Figure 1: System Archlteeture. 

This approach to meta-level control, which involves 
adapting the control strategies, is a generalization and 
extension of earlier work by Hayes-Roth and Lesser on 
policy knowledge sources for Hearsay-II [8], the 
Hayes-Roths multi-level control structure for planning ml, 
and Wilensky’s work on meta-level control [l3]. It is, 
however, much different in character and emphasis from 
the work on meta-level control by Davis [3], Genesereth 
and Smith [6], and B. Smith [l2]. Though the general 
frameworks they posit for meta-level control can be used 
to build the type of meta-level control proposed here, 
their emphasis is different. Their work is oriented more 
towards how to layer control knowledge within a single 
uniform inference framework to accomplish each control 
decision rather than the type of knowfedge and inference 
required to introspect about the behavior and the 
performance of the system. It is this latter orientation 
which will be the focus of the remainder of this paper. 

We will illustrate the use of our approach to 
adaptive control by examining the knowledge and 
inference structure necessary to implement the Fault 
Diagnosis module for a problem-solving system based on a 
goal-directed Hearsay-II architecture, the Vehicle 
Monitoring Testbed (VMT) [ll]. The task of this system 
is to interpret acoustic signals produced by vehicles 
moving through a twodimensional area and generate a 
map of the environment, indicating what types of vehicles 
there are and what paths they took. Section II 
describes how we model the VMT system structure and 
function. Section III illustrates by way of example how 
this model is used by the Diagnosis module of the FDD 
system to diagnose a faulty parameter setting. Section IV 
describes the status of the system and directions for 
future research. 

II MODELING A PROBLEMSOLVING SYSTEM 

This section describes our model of the Vehicle 
Monitoring Testbed (VMT) problem-solving system and 
explains how this model can be used to understand why 
the system arrived at a particular state. The VMT 
system derives its results from the input data (see Figure 
2a) by incrementally constructing and aggregating 
intermediate level hypotheses until hypotheses that 
represent a complete map of the environment are 
generated. As part of the processing of the system, the 
creation of an intermediate hypothesis causes the 
generation of several types of goals. These goals are 
descriptions of the classes of higher level hypotheses that 
can potentially be generated given the existence of the 
newly created hypothesis [2]. Once a goal has been 
generated, the system attempts to satisfy the goal by 
scheduling and executing knowledge sources to produce 
the higher level hypotheses. This is the basic system 
cvcle. 
LOW-HYP-CREATED KSI-SCHEDULED 

HIGHER-HYPCREA’IED 

\ \/\ 
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HYPOTHESES -> 
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This figure illustrales the state 

transition/abstracted object model C# the VMT 
system, a high level view 4 the system 
Structure, and the relmhip among them. 
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The system behavior thus consists of a series of 
events. Each event results in the creation of an object 
(e.g., hypothesis, goal, or knowledge source instantiation) . 
or the modification of the attributes of some existing 
objects. We can represent the system behavior by 
specifying either the events or the changes these events 
cause in the system in terms of their effects on the 
attributes of the system objects. We chose the latter as 
the basis for our representation and model the problem- 
solving system behavior by a state transition diagram (see 
Figure 2c). Each state represents a specific state of some 
object in the VMT system in terms of its attribute values. 
Each state is specified by a schema, which contains finks 
to other states in the model (such as states prececding it 
and following it), pointers to the descriptions of the 
system objects the state refers to (these descriptions of the 
VMT objects are called abstracted objects; see Figure 2b), 
and a constraint expression over the abstracted ob@ts’ 
attribute values. This constraint expression is evaluated 
during diagnosis to determine whether the state has been 
reached by the VMT system; i.e., whether there exist 
objects in the problem-solving system whose attribute 
values satisfy the constraint expression associated with the 
state. 

For example, the process of generating a hypothesis 
at a higher level of abstraction from one at a lower level 
of abstraction can be described as follows: the creation of 
a lower level hypothesis causes the creation of a goal to 
produce a specific result (i.e., the higher level hypothesis) 
that incorporates the lower level hypothesis. This causes 
the scheduling of a knowledge source instantiation (KU) 
which later executes and produces the higher level 
hypothesis. In our model this serie!s of events is 
represented as the sequence of states: LOW- 
HYP-CREATED, GOAGCREATED, KU-SCHEDULED, 
KSI-EXECUTES, and HIGHER-HYP-CREATED (see 
Figure 2). The state transition arcs, which co~cct the 
individual states in the model, represent causal 
relationships among the states. In some cases there may 
be more than one state transition arc coming in or out 
of a given state. For example, in Figure 3, states A, B, 
and C precede state D. The model needs to represent 
the exact relationship among the four states. If all three 
states A, B, and C are necessary before state D can be 
reached, then the relationship among the three states 
preceding state D is logical AND (Figure 3a). If any 
one of the states A, B, or C is sufficient to reach state 
D, then the relationship among the three states is logical 
OR (Figure 3b). 

States are related not only by their causal 
connections but also by constraint relationships among the 
abstracted objects associated with them. The abstracted 
objects are represented as schemas consisting of 
attributevalue pairs. (The three parts of Figure 2 
illustrate how the State Model and the Abstracted Object 
Model and the actual objecfs in the VMT system relate 
to one another.) Each object contains information that 
allows the system to determine the values for that 
object’s attributes using objects whose attribute values are 
already known. Constraints among states can then be 
specified by states sharing the same object or via the 

relationships among the attributes of the objects attached 
to the states. For example, each HYP object (see Figure 
2b and 2c) has an attribute LEVEL. The relationships 
among the LEVEL attributes of the HYP objects 
attached to the states LOW-HYP-CREATED and 
HIGHER-HYP-CREATED is expressed by the following 
sets of constraints. The value of attribute LEVEL of 
object HYP attached to state LOW-HYP-CREATED is 
obtained by calling the function GET-LOWER-LEVEL 
with the value of attribute LEVEL of object HYP 
attached to state HIGHER-HYP-CREATED. Conversely, 
the value of attribute LEVEL of objxt HYP attached to 
state HIGHER-HYP-CREATED is obtained by calling the 
function GET-HIGHER-LEVEL with the value of 
attribute LEVEL of object HYP attached to state LOW- 
HYP-CREATED. 

The abstracted objects either point to existing 
objects in the VMT system or specify characteristics of 
objects that should exist in the system. The ability to 
represent not only objects that already exist in the 
problem-solving system but also objects whose existence is 
nece~~afy in order for the system to achieve a particular 
state allows the model to serve as the basis for a high 
level simulation of the underlying problem-solving system. 
This simulation is accomplished by propagating attribute 
values among the interrelated abstracted objects based on 
the causal relationship among the states. 

In addition to reasoning about system behavior in 
terms of sequences of states, we also need to reason 
qualitatively about how system object attribute values are 
computed from the attribute values of other objxts and 
from system control parameters. This requires modeling 
some of the internal computations performed by the 
problem-solving system. In order to model the 
problem-solving system at this level, we use a model 
very similar to the one used for modeling the behavior of 
the system. In this case, the states represent values of 
attributes of the system objects, values of controls 
parameters, and values of important intermediate states of 
the internal computation. The transition arcs represent 
how the value of a state is computed from the values 
ass&ated with the states that precede it. We are 
currently using a simple causal model in which the arcs 
are labelled as either having an increasing or decreasing 

PART A: S~arn related by AND PART B: Stata related by OR 

FIgure 3: Lqical Rclatlonshlps among States ln the 
Model. 
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effect on the value of the state that represents the result 
of the computation [l]. Two states are connected by an 
increasing arc if an increase in the value of one state 
causes an increase in the value of the other state. In 
some cases not shown in this paper, we also need to 
reason using the exact formula representation of the 
computation. 

The states in the model can thus represent different 
aspects of the underlying VMT system. One of the 
attributes in the state schema is the STATE-VALUE 
attribute. This attribute can represent one of several 
aspects of the problem-solving system. In some cases we 
are interested in whether a particular intermediate state 
has been reached; i.e., is there an object in the VMT 
system that matches the characteristics of the abstracted 
object associated with that state. In these cases the 
STATE-VALUE is true if the object does exist, and false 
otherwise. In other cases we need to reason about the 
value of some attribute of a particular object and relate 
it to the value of the corresponding attribute of another 
object. For example, we need to reason about the 
relatively low rating of a hypothesis with respect to 
another hypothesis. In these cases the STATE-VALUES 
represent the relationships among two or more objects in 
the VMT system. The values of the STATE-VALUES 
attributes are then low, high, or equivalent. 

The model is organized into clusters of states 
(Figure 4 illustrates three such clusters). Each cluster 
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represents an aspect of the system behavior at some level 
of detail. The representation is hierarchical in that only 
certain events are represented at any one level of the 
hierarchy. For example, the Answer Derivation Mudel 
represents only the answer hypotheses and their support 
structure in terms of intermediate hypotheses; vehicle 
track (VT) preceded by vehicle location (VL) preceded by 
group location (GL). It does not represent any of the 
knowledge sources scheduled and executed in the process. 
This information is represented in clusters at a lower 
level of the model hierarchy. Because of this hierarchical 
representation two states may be contiguous in one cluster 
while in fact a number of other states occur in between 
which are represented by a cluster at a lower level of 
the model hierarchy. Equivalent states in clusters at 
different levels of abstraction are connected via cluster 
links. Objects may be shared across the different clusters. 
This hierarchical structure allows fast focusing into the 
problem area during diagnosis by avoiding detailed 
analysis until the part of the model that is relevant has 
been identified. 

The system model represents a subset of all the 
possible system behaviors, which we think is sufficient fo! 
detecting and diagnosing a significant number of faults; 
We call this model the system behavior model (SBM). 
The SBM is used by both the Fault Detection module 
and the Fault Diagnosis module. The Detection module 
identifies a specific undesirable situation in the monitored 
system; i.e., a specific abstracted object along with an 
associated state. This state-object pair constitutes the 
symptom detected by th e Detection module, which is 

passed on to the Diagnosis module. Diagnosis is 
accomplished by constructing a representation of the 
current system state, constructing a model of how this 
state was reached and comparing this with the correct 
system behavior as represented by the model. Any points 
of departure from this expected behavior are traced to 
the states at the lowest level in the SBM. These states 
are marked as primitive. A primitive state that is found 
to be false during diagnosis constitutes a reportable 
failure. 

The current system state representation is 
constructed using information from the SBM and the 
VMT system data structures. The construction begins 
with locating the symptom state in the SBM. The 
predecessor states of this state are then found, along with 
their abstracted objects descriptions. First, the attributes 
of these abstracted objects are evaluated, using the 
constraint relationships between the existing abstracted 
objext and the one being evaluated. once these 
attributes have been evaluated, the Diagnosis module 
looks for the corresponding objects in the VMT system. 
If such objects are found, they are linked to the 
abstracted object. Finally, for each abstracted object the 
corresponding state is created and the STATE-VALUE 

l The system model could be extended to represent the de 
level of the VMT system. However we have not found it 
==-y to represent the VMT system at such a low level 
of detaiI in order to effectively reaso~l abwt iti behavior. 
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attribute is evaluated. Depending on the type of state 
and its value, the type of reasoning may now change. 
The next paragraph describes the different types of 
reasoning. 

The underlying mechanism for all the different 
types of diagnostic reasoning is bidirectional constraint 
propagation, which begins at one or more state-object 
pairs in the SBM whose values have already been 
determined. This constraint propagation m*es possible 
sophisticated diagnostic reasoning. In the next section we 
show how the system model supports four different types 
of reasoning necessary to diagnose inappropriate parameter 
settings: 

1. Backward cuusul tracing: given a particular state 
and its value the system can go back through 
the model and explain, in terms of the model 
states, why that state was reached. 

2. Comptua!ive reasoning : the system can compare 
two different objects and explain why they 
were different, in terms of the model states. 

3. Unknown value derivation: the system can 
determine a value of an unknown state in the 
system model by finding the value which is 
consistent with the known values of the 
surrounding model states. 

4. Resoiving inco?uistencies : having found two 
inconsistent objects, the Diagnosis module can 
decide which one is correct by comparing both 
objects to a model of an ideal or expected 
objzct. 

III AN EXAMPLE OF FAULT DIAGNOSIS 

The following example (see Figure 5a) represents a 
scenario in the VMT system in which the system is 
receiving data from two input sources; sensors, A and B. 
The two sensors overlap, so some data are sensed by 
both, but because the system is more confident about 
sensor B the sensor weight parameters are set such that 
the data generated by that source are valued more than 
the data generated by sensor A. This results in the 
data from sensor B being rated high and the data 
produced by sensor A in the same area being rated low. 
In the example scenario the supposedly reliable source of 
data for the particular task (sensor B) does not in fact 
generate reliable data because it is malfunctioning. It is 
instead generating very short noise segments that cannot 
be incorporated into a single vehicle track. BecaUSe 

sensor B’s sensor weight parameter has such a high 
value, these short noise segments are very highly rated. 
The goal of the diagnosis is to recog&e that sensor B is 
malfunctioning and change the sensor weight parameters 
so that the systems begins to process data generated by 
sensor A. 

A vehicle is moving through the monitored area, 
from left to right, generating signals at locations 1 
through 8 (see Figure 5a). Sensor A sensesall 

PART A: Diagram of the signals generated by 
the moving vehicle (locations I through 8) and 
the sensor layout. The sensors send the sensed 

SigMlS to the processing lwde. 

NO“r 

pm B: After some time. the system ger~ates 

a vehicle track (VT) hypothesis connecting 
/oca.tiorrr I through 4 sensed 6~ SEIVSOR A. It 

also generates several short track scgment~ 

which are the result of the ~&SC generated b 

the faulty SENSOR B. 

Figure 5: Faclk sanrrto. 
locations but, becuse of the sensor-weight parameter, 
locations 5 through 8 are rated low. Sensor B, because 
it is malfunctioning, is not sensing the vehicle SigndS 
but rather is generating very highly rated noise segments. 
The VMT system generates a vehicle track (VT) 
hypothesis connecting locations 1 through 4 based on 
the strong data from sensor A (see Figure 5b). As a 
result of sensor A’s data being weighted low in the area 
where SigdS 5 through 8 appear, sensor B 
malfunctioning, and sensor BS sensor weight parameter 
being high, the knowledge source instantiation (ICSI) that 
would extend the partial track to include the location in 
time 5 is rated low.’ Because the short segments of 
noise generated by sensor B are rated high, they cause 

the scheduling of knowlege sources which are highly 
rated. The system queue ha- a number of these highly 
rated KSIs that delay the execution of the low rated 
K!%s which would extend the true vehicle track 
hypothesis. As a result, the system spends all its time 
forming short segments from the noise signals and the 
true vehicle track remains unextended. 

b A KS1 rating is a function of, among other things, the input 
data. 

157 



This situation can generate a number of symptoms. 
Due to lack of space we will illustrate the diagnosis by 
pursuing only one of the symptoms. The symptom we 
pursue here is a highly rated goal, VMT-GOAL#l, which 
represents the system’s intent to extend the existing 
vehicle track hypothesis connecting locations 1 through 4 
to include location 5 (see Figure 5b). This goal has 
remained unsatisfied for a long time and has therefore 
been selected by the Fault Detection module as a 
representative symptom. Diagnosis begins with the arrival 
of the symptom from the Detection module. A symptom 
consists of a stateobject pair; the unachieved state is 
GOAL-SATISFIED and the abstracted object is GOAL- 
OBJECT, which points to the object VMT-GOAL#l in 
the VMT system. 

v-r-IIYP-Exlsn VT-HYP-Eixsn GOALSATISFED 

\ 
PART A (A Par-~ of the) Anrwcr Dcrivaticm Mcdcl \ 

LOW-HYP-CREATED / I 

Fii, the SBM cluster that contains the state 
GOAL-SATISFIED and its associated abstracted objects 
must be located. This is the Answer Derivatbn Model 
cluster. The relevant. objects and states in this cluster are 
evaluted, using the constraint expressions in the SBM and 
the already evaluated attributes of the symptom state and 
its object. The values of the states in this cluster can be 
either true or false depending on whether objects of the 
desired characteristics exist in the VMT system or not. 
In this case the state GOAL-SATISFIED is false because 
the associated object (VMT-GOAL#l) has not been 
satisfied in the VMT system (i.e., there is no vehicle 
track hypothesis connecting locations 1 through 5). We 
continue backward causal tracing through the SBM model 
to the state preceeding the GOALSATISFIED state: the 
state VT-HYP-EXISTS and its associated object, VT-HYP. 
The attribute values of this object are determined from 
the attribute values of the object VMT-GOAL#l using 
the constraint relationships described in the previous 
section. The state VT-HYP-EXISTS evaluates to false, 
since no VT hypothesis of the desired characteristics exists 
in the VMT system. The reasoning continues backwards 
through the SBM attempting to find the first state that 
evaluates to true (i.e., the last point where desired system 
behavior stopped). Because a vehicle track can be 
formed from a shorter vehicle track or a set of vehicle 
locations (VL) the state VT-HYFEXISTS is preceeded 
by the states VT-HYP-EXISTS or VCHYP-EXISTS. 
The objects associated with these states are VT-HYP and 
VL-HYP respectively. Again, we Look for the associated 
objects in the VMT system in order to evaluate the 
states. In this case the objects are track fragments 
containing locations 1 through 5, or the locations 1 
through 5 themselves, which could lead to the desired 
hypothesis. This brings us to another instantiation of the 
state VT-HYP-EXISTS and object VT-HYP, this time 
with the hypothesis connecting locations 1 through 4. 
E3ecause such a hypothesis does exist in the VMT system, 
this state evaluates to true. This is where the 
generation of the vehicle track that would satisfy the goal 
VMT-GOAL#l stopped. The evaluated model is in Figure 
6a. 

/ 
PART B, KS1 Scheduling Model 
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Figure 6: Evaluated System Model. 

At this point we cannot continue reasoning using 
the Answer Derivatbn Mudef cluster because it does not 
represent the events occurring in between the last true 
state (VT-HYP-EXISTS; VT hypothesis connecting 
locations 1 through 4) and the first false state (V’I-HYP- 
EXISTS; VT hypothesis extending the hypothesis l-4 
through location 5). Anytime such a truestate/falsestate 
pair is found, we must find the cluster which represents 
the states occurring between those two states. The 
cluster pointed to by the VT-HYP-EXISTS state is the 
KSI Scheduling Model cluster shown in Figure 4b. 

We continue determining the types of objects and 
evaluating the states. The result is the evaluated model 
in Figure 6b. We find another gap in the expected 
processing: the KS1 that would produce the desired 
hypothesis was scheduled but did not execute. Again, 
following the cluster links, we switch to a cluster that 
describes in more detail what occurs in between the true 
state (KSI-SCHEDULED) and the false state (K!31- 
EXECUTE!S). This is the cluster KSI Execution Modcf in 
Figure 4c. We eventually arrive the state KSI-RATED- 
MAX. This state represents the fact that a KS1 must be 

“The state VT-HYPEXBTS represents aU track h 
!I- 

h-up 
to sqne fixed track length. Therefore it is a re exive state, 

*Comparative reasoning contains many complexities which we 

poixihg back to itself. 
cannot go into in tls paper. 
of the types of re awning 

For more detailed descriptien 
mentioned in this paper set [lOl 
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rated the highest of all the KsIs on the queue in order 
to execute. This state is false since the KS1 that could 
extend the l-4 VT hypothesis is rated low with respect to 
the other KSIs on the queue. The evaluated model is in 
Figure 6c. 

The state KSI-RATED-MAX is a different type of 
state. Unlike the states mentioned so far, which 
represent the existence of some object in the VMT 
system, the state KSI-RATEIMfAX represents a 
relationship among a group of objects; in this case, the 
relationship among the knowledge source instantiations on 
the scheduling queue. Whenever this type of a state is 
reached, the system switches to compurative remming.* 
This involves comparing some attributes of two objects in 
the system: one that achieved a desired state (in this 
case, the KS1 that is maximally rated) and one that did 
not (in this case the low rated KS1 that would extend 
the VT hypothesis 14 to include location 5). The 
system builds a model of how those objects were created 
and attempts to discover what differences along the object 
creation paths were responsible for the different 
outcomes. Two slots in the state schema are important 
here: the ACTUALVALUE! slot, which repraents the 
value of the attribute of interest, and the RELATIVE- 
VALUE slot, which represents the relationship among 
the ACTUAL-VALUES of the two objects in the parallel 
investigation. In this type of reasoning the states do not 
represent the existence or non-existence of some ob+t 
but rather the relationship among the values of a 
particular attribute of some object (for example the 
rating of a knowledge source or a hypothesis) as 
compared to the corresponding attribute of the other 
object in the parallel investigation. In this case the 
relevant attribute is the RATING attribute of the KS1 
object. The two objects being investigated here are the 
two KSIs (the low rated KS1 to create a hypothtsis 
connecting locations 1 through 5 and the KS1 which is 
rated the highest on the scheduling queue). We 
investigate, in parallel, how the ratings of the two KSIs 
were derived in an attempt to identify what caused the 
lower rating of the KS1 that would extend the 14 track. 

We first switch to a cluster where the attribute of 
interest (IN-RATING) is represented by a state. This 
is the KS1 and Hy~hesis Rating Model in Figure 7. 
Because we are investigating two objezts we must 
instantiate two copies of this cluster. One copy wilI 
represent the creation of the low rated KS1 that would 
extend the VT hypothesis through location five (we will 
call this the low hi path). The other will represent the 
creation of the highest rated KS1 on the queue (we will 
call this the high ksi path). We begin with the state 
KSI-RATING. Because the rating of the KS1 of interest 
is lower than the highest rated KS1 we assign the value 
low to the RELATIVE-VALUE attribute of the state 
representing the relationship among the two values. We 
go back through the SBM and find that what 
determines a KS1 rating is the DATA-COMPOlUENT- 
RATING of the ICSI. We compare the data components 
of the two KSIs and again find that the DATA- 
COMPONENT-RATING of the low-rated KS1 is lower 

than the corresponding DATA-COMPONENT’-RATING of 
the high-rated KSI. We continue evaluating the model 
for the derivation of the KS1 rating for both K.SIs, via 
the KS1 data components at various levels of abstraction 
(vehicle location, VL, preceeded by group location, GL, 
preceeded by signal location, SL) arriving finally at a 
point that represents how the sensor weights and the 
strength of the data signal determine the value of the 
sensed signal for each sensor. 

Because the signal location rating on the low Rsi 
path is lower than the signal location rating on the high 
ksi path, the value of the state SL-HYP-RATING for 
the low-rated KS1 is low. We reason that in order for 
this value to be lower than the corresponding value in 
the high ksi path, the two .objects that influence this value 
(sensed-value by sensor A and sensed-value by sensor B) 
must be rated lower than the corresponding objects on 
the other path. When we enumerate the relationships 
among the two pairs of sensed-values we get four 
relationships: 

KS,.MGG 
RE~TWEVALUE: LOW 

DATA-CbPOkNT-RAmG 

,tCl-UALVAL~: INCONSlSIFKT 

PART A: THE LOW KS1 PATH PART B: n-(E HIGH KS1 PATH 

Ffgun 7: Parallel Investigation of two KSI Rating 
DerlvatIon Paths. 
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1. 

2. 

3. 

4. 

In this 

Sensed-value for sensor A on the low ksi path 
< sensed-value for sensor B on the high ksi 
path- 

Sensed-value for sensor A on the low ksi path 
> sensed-value for sensor A on the high ksi 
prh. 

Sensed-value for sensor B on the low ksi path 
= sensed-value for sensor A on the high ksi 
path. (They are both 0 because no signal was 
sensed at that place by the other sensor.) 

Sensed-value for sensor B on the low ksi path 
< sensed-value for sensor B on the high ksi 
path- 

case the RELATIVE-VALUE attribute of the 
state SENSED-VALUE for SENSOR A can have two 
values, depending on which of the corresponding sensed 
mlues in the other path we compare the state to: the 
values are low for case 1 above and high for case 2 
above. Because we are trying to determine why the SG 
HYP-RATING is lower, we follow paths to any states 
that contain a lower relationship. In this case, both the 
state SENSED-VALUE of SENSOR A and the SENSED 
VALUE of SENSOR B contain a lower relationship so 
both are followed in parallel. 

We have two paths to follow now: investigating 
why the SENSEDVALUE for SENSOR A was low with 
respect to SENSED-VALUE for SENSOR B in the high 
ksi path investigation and investigating why the SENSED 
VALUE for SENSOR B was low, again with respect to 
SENSED-VALUE for SENSOR B in the high ksi path 
investigation. We fii follow the path from state 
SENSED-VALUE for SENSOR A backwards. We reason 
that the senmr weight was low, the data signal was low, 
or both. We then find that value for SENSOR- 
WEIGHT for SENSOR A is indeed low compared to the 
SENSOR-WEIGHT for SENSOR B. Because this state is 
a primitive state (no transition or cluster arcs connect it 
to any other part of the model), we can report this 
finding as one fault responsible for the low KS1 rating 
that led to the original symptom. We have found one 
problem that explains the low KS1 rating but the 
investigation is not complete. We still need to fiid the 
value for the state DATA-SIGNAL and follow the path 
of LOW SENSEDVALUE by SENSOR B. This latter path 
also leads to the state DATA-SIGNAL since it is one of 
the predecesso r states of the state SENSED-VALUE for 
SENSOR B. 

Since there is no way of knowing what the actual 
data signal was, we must employ the tinown value 
derivation type of reasoning where an unknown value is 
determined by examining the values of the neighboring 
states. This type of reasoning is necessary anytime the 
state value cannot be determined from the problem- 
solving system-s data base. In this type of reasoning the 
ACTUAL-VALUE (or STATE-VALUE) attributes of the 
states represent the value that is derived by looking at 
the surrounding states. Depending on the types of values 

represented by those states, this value can be either the 

value the states agree on or inconsistent if contradictory 
values can be determined from the surrounding states. 
The unknown state is DATA-SIGNAL. We attempt to 
derive the value for this state, which represents the actual 
value of the data signal in the environment, by 
examining the ACTUALVALUE slots in its surrounding 
states: SENSOR-WEIGHT for both sensors and SENSED 
VALUE for both sensors. In fact we cannot fiid a 
consistent assignment for all these states. According to 
sensor A the value sensed is low; according to sensor B, 
no value is sensed at all. The value for the state 
DATA-SIGNAL is therefore INCONSISTENT. In a case 
where an inconsistency is discovered among two objects in 
the VMT system we have to use incons%ency resolving 
reasoning in which we compare the two objects (in this 
case the two disagreeing sensors) with a model of the 
expected behavior of that object (a sensor) and try to 
determine which one is correct. In this case we compare 
the characteristics of each of the two sensors with the 
characteristics of an ideal sensor which mu- 
correlated data. We determine that data from sensor A 
is welI correlated (all data fits into one track) whereas 
data from sensor B is only correlated for at most 2 
location track segments. We therefore conclude that 
sensor B is faulty. 

We have now found both reasons for the initial 
symptom (unsatisfied goal): the faulty sensor B in 
conjunction with the low SENSOR-WEIGHT parameter 
for sensor A. 

IS’ STATUS ANDFUTURE RESEARCH 

The basic model and the constraint propagation 
mechanisms have been implemented. We are currently 
extending the system to handle the comparative reasoning. 
Currently the system behavior model represents only the 
system behavior. It does not make an attempt to 
represent the reasons for the expected behavior in terms 
of the system architecture (e.g., a goal represents the 
intent to produce a hypothesis in the goal’s area) or in 
terms of the assumptions about the domain (e.g., the 
characteristics of goals based on hypotheses that led to 
them). We believe that such deeper models of both the 
architecture and the domain would increase the PDD 
system’s expertise by allowing it to detect more subtle 
errors (e.g., redundant satisfaction of goals) and to detect 
a wide range of faulty assumptons about the task domain. 
An example of the latter case is having a model of how 
the goal characteristics depend on the hypothesis 
characteristics, for example, the maximum acceleration of 
a vehicle and its turning radius. We also believe that 
such a deeper model of the problem-solving system could 
serve as a knowledge-base that the system could use to 
automatically generate the complex criteria necessaq for 
fault detection and the knowledge needed to implement 
the Strategy Replanning module. 
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We feel that meta-level control based on the Fault 
Detection/Diagnosis paradigm represents a new approach 
to introducing more sophisticated control into a problem- 
solving system. In addition, the system can be of great 
help in debugging complex problem-solving systems. It 
also presents interesting issues in modeling and reasoning 
about a problem-solving system. 
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