
HOW TO COPE W-ITH ANOMALIES IN PARALLEL
APPROXIMATE BRANCH-AND-BOUND ALGORITHMS

Guo-jie Li and Benjamin W. Woh
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

Abstract: A genera! technique for solving a wide variety of
search problems is the branch-and-bound (B&B) algorithm.
We have adapted and extended B&B algorithms for parallel
processing. Anomalies owing to parallelism may occur. -In this
paper sufficient conditions to guarantee that parallelism will
not degrade the performance are presented. Necessary condi-
tions for allowi& parallelism to have a speedup greater than
the number of processors are also shown. Anomalies are found
to occur infrequently when optima! solutions are sought; how-
ever, they are frequent in- approximate B&B algorithms.
Theoretical analysis and simulations show that a best-first
search is robust for parallel processing.

1. INTRODUCTION
The search for solutions in a combinatorially large

7
rob-

lem space is very important in artificial intelligence (AI [8].
Combinatorial-search problems can be classified into two
types. The first type is decision problems that decide whet her
at least one solution exists and satisfies a given set of con-
straints. Theorem-proving, expert systems and some permuta-
tion problems belong to this class. The second type is optimi-
zation problems that are characterized by an objective func-
tion to-be minimized or maximized and a set of constraints to
be satisfied. Practical problems, such as traveling salesman,
job-shop scheduling, knapsack, vertex cover, and game-tree
search belong to this class:

A genera! techni ue for solving combinatorial searches is
the B&B algorithm [S . 7 This is a partitioning algorithm that
decomposes a problem into smaller subproblems and repeat-
edly decomposes until infeasibility is proved or a solution is
found 161. -It can be characterized by four constituents: a
branch&i rule, a selection rule, an elimination rule and a ter-
mination-condition. The first two rules are used to decompose
the problem into simpler subproblems and appropriately order
the search. The last two rules are used to eliminate generated
subproblems that are infeasible or that cannot lead to a better
solution than an alreadv-known feasible solution. Kumar et

II

a!. have shown that the B&B approach provides a unified way
of formulating and analyzing AND/OR tree searches such as
SSS’ and Alpha-Beta search [4). The technique of branching
and pruning in B&B algorithms to discover the optimal ele-
ment of a set is the essence of many heuristic procedures in AI.

To enhance the efficiency of implementing B&B algo-
rithms, approximations and parallel processing are two major
approach&. It is impractical-to use p~ralle! processing to solve
intractable problems with exponential complexity because an
exponential number of processors must be used to solve the
problems in polynomial time in the worse case. For these
problems, approximate solutions are acceptable alternatives.
Experimental results on vertex-cover, O-l knapsack and some
integer-programming problems reveal that a linear reduction in
accuracy may result in an exponential reduction in the average
computational time [lo]. On the other hand, parallel process-
ing is applicable when the problem is solvable in polynomial
time (such as finding the shortest path in a graph), or when

Research was supported by National Science Foundation Grant ECS81-
059 68.

AAAI-84 National Conference on Artificial Intelligence.

the problem is NP-hard but is solvable in polynomial time on
the average [9], or when the problem is approximately solvable
in polynomial time (such as game-tree search).

Analytical properties of parallel approximate B&B
(PABB) algorithms have been rarely studied. In genera!, a k-
fold speedup (ratio of the number of iterations in the serial
case to that of the parallel case) is sought when k processors
are used. However, simulations have shown that the speedup
for PABB algorithms using k

P
rocessors can be (a) less than

one--“detrimental anomalg 3,5]; (b) greater than k--
“acceleration anomaly” [3,5]; or (c) between one and k--
“deceleration anomaly [3,5,10]. Similar anomalous behavior
have been reported by others. For instance, the achievable
speedup for AND/OR-tree searches is limited by a constant (5
to 6) independent of the number of processors used (parallel-
aspiration search) or & with k processors (tree-splitting algo-
rithm) [l]. S o f ar, a!! known results of parallel tree searches
showed that a near-linear speedup holds only for a small
number of processors. It is desirable to discover conditions that
preserve the acceleration anomalies, eliminate the detrimental
anomalies and minimize the deceleration anomalies. The
objectives of this paper are to provide conditions for achieving
the maximum speedup and to find the appropriate parallel
search strategy under which a near-linear speedup will hold for
a considerable number of processors.

PARALLEL APPROXIMATE BRANCH-AND-
kOUND ALGORITHMS

Many theoretical properties of serial B&B algorithms
have been developed [Z], and a brief discussion is given here.
In this paper minimization problems are considered. Let P, be
a subproblem, i.e., a node in the state-space tree, and f(P,) be
the value of the best solution obtained by evaluating all the
subproblems decomposable from Pi. A lower bound, g(P,), is
calculated for P, when it is created. If a subproblem is a feasi-
ble solution with the best objective-function value so far, the
solution value becomes the incumbent z. The incumbent
represents the best solution obtained so far in the process.
During t#he computation, Pi is terminated if:

dpi) 2 z (1)

The approximate B&B algorithm is identical to the optima!
algorithm except that the lower-bound test is modified to:

dpi) 2 * c>o, z>o (2)

where 6 is an allowance parameter. The final incumbent value
zF obtained by the modified lower-bound test deviates from
the optimal solution value, zo, by:

ZF

Let L denotes the lower-bound cutoff test, that is, Pj LP;
means that Pj is feasible solution and
f(P,)/(l +f) < g(Pi), fZO* F oraexamp!e, in Figure 1, Pi L P,,
since 91/1.1<85, and similarly P,LP,. However, P,LP, is
false because 100/1.1>85.

Ibaraki mapped breadth-first, depth-first and best-first
searches into a genera! form called heuristic aearchea
heuristic function is used to define the order in which su

212

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

n

Figure 1.

Solution in
parallel case

Example of a detrimental
depth-first search (~~0.1).

an0 maly under a paralllel

lems are selected and decomposed. The algorithm always
decomposes the subproblem with the minimum heuristic value.
In a best-first search, the lower-bound values define the order
of expansion, hence the lower-bound function can be taken as
the heuristic function. In a breadth-first search, subproblems
with the minimum level numbers are expanded first. The level
number can, thus, be taken as the heuristic function. Lastly,
in a depth-first search, subproblems with the maximum level
numbers are expanded first. The negation of the level number
can be taken as the heuristic function. -

Branch-and-bound algorithms have inherent parallelism:
(a) Parallel selection of .wbprobfema: A set of subproblems

less than or equal to in size to the number of processors have
to be selected for decomposition in each iteration. A selection
function returns k subproblems with the minimum heuristic
values from U, where k is number of processors and U is the
active list of subproblems. The selection problem is especially
critical under a best-first search because a set of subproblems
with the minimum lower bounds must be selected.

(b) Parallel 6 ranching: The subproblems assigned to the
processors can be decomposed in parallel. In order for the pro-
cessors to be we!! utilized, the number of active subproblems
should be greater than or equal to k.

(c) Parallel termination test: Multiple infeasible nodes can
be eliminated in each iteration. Further, multiple feasible
solutions may be generated, and the incumbent may have to
be updated in parAle!.

(d) Parallel elimination teat: If the incumbent is accessible
to all‘the processors, the lower-bound test (Es’s 1 or 2) can be
carried out in parallel.

The above sources of parallelism has been studied in
MANIP, a multiprocessor implementing PABB algorithms with
a best-first search and lower-bound tests (lo].

3. ANOMALIES ON PARALLELISM
In this section anomalies are studied under lower-bound

elimination and termination rules. The results on anomalies
with dominance tests are shown elsewhere [7]. For simplicity,
only the search for a single optima! solution is considered here.

A synchronous model of PABB algorithm is used. The
incumbent is stored in a global register that can be updated
concurrently. Active subproblems can be stored in a central-
ized list or multiple lists. The distinction lies in the memory
configuration. When a!! the processors are connected to a cen-
tralized memory, the subproblem list is global to the proces-
sors. When each processor has a private memory, only the

local subproblem list can be accessed. The sequence of
operations performed in an iteration are selection, branching,
feasibility and elimination tests, and inserting new! generated
subproblems into the list(s). Let TC(k,c) and Td k,c) denote Q
the number of iterations required for expanding a B&B tree
using centralized and k subproblem lists respectively, where k
is the number of processors used, and c is the allow ante
parameter.

An example of a detrimental anomaly is illustrated in
Figure 1. In a serial depth-first search, subtree T, is te?-
minated owing to the lower-bound test of P, :
f(P;)/(l +E) Q$P,) where c ~0.1. In a parallel depth-f&t
search with two processors, a feasible solution, P,. that ter-
minates P1 and Py is found in the second iteration. As men-
tioned before, P, is not eliminated by P,. Consequently, sub-
tree T, has to be expanded that will eventually terminate sub-
tree TJ. If the size of T, is much larger than the size of T,,
the time it takes to expand T, using two processors will be
longer than the time it takes to expand T, using one proces-
sor. Note that the above anomaly does not happen in a best-
first search because subtree T, is not expanded in both the
serial and the parallel cases.

An example of an acceleration anomaly is shown in Fig-
ure 2. When a single Drocessor with a death-first search is
used, subtree T win be expanded since f(P,)/(1 i-f) > g(P,)
where c = 0.1. When two Drocessors are used. P, and hence T
will be terminated b; lower-bound tes& with P3:
f(P,)/(l +c) < g(b). If T is very large, an acceleration ano-
maly will occur.

4. GENERALIZED HEWRISTIC SEARCHES
Recall that the selection function uses the heuristic values

to define the order of node expansions. In this section we
show that detrimental anomalies are caused by the ambiguity
in the selection rule. A generalized heuristic search is proposed
to eliminate detrimental anomalies in a single subproblem list.

Consider the serial depth-first search. The subproblems
are maintained in a last-in-first-out list, and the subproblem
with the maximum level number is expanded first. When mul-
tiple subproblems have identical level numbers (heuristic
values), the subproblem chosen by the selection function
depends on t,he order of insertion into the stack. Suppose t,he
rightmost son is always expanded and inserted first. Then the
leftmost son will be the subproblem inserted last and
expanded first in the next iteration.

1

list.
In a parallel depth-first search with a single subproblem

the mere extension of the serial algorithm mav cause an
andmalous behavior. For example, the &der of exp*ansion in a
serial depth-first search for the tree in Figure 3 is A, B, D, I, J,
E, etc. \Vhen two processors are used, nodes B and C are
expanded in the second iteration that result in nodes D, E, F,

n

Figure

f=91

2. Example of an acceleration anomaly
le! depth-first search (~‘0.1 1.

under a paral-

213

level 0

level 4

Figure 3. The path numbers of a tree.

G and H. Since these nodes have identical level numbers, any
two of these nodes can be chosen for expansion in the next
iteration by the conventional heuristic function discussed in
Section 2. Suppose the nodes are inserted in the order E, D,
H, G and F. Then nodes F and G will be selected and
expanded in the third iteration. This may cause a detrimental
anomaly if subtree T, is large. In fact, this is exactly the rea-
son for the anomalies reported by Lai and Sahni [5].

To solve this problem, we must define distinct heuristic
values for the nodes so that there is no ambiguity on the nodes
to be chosen by the selection function. In this paper a path
number is used to uniquely identify a node in a tree. The path
number of a node is a sequence of d-t 1 integers that represent
the path from the root to this node where d is the maximum
number of levels of the tree. The path number E = e0e1e2...ed
is defined recursively as follows. The root PO exists at level 0
and has a path number of OOO...O. A node Pij on level II which
is the j-th son (counting from the left) of Pi with path number
EPi = eoel...ell-lOOO... has path number Epi, = eoel...ef-ijO

As an example, the path numbers for the iodes in the tree of
Figure 3 are shown.

To compare path numbers, the relations ‘I>” and I‘+
must be defined. A path number El = eiiei * * - is less than
another path number E, = e;el * * . (E, < E2) if there exists
O<j<d such that e: =eT, O<i<j, and e,‘<e:. The path
numbers are equal if e: =ei2 for Oli<d. For example, the
path number 01000 is less than 01010. Note that nodes can
have equal path numbers if they have the ancestor-descendant
relationship. Since these nodes never coexist simultaneously in
the list of active subproblems, the subproblems in the active
list always have distinct path numbers.

The path number is now included in the heuristic func-
tion. The primary key is still the lower-bound value or the
level number. The secondary or ternary key is the path
number and is used to break ties in the primary key.

I

(level number, path number) breadth-first search

(path number)
h(Pi)=’ (1

depth-first search

ower bound, level number, path number) (4

or (lower bound, path number) best-first search

For a best-first search, two alternatives are defined that search
in a breadth-first or depth-first fashion for nodes with identical
lower bounds. The heuristic functions defined above belong to
a general class of heuristic functions that satisfy the following
properties:
(a) NP,)#h(P,) if P,#Pj, P,, P, E U

(all heuristic values in the active list are distinct)
(b) h(P,)< h(P,) if Pd is a descendant of Pi

(5)

(heuristic values o not decrease) (6)
In general, any heuristic function with a tie-breaking rule that
satisfy Eq’s 5 and 6 will not lead to detrimental anomalies.

Due to space limitation, the results are stated without proof in
the following theorems. The proofs can be found in [7].

Theorem 1: Let c=O, i.e., an exact optimal solution is sought.
TC(k,O) LT’(1,0) holds for parallel heuristic searches of a single
optimal solution in a centralized list using any heuristic func-
tion that satisfies Eq’s 5 and 0.

When approximations are allowed, detrimental anomalies
cannot always be avoided for depth-first searches even though
path numbers or other tie-breaking rules are used (see Figure
1). The reason for the anomaly is that lower-bound tests

under approximation, L, are not transitive. That is, PiL P
and P. L Pk do not imply Pi L Pk, since fhPi)/(1 +c) 5 g(Pj) and
f[Pj)/(iI +c{ < g(Pk) implies f(Pi)/(1 tc) 5 g(Pk) rather than
f Pi)/(l + c 5 g(Pk). In this case detrimental anomalies can be
avoided for best-first or breadth-first searches only.

Theorem 2: TC(k,c) 5 TC(l,c), c>O, holds for parallel best-
first or breadth-first searches for a single optimal solution
when a heuristic function satisfying Eq’s 5 and 6 is used.

Since the lower-bound function is used as the heuristic
function in best-first searches, Eq’s 5 and 6 are automatically
satisfied if all the lower-bound values are distinct. Otherwise,
path numbers must be used to break ties in the lower bounds.
In Section 7 a more general condition will be given for best-
first searches. For depth-first searches, the conditions of
Theorem 2 are not sufficient, and the following condition is
needed. For any feasible solution Pi, all nodes whose heuristic
values are less than h(P,) cannot be eliminated by the lower-
bound test due to Pi, that is, f(P,)/(1 +c) 5 g(Pj) implies that
h(P,) < h(Pj) for any l’j. Generally, this condition is too
strong and cannot be satisfied in practice.

CONDITIONS TO ENSURE
kCC%ii%t?i ANOMALIES IN A SINGLE SUB-
PROBLEM LIST

When an exact optimal solution is sought, acceleration
anomalies may occur if a depth-first search is used or some
nodes have identical heuristic values. This is characterized by
the incomplete consistency between the heuristic and the
lower-bound functions. A heuristic function, h, is said to be
not completely consistent with g if there exist two nodes Pi and
Pj such that h(P,) > h(Pj) and g(P,) 5 g(Pj).

Theorem 3: Let c = 0. Assume that a single optimal solution
is sought. The necessary condition for TC(k,O) < TC(1,0)/k is
that the heuristic function is not completely consistent with g.

For a breadth-first search, no acceleration anomaly will
occur if the heuristic function defined in Eq. 4 is used. For a
best-first search, acceleration anomalies may exist if the level
number is not used in the heuristic function. It is important
to note that the condition in Theorem 3 is not necessary when
approximate solutions are sought. An example showing the
existence of an acceleration anomaly when h is completely con-
sistent with g is shown in Figure 2. A looser necessary condi-
tion is that h is not completely consistent with the lower-
bound test with approximation, that is, there exist Pi and P,
such that h(Pi) > h(P,) and P, L Pj.

6. MULTIPLE SUBPROBLEM LISTS
When there are multiple subproblem lists, one for each

processor, a node with the minimum heuristic value is selected
for decomposition from each local list. This node may not
belong to the global set of active nodes with the minimum
heuristic values; however, the node with the minimum heuris-
tic value will always be expanded by a processor as long as the
nodes are selected in a consistent order when there are ties.
Since it is easy to maintain the incumbent in a global data
register, the behavior of multiple lists is analogous to that of a
centralized list. However, the performance of using multiple
lists is usually worse than that of a single subproblem list [lo].

So far, we have shown conditions to avoid detrimental
anomalies and to preserve acceleration anomalies under lower-
bound tests only. The results are summarized in Table 1.
The corresponding results when dominance tests are used will
not be shown here due to space limitation [7].

214

Table 1. Summary of results for the elimination of detrimental
anomalies and the preservation of acceleration
anomalies in parallel B&B algorithms with lower-
bound tests.

Conditions: I: heuristic function satisfies Eq’s 5 and 6.
II: h is not completely consistent with g.
anomaly: the su5cient conditions are impractical.
exists: the necessary conditions are too loose.

7. ROBUSTNESS OF PARALLEL BEST-FIRST
SEARCHES

The preceding sections have shown that best-first
searches are more robust for parallel processing in the sense of
avoiding detrimental anomalies and preserving acceleration
anomalies. In this section we shown that best-first searches
are more robust as far as deceleration anomalies are concerned.

Figure 4 shows the computational efficiency of a parallel
optimal B&B algorithm using a best-first or a depth-first
search for solving knapsack problems in which the weights,
w(i), are chosen randomly between 0 and 100 and the profits
are set to be p(i)=w i)+ 10. The assignment used is intended

\ to increase the camp exity of the problem, In the simulations
each processor has a local memory. Load balancing is incor-
porated so that an idle processor with an empty subproblem
list can get a subproblem from its neighbor. It is observed
that the speedup is sensitive to T(l,O), and the speedup is
better for best-first searches. For instance, when 64 processors
are used, the average speedup is 48.8 for best-first searches and
27.9 for depth-first searches. Moreover, it should be noted
that the generalized heuristic search presented in Section 4
cannot guarantee T(k,,O) < T(k,,O), k, > k, > 1, for depth-first
and breadth-first searches. Similar results were observed for
vertex-cover problems.

The following theorem gives the performance bound of
parallel best-first searches. The maximum number of proces-
sors within which a near-linear speedup is guaranteed can be
predicted.

a-‘6
7i A 114

t -
2 f

oY. , * lo
1 2 3 4 5 6 7 a 9

log2(number of processors)

Figure 4. Average speedups and space requirements of paral-
lel optimal B&B algorithms for 10 knapsack prob-
lems with 35 objects (average T(1,0)=15180 for
best-first searches; average T(1,0)=15197 for
depth-first searches).

Theorem 4: For a parallel best-first search with k processors,
c=O, and g(Pi)#f’ if Pi is not an optimal-solution node (f’ is
the optimal-solution value),

where P is the maximum number of levels of the B&B tree to
be searched. Since the performance is not affected by using
single or multiple subproblem lists, the superscript in T is
dropped.

Since 9 is a polynomial function of (usually equal to the
problem size while T(l,O) is an exponential function o I the
problem size for NP-hard problems, the first term on the
R.H.S. of Eq. 7 is much greater than the second term as long
as the problem size is large enough. Eq. 7 implies that the
near-linear speedup can be maintained within a considerable
range of the number of processors for best-first searches. As
an example, if P ~50, T(l,O)=lO” (for a typical traveling-
salesman problem), and k=lOOO, then T(lOOO,O)< 1049. This
means that almost linear speedup can be attained with 1000
processors. Furthermore, it can be shown that there is always

monotonic increase in performance for all
r < k < k < dm. For this example, there will not be
any ’ detrimental anomaly for any combinations of
15 k, < k& 141 if the assumptions of Theorem 4 are satisfied.

Before ending this paper, it is worth saying a few words
about the space required by parallel B&B algorithms. In the
serial case, the space required by a best-first search is usually
more than that required by a depth-first search. Somewhat
surprisingly, the simulation results on O-l knapsack problems
show that the space required by parallel best-first searches is
not increased significantly (may also be decreased) until the
number of processors is so large that a near-linear speedup is
not possible. In contrast, the space required by parallel
depth-first searches is almost proportional to the number of
processors (Figure 4). Note that the space e5ciency is
problem-dependent. For vertex-cover problems, the space
required by parallel best-first searches is not increased
significantly regardless of the number of processors used.

REFERENCES

PI
PI

Finkel, R., “Parallelism in Alpha-Beta Search,” Artificial
Intelligence, (1982) 84106.
Ibaraki, T., “Theoretical Comparisons of Search Strategies
in Branch-and-Bound Algorithms,” Int? Jr. of Comp. and
Info. SC;., 5:4 (1976) 315-344.
Imai, M., T. Fukumura and Y. Yoshida, “A Parallelizz~
Branch-and-Bound Algorithm Implementation
Efficiency,” Systema, Computers, Controls, 10:3 (1979) 62-
70.
Kumar, V., and L. Kanal, “A General Branch-and-Bound
Formulation for understanding and synthesizing AND/OR
Tree-search Procedures,” Artificial Intelligence, 14 (1983)
179-197.
Lai, T.H. and S. Sahni, “Anomalies in Parallel Branch-
and-Bound Algorithms,” in Proc. 1983 Int’l Con/. on .
Parallel Proceasing, Bellaire, Michigan, Aug. 1983, pp.
183-190.
Lawler, E. L., and D. W. Wood, ‘)) Branch-and-Bound
Methods: A Survey,” Operations Research, 14 (1966) G99-
719.
Li, G.-J., and B. W. Wah, “Computational E5ciency of
Parallel Approximate Branch-and-Bound Algorithms,”
Tech. Report TR-84-6, School of Electrical Engineering,
Purdue University, West Lafayette, Indiana, March 1984;
a shorter version appears in Proc. 1984 Int’l Conf. on
Parallel Processing, Bellaire, Michigan, Aug. 1984.
Pearl, J., Heuristics, Addison-Wesley, 1984.
Smith, D. R., “Random Trees and the Analysis of
Branch-and-Bound Procedures,” Journal of the ACM, 31:l
(1984) 163-188.
Wah, B. W. and Y. W. Ma, “MANIP - A Multicomputer
Architecture for solving Combinatorial Extremum-Search
Problems,” IEEE Trans. on Computera, C-33:5, (1984)
377-390.

215

