
D-NODE RETARGETING IN BIDIRECTIONAL HEURlSTIC SEARCH 

George Politowski and Ire Fohl 

Computer and Information Sciences 
Uaivoruity of California, Santa Crux, CA 95064 

ABSTRACT 

AIthough it is generally agreed that bidirectional heuristic 
search is potentially more efficient than unidirectional heuristic 
search, so far there have been no algorithms which realize this 
potential. The basic difficulty is that the two search trees (one 
rooted at the start, the other at the goal) do not meet in the mid- 
dle. This results in essentiofly two unidirectional starches and 
poorer performance. In this paper we present an efficient olge 
rithm for bidirectional heuristic search which overcomes this 
difficulty. We also compare this algorithm with de Champeaux’s 
BHFFA (2331 on the basis of search efficiency, solution quality, 
and computational cost. 

I. INTRODUCTION 

,Searching for paths in very large graphs has been an impor- 
tant problem in AI research. Barr and Feigenbaum (11 gives an 
excellent overview of this area. In this paper we present a new 
algorithm for efficient bidirectionaf heuristic search. We demon- 
strate empirically that it is more efficient than other search 
methods, including previous bidirectional techniques [2,3,7,8]. 

The Heuristic Path Algorithm (HPA) (81 is a modified vet- 
sion of Dijkstra’s algorithm [4]. The specification of the evaluation 
function used to order the nodes is f =(1-w )*g +w*h , where g is 
the 1ength of the known path from the candidate node to the root 
of the search tree, h is the (heuristic) estimate of the distance 
(shortest path length) between the node and the goal, and w is a 
constant which adjusts the relative weights of the two terms. If w 
is zero, then HPA is equivalent to Dijkstra’s illgorithm. If w is less 
than or equal to one-half, and the heuristic estimate never exceeds 
the actual distance, and the edge costs in the graph are bounded 
Mow by some positive number, then HPA is still adminsibie (it. 
guaranteed to hnd the shortest path if any path exists) and consid- 
erably more efficient than breadth-first search. If w equals one. 
thin the search is calIed pure heuristic starch. 

Frequently heuristics which satisfy the admissibi1ity criterion 
are too weak to be of practical use. Also it is often the case that 
the length of the solution path is not of primary importance and 
finding any reasonable path is sufficient. In such caSeS it is gen- 
erally desirable to set w greater than one-half in HPA, or to use a 
more accurate (but non-admissible) heuristic, or both. These 
choices trade off path quality for search efficiency. 

It has been shown [9] that the efficiency of heuristic search 
may be improved if the search proceeds bidirectionally, i.e. if the 
search expands outwards from both the start and goal nodes until 
the searched areas overlap somewhere in between. Although this 
technique is guaranteed to improve non-heuristic breadth-first 
search in graphs of uniform density, it has so far not worked well 
with heuristic search because the expanded areas frequently do 
not meet ‘in the middle.’ In the worst case, bidirectional heuristic 

search performs worse than unidirectional heuristic search. Pohl 
[9] demonstrates this result for various models of error in tree 
spaces. Pohl [7] gives some data on bidirectional heuristic search 
using the l5puuie. The data was collected using a bidirectional 
version of the predecessor of HPA. This algorithm was first called 
the Very General Heuristic Algorithm (VGHA). Lawler [6] sum- 
marizes the potential efficiency of unidirectional and bidirectional 
search for both the heuristic and non-heuristic cases. 

De Champeaux [2,3] describes a Bidirectional Heuristic 
Front-to-Front Algorithm (BHFFA) which is intended to remedy 
the ‘meet in the middle’ problem. Data is included from a set of 
sample problems corresponding to those of PohI (71. The data 
shows that BHFFA found shorter paths and expanded less nudes 
than Pohl’s bidirectional algorithm. However, there are several 
problems with the data. One is that most of the problems are too 
easy to constitute a representative sample of the 15puzzle state 
space, and this may bias the results. Another is that the overall 
computational coat of the BHFFA is not adequately measured, 
although it is of critical importance in evaluating or selecting a 
search algorithm. A third problem concerns admissibility. 
Although the algorithm as formally presented is admissible, the 
heuristics, weightings, termination condition, and pruning involved 
in the implemented version all violate admissibility. This makes it 
difficult to determine whether the results which were obtained arc 
a product of the algorithm itself or of the particular implementa- 
tion. It is also difficult to be sure that the results would hold in 
the context of admissible search. One additional problem is that 
no data is presented to support the claim that the search trees did 
in fact meet in the middle, although our own tests of BHFFA indi- 
cate this result. 

In our current research we have attempted to avoid the pit- 
falls mentioned above. We have explicitly espoused non-admissible 
search and postponed all concerns about admissibiiity. We have 
conducted our tests on randomly generated (hard) problems. We 
have included data on how well the search trees met in the middle 
and on how costly the searches were. These precautions allow our 
data to be more easily interpreted and evaluated by other 
researchers. 

II. ANALYSIS AND DESCRIPTlON OF ALGORITHM 

As stated above, the main problem in bidirectional heuristic 
search is to make the two partial paths meet in the middle. The 
problem with Pohl’s bidirectional algorithm is that each search tree 
is ‘aimed’ at the root of the opposite tree. Pohl recognized this 
and compared the situation to two missiles ‘independently aimed 
at each others base in the hope that they would collide.’ [7, p. lO8] 
What is needed is some way of aiming at the front (i.e. the leaves) 
of the opposite tree rather than at its root. There are two advan- 
tages to this. First, there is a better chance of meeting the opv 
site front if you are aiming at it. Second, for most heuristics the 
aim is better when the target is closer. However, aiming at a front 

274 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



rather than a single node is somewhat troublesome since the 
heuristic function is only designed to estimate the distance 
between two nodes. One way to overcome this difficulty is to 
choose from each front a representative node which will be used 
as a target for nodes in the opposite tree. We call such nodes d- 
nodes, and in the following we discuss a simple scheme for choos- 
ing these nodes. 

Figure 1 

Consider a partially developed search tree, such as the one 
shown in Figure 1. The growth of the tree is guided by the heuris- 
tic function used in the search, and thus the whole tree is inclined, 
at least to some degree, towards the goal. This means that one can 
expect that on the average those nodea furthest from the root will 
also be closest to the goal. Based on the reasoning above, these 
nodes are the best candidates for the target to be aimed at from 
the opposite tree (not shown in figure). In particular, the very 
farthest node out from the root should be the one chosen. D-node 
seiection based on this criterion costs only one comparison per 
node generated. 

HPA 
We incorporated this idea 
in the following fashion: 

into a bidirectional version of 

1. Let rhe root node be the initial d-node in each tree. 
2. Advance the search n moves in either the forward or back- 

ward direction, aiming at the d-node in the opposite tree. At 
the same time, keep track of the furrhest node out, i.e. the 
one with the highest g value. 

3. After a moves, if the g value of the furthest node out is 
greater than the g value of the Iast d-node in this tree, then 
the furthest node out becomes the new d-node. Each time 
this occurs, all of the nodes in the opposite front should be 
re-aimed at the new d-node. 

4. Repeat steps 2 and 3 in the opposite direction. 

The above algorithm does not specify a 
Sufficient analysis may enable one to choose a good 

275 

value for n. 
value based on 

other search parameters such as branching rate, quality of heuris- 
tic, etc. Otherwise, an empirical choice can be made on the basis 
of some sample problems. In our work good results were obtained 
with values of II ranging from 25 to l25. A value of 75 was even- 
tually chosen for generating the data included in this paper. 

It is instructive to consider what happens when II is too large 
or too small because it provides insight into the behavior of the d- 
node algorithm. A value of I) which is too large will lead to per- 
formance similar to unidirectional search. This is not surprising 
since for a sufflcicntly large * a path will be found unidirection- 
ally before any reversal occurs. A value of I) which is too small 
will lead to poor performance in two respects. First, the runtime 
will be high because the overhead to re-aim the opposite tree is 
incurred too often. Second, the path quality will be lower (i&. the 

paths will be longer). To understand the reason for this it is 
necessary to consider Figure 1 again. Note that if there are ~vtral 
major branches in the search tree and a new target is being chosen 
after each move, then it is possible that successive targets arc not 
in the same branch. When this happens, it causes the opposite 
tree to be roaimed at a node which is not near the previous tar- 
get. If this happens very often, the result is a long ‘zig-zag’ path. 

III. THE TESTS 

The evaluation function used by the d-node search algorithm 
is the same as that used by HPA, namely f =(1-w )*g +w*h, except 
that h is now the heuristic estimate of the distance from a particu- 
lar node to the d-node of the opposite tree. This is in contrast to 
PohI’s algorithm, where h estimates the distance to the root of the 
opposite tree, and to unidirectional heuristic search, where Ir tsti- 
mates the distance to the goal. Our aim was to develop an algo- 
rithm which would perform well for a variety of heuristics and 
rtver a range of w values. With this in mind we decided to test 
our algorithm on a set of 50 problems with four different heuris- 
tics at three different w values. 

The 15puzzle was selected as a convenient and tractable 
problem domain. Appendix I shows the initial tile configurations 
for all So sample puzzles. Problems 1 through 10 are the same puz- 
zles used by Pohl [7] and de Champzaux (21 for their tests. Prob- 
lems 11 through 25 were generated by hand; included here are 
some systematic attempts at generating hard puzzles. Problems 26 
through 50 were randomly generated by a program. The exponen- 
tial nature of the problem space makes it highIy probable that ran- 
domly generated puzzles will be relalively hard, iz. their shortest 
solution paths will be relatively long with respect to the diameter 
of the state space. 

The four functions used to compute h are listed below. 
These functions were originally developed by Doran and hfichle 
[!?J, and they are the same functions as those used by Pohl and de 
Champeaux. 

1. h=P 
2. h =P +20&R 
3. h=S 
4. h =S +2O”R 

The three basic terms P , S, and R have the following definitions. 

1. P(o &)=xipl where pI is the Manhattan distance between 
the position of tile i in a and in b. 

2. s (0 b >=c jPlw5 where pf is as above and dl is the distance 
in a from tile i to the empty square. 

3. R (u a) is the number of reversals in u with respect to b . A 
reversal means that for adjacent positions i and j, o(i)=b(j) 
and u(j)=b(i). 

Finally, the w values which we used were 05, 0.75, and 1.0. 
This covers the entire ‘interesting’ range from w = 05, which will 
result in admissible search with a suitable heuristic, to w = 1.0, 
which is pure heuristic search. 

XV. THE RESULTS 

The results of our test of the d-node algorithm are shown in 
Table 1. For the purpose of comparison, we conducted identical 
tests on several other algorithms. These results are shown in 
Tables 2, 3, and 4 for unidirectional HPA, bidirectional HPA 
(Pohl’s algorithm), and de Champeaux’s BHFFA, respectively. For 
each algorithm, the set of 50 sample problems was run 12 times 
(once for each weighting of each heuristic); data was collected 
separately for each batch of problems. Listed below are the mean- 
ings of the code letters used in the tables. All of the averages 



were computed on the basis of solved puzzles only. The search 
was terminated after 3OCXl moves if no solution was found. 

TABLE 3 h = 1 h-2 h-3 h=4 

S 4 S 6 S 18 S 44 

I p 245 

w=OJ ; &;0 
N 1052.5 

P 30.7 P 693 P 80.1 
D 5.7 D 643 D 73.9 
M 12582 h4 1031.4 M 948.4 
N 24783 N 23532 N 22263 

S number of problems solved. 
P average path length. 
D average difference between the length of the partial path in 

the forward tree and the partial path in the backward tree. 
This is a measure of how well the paths met in the middle. 
(bidirectional onlyj 

M average number of moves, 
N average number of nodes generated. 
T average CPU time in seconds. 

T 143 T 42.0 T 43.9 T 43.6 

s 19 s 34 s 22 s 50 
P 
D 
M 
N 
T 

60.1 P 66.6 P 97.0 P 
51.0 D 59.4 D 91.0 D 

1507.7 M 12778 M 15695 M 
30815 N 26148 N 36076 N 

37.6 T 35.4 T 745 T 

99.4 
94.6 

6595 
15698 

262 
50 

120.6 
1163 
756.6 

17952 
29.9 

S 34 
P 1755 
D 1695 
M 17033 
N 3518.7 
T 31.9 

Table - Bidirectional I-PA 

w = 0.75 

TABLE11 h=l 1 h=2 1 h=3 

S 6 S 12 S 42 
P 323 P 42.0 P 1043 

w=OJ D 9.7 D 7.7 D 20.6 
M 784.0 M 11605 M 9955 
N 1600.0 N 23473 N 2277.8 
T 233 T 43-6 T 71.0 
S 41 s 50 s 47 
P 96.1 P 863 P 1812 

w = 0.75 D 203 D 179 D 28.0 
M 1170.0 M 701.6 M 1079.9 
N 24383 N 1466.9 N 2470.6 
T 375 T 253 T 936 
s 50 s 50 s 48 
P 280.4 P 1495 P 298.6 

w=l-o D 29.0 D 253 D 29.0 
M 909.6 M 4156 M 11442 
N 1917.4 N 8768 N 26501) 
T 315 T 143 T 1126 

Tabie 1 - D-node Algorithm 

h=4 
s 50 
P 95.0 
D 20.7 
M 469.7 
N 1103.4 
T 295 -- 
s 50 
P 120.1 
D 19.1 
M 3715 
N 878.1 
T 235 
s 50 
P 255.6 
D 25.4 
M 3863 
N 9185 
T 238 

w = I.0 

TABLE 4 h=l 

s 26 
P 816 
D 48 
M 10453 
N 21981) 
T 4268 
s 243 
P 135.4 
D 122 
M 985-U 
N 2086.9 
T 4059 

h=2 

s 44 
P 755 
D 4.4 
M 861.0 
N 1795.1 
T 5145 
S 47 
P 1253 
D 11.0 
M 825.5 
N 1750.6 
T 500.9 
S 50 
P 185.8 
D 20.0 
M g668.4 
N 18495 

, T 522.9 

h=3 h=4 

S 21 s 50 
P 98.6 P 78.4 
D 9.0 D 7.0 
M 9968 M 346.7 
N 2213.1 N 773.1 
T 10203 T 411.6 

w =OJ 

s 26 s 50 
P 1725 P 913 
D 105 D 10.4 
M 14t2.7 M 324.5 
N 3217.7 N 728.8 
T lXU3 T 384.2 

w = 0.75 

S 33 s 50 
P 2005 P 111.2 
D 132 D 13.7 
xi 1167.7 M 362.9 
N 2561.9 N 815.6 
T lL32.6 T 428.9 

S 43 
P 2532 
D 263 
M 1311.6 
N 27813 

LT 5433 
fi 

h=3 1 h=4 
I 

S 24 IS 46 
w = 1.0 P 693 P 813 

M 1373.8 M 827.4 
N 3087.0 N 1917.1 

I- 
T 933 1 T 47.7 

Table 4 - BHFFA 

saving is not as dramatic because the overhead rql 

S 
P 
M 
N 
T 

50 
1085 
6128 

1434 .o 
31.! ---_ 
50 

136.7 
544.4 

1277.1 
23.1 

662 
l231.4 
2517.0 

425 --.- 
49 

1588 
7203 

1506.0 

555 P 
1101.4 M 
2247.9 N 

34.9 T -!-- 
-76 I s 

2201 1 P 
15215 M 
31672 N 

lix 
node method is somewhat higher than it is in Pohl’s algorithm. 
The results also show that the performance of unidirectional HPA 
is comparable to Pohl’s bidircctioaa1 algorithm. S 

E’ 
M 
N 
T 

When comparing corresponding blocks in the tables it should 
be noted that S is the dominating statistic, i.e. if S differs greatly 
in two corresponding blocks, then the other data in the block are 
no longer directIy comparable. This is because the block with the 
smaller S represents the soIutioa of easier problems (ix. those with 
shorter paths) which means that P is sure to be smaIIer in that 
block, and more than likely M, N and T as wtI1. if two 
corresponding blocks have comparable values of S, then it ir rea- 
sonable to compare the other statistics. 

1 T 34.0 1 T 192 

Tabfc 2 - Unidirectional HPA 

The most significant result is that the d-node method dom- 
inates both previously published bidirectional techniques, regard- 
less of heuristic or weighting. In comparison to de Champeaux’s 
BHFFA, the d-node method is typicalIy 10 to 20 times faster. This 
is chiefly because the front-to-front calculations required by 
BHFFA are computationally expensive, even though the number 
of nodes expanded is roughly comparable for both methods. In 
comparison to PohI’s bidirectional algorithm, the d-node method 
typically solves far more probiems, and when solving the same 
pr&Iems it expands approximately half as many nodes. The time 

Another consideration concerning the data from BHF’FA is 
that the algorithm requires pruning to restrict the size of the 
fronts. This has various effects on the search results, depending 
on which pruning technique is used. We restricted the front size 
to 50 nodes by pruning off those nodes with the lowest g values. 
Previous tests which we conducted indicate that this technique 
accounts for the high number of solutions in the blocks in Table 4 
corresponding to heuristics 1 and 2 with w = 05. 

276 



V. FURTHER RESEARCH 

Further investigation of the d-node Plgorithm is planned. 
Preliminary work by Politowski aad Chapman oa higher dimen- 
sional sliding block puzzIes supports the current results. In the 
near future other combinatorial problems, such as the Rubik’s 
cube will bc similarly tested. Other areas to be worked on are 
path quaIity considerations (in&ding adrnissibiIity) and a better 
formal mode! for understanding the performance of this algorithm. 

ACKNOWLEDGEMENTS 

Some of the ideas in this paper are based on discussiun with 
and work of Brian Chapman, Dan Chenet, and Phil Levy. 

APPENDIX I 

GOAL: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - 
1: 12 3 4 5 6 7 81315141110 912 - 
2: 9 5 1 3 13 7 2 8 14 6 4 11 10 15 12 - 
3: 6 2 4 7 5 15 11 8 10 1 3 12 13 9 14 - 
4: 1 3 7 4 9 5 8 11 13 6 2 12 10 14 15 - 
5: 2 5 6 4 9 1 15 7 14 13 3 8 10 12 11 - 
6: 1 2 3 4 5 6 7 8 10 12 11 13 15 14 9 - 
7: 1 4 2 3 6 5 8 11 14 9 12 15 10 13 7 - 
8: 7l3111 - 4 14 6 8 5 2 12 10 15 9 3 
9: 15 1114 12 7 10 13 9 8 4 6 5 3 2 1 - 
10: 9 21310 512 7 414 l-1511 6 3 8 
11: 15 5 7 2l31011 412 9 - 8 114 3 6 
12: 13 I5 5 2 4 10 1 7 14 3 9 8 I.2 - II 6 

l3: 1214 4 611 513 215 3 9 110 8 7 - 
14: 11 5 12 14 10 - 74l339615812 
l5: 14 4 16 9lOl311 2 -12 8 315 7 5 
16: 912lOl3 4 7 114 211 5 - 815 6 3 
17: I5 512 811 414 19 213 6 3 7 -10 
18: I3 7 5 814 110 - 4 9l511 2 3 6I2 
19: -151413121110 9 8 7 6 5 4 3 2 1 
20: 2 14 3 6 5 8 710 912111415l3 - 
21: l514l3121110 9 8 - 7 6 5 J 3 2 1 
22: - 4 9 3 6 214 715 5 1810111312 
23: 613 9 1311 7 -1215 51410 4 2 8 
24: - 10 1 6 2 13 14 12 11 8 5 9 3 15 4 7 
25: 5 6 7 g 9101112131415 - 12 4 3 
26: 10 15 -1513 2 8 9 712 6 3 41114 
27: 4 113 71011 5 6 - 8 3 91415 212 
28: 7 1 13 15 6 9 11 8 4 5 - 10 12 14 3 2 
29: 4 - 1 15 13 3 9 11 7 10 12 8 5 14 6 2 
30: 14 19 5 713 411 -1Ol2l5 3 8 2 6 
31: 7 - 1 10 12 11 9 8 5 6 3 14 2 13 15 4 
32: 1 2 10 15 6 8 14 7 - 9 4 13 5 11 12 3 
33: 10 12 4l3 815 - 314 7 6 91112 5 
34: 4 11012 91413 211 - 6 8l5 3 7 5 
35: l3 12l5 3 81411 412 - 7 910 6 5 
36: 5 114 4llU 8l5 912 6 7 - 310 2 
37: - 3 7 10 5 11 13 12 2 15 1 6 8 14 4 9 
38: 14 3111213 4 2 7 9 6 -10 5 115 8 
39: 7 2 315 -14 8l311 1910 412 6 5 
40: 1 4 12 6 10 13 3 5 11 7 9 15 2 14 8 - 
41: l533- 5 14 6 13 7 10 8 1 11 4 9 12 2 
42: 8 3 710 9 511 ll5 -1312 214 4 6 
43: 12 4 8 5 9 113 71011 - 61514 3 2 
44: 4 215 9 - 3 6 10 S 11 I2 7 13 8 1 14 
45: I5 4 8 14 10 - 2 91312 111 3 7 5 6 
46: - 5131015 2 19 314 6 4 7 81ll2 
47: 10 5 6 - 9 3 12 14 13 1 4 7 11 8 2 l.5 
48: 3 513 4 - 6 11 8 l5 10 9 14 1 12 2 7 
49: I.3 5 6 9 10 - 15 3 7 8 4 114 12 2 11 
50: - 5 6 41012 2 3 9 8 1714Ul511 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

Barr, A. and E. A. Fcigenbaum, eds., The Handbook of 
Artificial InteIIigence, (WiiIiam Kaufmana, Inc., Los Altos, 
CA, 1981). 

De Champeaux, D. aad L. Sint, ‘An Improved Bidirectional 
Heuristic Search Aigorithm,’ (Journal of the ACM, Vol. 24, 
No. 2, April 1977, pp. 177-191). 

De Champeaux, D., ‘Bidirectional Heuristic Search Again,’ 
(Journal of the ACM, Vol. 30, No. 1, January 1983, pp. 22- 
W 

Dijkstra, E., ‘A note oa two problems in connection with 
graphs,’ (Numerische Mathematik, Vol. 1.1959, pp- 269-271). 

Doraa, J. and D. Michie, ‘Experiments with the Graph 
Traverser program,’ (Proceedings of the Royal Society A, 
Vol. 294,1966, pp. 235-259). 

Lawler, E. L., M. G. Luby and B. Parker, ‘Finding Shortest 
Paths in Very Large Networks,’ (unpublished, 1983). 

Pohl, I., ‘Bi-directional and Heuristic Search in Path Prob- 
lems,‘ (SLAC Report 104, Stanford Univ., Stanford, CA, 
1969). 

PohI, I., ‘Bi-directional Search,’ (Machine Intelligence, Vol. 
6, 1971, pp. X27-140). 

Pohl, I., ‘Practical and Theoretical Considerations in Heuris- 
tic Search Algorithms,’ (Machine IntelIigeace, Vol. 8, 1977, 
pp. 55-72). 

277 


