
Knowledge Inversion

Yoav Shoham

Drew V. McDermott

Department of Computer Science
Yale University

Box 2158 Yale Station, New Haven, CT. 00520

Abstract

We define the direction of knowledge, and what it means to

extend that direction. A special case is function inversion, and

we give three algorithms for function inversion. Their

performance on non-trivial problems and their shortcomings

are demonstrated. All algorithms are implemented in Prolog-

1 Introduction.

Given a manual describing how to assemble a machine, we

can usually use that manual to disassemble the same machine;

given our knowledge of differentiation of algebraic functions,

we can integrate a variety of functions. On the other hand

while it is trivial to disarrange Rubik’s Cube it is less trivial to

arrange it, as many have discovered to their frustration. We

can then ask ourselves two questions:

0 Can we characterize the instances of “easily
invertible” knowledge?

l Can we automate the inversion of procedural
knowledge in those easy cases?

In this paper we mainly ignore the first question, but give a

partial positive answer to the second one. We present

essentially three different algorithms for function inversion and

demonstrate their power and weaknesses.

Our algorithms are implemented in Prolog ([Clocksin &

hlellish Sl]), which may seem at first a bit strange since the

popular view of Prolog is as a “declarative’ language. In

section 2 we dispel this optical illusion which oddly enough is

sometimes encouraged by the logic programming community

itself. Our algorithms could be written in any applicative

language that employs backtracking; Prolog happens to be

particularly convenient because of the explicit representation of

the output variables (or perhaps this is a post-hoc
rationalization by the first author of his enthusiasm for the

language - the reader may be the judge of that). We do not

rely on the formalism of logic programming, but the reader is

expected to have a basic understanding of deductive systems

‘This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense and monitored under the Office of
Naval Research under contract N00014-83-K-0281

like Prolog or DUCK ([M c D ermott 821) and of the syntax of

Prolog.
2 Directed relations.

Consider the familiar Quicksort, defined by, say:

qsort([HITl.S) :-
split(H,T,A,B),!,
qsort(A,Al),
qsort(B,Bl),
append(Al,[HlBll,S).

qsort([I, El>.

split(H.[A~X],[AIY],Z) :-
order(A,H), split(H,X,Y,Z).

split(H,[AIXl,Y,[AIZI) :-
order(H,A), split(H,X,Y,Z).

sp 1 i tL, [I, [I , 111).

order(A,B) :- AcEI.

One would expect invocation of the goal qsort(X, [1,2,31> to

bind X successively to all six permutations of [1,2,3]. What in

fact will happen is that the interpreter will return two error

messages and fail. Other cases are still worse - replacing

Quicksort by Insertionsort will cause the interpreter to go into

an infinite recursion, and similar disasters will happen with

Bubblesort.

The problem is obviously that goals are invoked with the

“wrong” arguments instantiated. In this case we might say

that sortname(X,Y) is a function2 from X to Y rather than a

relation on X and Y. More generally one can make the

following definitions:

Definition: A Prolog predicate R with a given intended
extension is said to be a function from Sl to S2 if <Sl,S2>
is a partition of the set of all variables appearing in R, and
for all invocations of R with all the variables in Sl
instantiated, all the tuples in the intended extension of R
matching the instantiation of variables in Sl will be fairly
generated.

For our purposes a partition of a set S is a tuple <Sl,S2>
of disjoint sets whose union is S. A fair generation of a
sequence is one in which any given element is generated
after a finite amount of time.

Deffnition: A Prolog predicate R with a given intended
extension is said to be D-directed relation if D is a set of

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

tuples {<Sli,SL?i>} such that R is a function from Sli to
S2i for all i. Note that a function from Sl to S2 is a special
case of a directed relation, one that is {<Sl,S2>}-directed.

Definition: A Prolog predicate R is called complete if it is
D-directed for D the set of all partitions of the set of
variables in R.

It is not immediately clear what the direction a given

predicate in a given program is - the traditional view

encourages regarding it as complete, while typically it is

written as a function. However once a predicate is identified as

a function a question that arises naturally is whether its

directionality can be extended, perhaps even so as to make it

complete (in the latter case we will say that the predicate had

been completed). A special case is where the directed relation

is a function from Sl to S2, and we want to extend it to be

{ <Sl,S2>,62,Sl>}-d irected, that is we want to invert the

function. In another paper ([Shoham & McDermott 841) we

describe a general procedure for exploring a directionality of a

given predicate in a given program. Here we restrict the

discussion to function inversion, which is the subject of the

next section.

3 Function inversion

The general problem of function inversion is hard and

suggests some immediate caveats. For example a solution to

the general problem would yield a factoring algorithm and a

statement on Fermat’s last theorem. Remember however that

we are not trying to invert all functions, but rather are

investigating which ones are easily invertible. Thus the

algorithms we present are really heuristics for function

inversion. In this section we are concerned with a detailed

description of the algorithms and their performance; we return

to more global considerations in section 4.

296

We first present a simple inversion algorithm which stated

roughly

reverse

says “Given a conjunctive goal

order. Given a single goal

solve the conjuncts in

reduce it if possible,

otherwise execute it”. The precise Prolog implementation is

given in Figure 1.

When we apply the above algorithm to the sorting program

from section 2 we observe the following behavior:3

Example 1:
inverting Quickeort

1.
I ?- invgoal(

qsortK[1,2,31)

X = [1,2,31 ;

*Since our formalization ser ves mainly to provide intuition for the
remainder of the paper, we allow ourselves some freedom in using the
terminology. As we will define the term /unction it will always denote a
nondeterminstic function.

X = [1,3,2] ;
X = [2,1,3] ;
X = [2,3,11 ;
X = [3,1,2] ;
X = [3,2,1] ;
no
I ?-

which is indeed what is required. However this inversion

procedure is too simplistic as it does not take into account

some of Prolog’s idiosyncracies. In Figure 2 we present a

procedure that adopts the same basic algorithm, but pays more

respect to special Prolog features.

Armed with this slightly more meaty

some more inversions. The next example

algorithm we can do

brings us back to our

original motivation, that of inverting the solution of counting

problems in combinatorics. Since the example is not trivial,

and because we think automating the solution of problems in

combinatorics is of interest in itself, this example will be a bit

long and the reader’s indulgence is requested. In [Shoham 841

we describe a program (FAME I) for proving combinatorial

equalities by combinatorial arguments. The general structure

of proving two expressions equal by a combinatorial argument

is showing that both are a correct solution to the same

counting problem. An example of an equality is

N*c(N-l,R-l)=R*c(N,R), where c(X,Y) stands for “X choose

Y”. An example of a combinatorial proof of this equality is

that both describe the number of ways to choose a team of R

players from N candidates and appoint a captain from among

them. The first expression describes the process of first

choosing the captain and then the rest of the team, and the

second expression describes the process of first choosing the

whole team and then the captain. In that paper we pointed

out the shortcomings of our program, namely that the

knowledge of counting was only implicit in it and there was no

obvious way to gracefully extend the program to handle other

problems in combinatorics. The “correct” way to go about it,

we said, was to write a program (FAME II) that solved

counting problems. Then another program could be written

that used the knowledge of FAME II to synthesize a program

similar to FAME I, by inverting the knowledge of counting.

Figure 3 is an example of a counting problem solved by

FAME II (translated into English it reads “In how many ways

can you choose a set set2 of size r from a set set1 of size n,

and choose a set set3 of size 1 from set2?“).

We now ask the converse question - “What counting

problem is the expression c(n,r)*c(r,l) a solution to” by

inverting count. The result is shown in figure 4.

3All the examples
version 3.47.

in this paper were done on a running Prolog- 10

invgoal((A,B)) :- !, invgoal(B),invgoal(A).

invgoal(A) :- !,clause(A,B),invgoal(B).

invgoal(A) :- call(A).

Figure 1: Algorithm 1: A simple inversion

invgoal(invgoal(X)) :- call(X).

invgoal(assert(X)) :- retract(X).

invgoal(asserta(X)) :- retract(X).

invgoal(retract(X)) :- assert(X).

invgoal(A is B+C) :- var(B),B is A-C. % and any other

invgoal(A is B+C) :- var(C),C is A-B. % mathematical inversions

invgoal(A is B-C) :- var(B),B is A+C. % needed; see below.

invgoal(A is B-C) :- var(C),C is B-A. %

invgoal(A is -B) :- B is -A. %

invgoal((A,B)) :- ! ,invgoal(B),invgoal(A).

invgoal(A) :- !,clause(A,B),invgoal(B).

invgoal(A) :- call(A).

Figure 2: . Algorithm 2: A less simple inversion,

1 ?- count([(setl,n),(set2,r),(set3,1)],

[subset(set3,set2),subset(set2,setl)],

Solution).

Solution = c(r,l)*c(n,r)

Figure 3: Solving a counting problem 1 ?- inv(gensgm(X,input7)).

1 ?- invgoal(count(X,Y,c(n,r)*c(r,l))).

** Error: evaluate(-246)

X = ((_241,r),(_368,1),(_242,n)l_832],

Y = jsubset(-241,- 242),subset(-368,-241)] ;

X = 1(_369,r),(_368,1),(_242,n),(_241,1)1_948],

Y = (subset(-241,- 242),subset(-368,-369))

Figure 4: Example 2: inverting Count

The next algorithm, Algorithm 3, may seem at first sight

like an elaborate version of Algorithm 2. It has two phases - in

the first interactive phase the system inverts functions, asserts

their inverse to the database and writes them to a file - all

according to the user’s specification. In the second

independent phase the inverted code is simply run. As it is

presented here, the inverse of a function F is called i nv (F) .

The algorithm traverses the computation tree and whenever a

goal is unifiable with a head of a clause A : - B, the user is

given the choice of continuing along that branch of the tree or

quitting it. Continuing means asserting the clause i nv(A)

: - i nv (B) , and recursing on B.4 This is in contrast to the

previous algorithm where if a goal is unifiable with a head of a

clause the algorithm will definitely recurse on the body of that

clause. The advantage of Algorithm 3 is that the user can

detect infinite recursion during the inversion phase, and

prevent it from occurring during runtime. The disadvatage is

that when the user decides to quit pursuing a branch of the

tree he may lose information. The example we choose is the

inversion of a function with side effects. The predicate gensym

is defined in [Clocksin & Mellish 811 (p. 150) and since our

definition is very similar we will not repeat it here.

I ?- findinv(gensym(X,Y)).

Do you want the resulting code asserted in the database? (y/n)

I: Y.

(Where) do you want to save the resulting code? (filename/no)

I: no.

Do you want to invert the goal gensym(-31,-52)? (y/n)

I: Y.

X = input

yes

1 ?-

Figure 5: Example 5: inverting gensym

Finally, we demonstrate that the above algorithms will not

suffice to invert all functions. Consider the following program:

f([alXl> :- g(X).
f([blXI) :- g(X).

gUc,-I) *
g(X) :- f(X).

‘The limitations imposed on the length of this presentation prohibit a
TTWP detailed descriotion of the alnorithm or a comtAete I/O 10~.

Considered as a function from [X] to fl, f(X) acts as

recognizer for the regular language (a+b)*.c.C. Inverting f

would cause it to act as a “fair” generator of the same

language (in the sense defined in section 2). The reader should

convince himself that none of the above algorithms will invert

At this point we should mention an obvious non-solution to

all inversion problems (and predicate redirection in general)

- conduct a breadth-first search of the computation tree. Both

aspects of its %on-solutioness’ (namely, its theoretical

completeness and impracticality) can be demonstrated on the

above program. We have implemented a breadth-first theorem-

prover in Prolog; invoking the goal bf (G) will initiate such a

proof.

Example 6: Generating the language (a+b)*.c.C

I ?- bf(f(X)).

X = [a,c,-3121 ;
X = [b.c.-5161 ;
X = [a,a,c,-13421 ;
X = [a,b,c,-16181 ;

X = [b,b,a,a,c,-148651 ;
X = [b,b,a,b,c,-153981 ;
X = Cb,b.b,a,c,-159411 ;

! more core needed
[Execution aborted 1

4 Related work,. Summary, Further Research.

4.1 Discussion of related work.

In 1950 hlcCarthy addressed the problem of inverting

recursive functions [hlcCarthy 561, pointing out the difficulty

of the problem.’ The one method he discussed explicitely is

the enumeration procedure, which is the analog of proving a

theorem by systematically generating English text and testing

to see if the text is a correct proof of the theorem. He

speculated on what, would be needed to improve upon this

procedure, and one can consider the work described here a

cant inuat ion of those speculations.

More recently Dijkstra has also considered the problem of

program inversion. In [Dijkstra 831 he gives a (manual)

inversion of the vector inversion problem. As he himself says,

5We do not agree with his claim there that solving any “well specified”
problem amounted to the inversion of some Turing Machine. In our
notation a specification procedure is a {<S,[]>}-directed relation R (i.e. a
function) for some S and R, while the algorithm solving it is not the
{ <[],S>}-directed R but rather the {<Sl,S2>}-directed R for some
partition <Sl,S2> of S. This however does not affect the relevance 01 his
subsequent discussion of inverting functions defined by Turing Machines.

that inversion is straightforward because “the algorithm is

deterministic and no information is lost”, while the general

inversion problem remains open.

In an interesting paper Toffoli ([Toffoli 80)) suggests a way

of transforming any computational circuit to an equivalent

invertible one with a worst case additional cost of doubling the

number of channels. While the scope of this paper does not

permit a detailed discussion of his work, there are two basic

ideas - add “redundant” information to insure function

inversion, and try to reduce entropy by making the redundant

information to one function be essential information for

another function. The motivation behind that work is different

from ours, but we feel that the two basic ideas may carry over

(see last subsect ion). Other references to theoretical work on

reversible computations are [Bennett 731, [Burks 711, [Toffoli

771.

4.2 Summary.

l We suggest viewing Prolog predicates as denoting
directed relations. For a predicate denoting a
relation with a certain direction, we asked whether
its direction can be extended. A major part of the
paper has been concerned with the special case of
function inversion.

l We have presented two effective algorithms for
inverting functions - Algorithm 2 and Algorithm 3.
Both involve reversing the bodies of encountered
clauses, but the latter is more selective in which
clauses are inverted. Both allow for extra-logical
features of Prolog, namely inverting assert/retract
and arithmetic operations. The treatment of the
latter is very cursory and ad-hoc, and if any non-
trivial inversion of mathematical functions is
desired the question of the representation of
mathematical objects requires closer attention.

l It has been demonstrated that these algorithms are
effective in some non-trivial cases, and that there
exist functions not invertible by either. The exact
characterization of functions invertible by each
algorit,hm has not been given (see discussion below).

l A complete yet impractical algorithm for predicate
redirection has been presented (namely a breadth-
first search of the computation tree) and its
performance has been demonstrated.

4.3 Further research.

We repeat the two questions posed in the introduction:

0 Can we characterize the instances of “easily
invertible” knowledge?

l Can we automate the inversion of procedural
knowledge in those easy cases?

As we said there, we only gave a partial answer to

question. The task remains, then, to complete that

the second

answer and

provide one for the first question. Several ways of approaching

the first half of the task suggest themselves. First, we have not

explored the power of combining techniques - for example

perform Algorithm 2 and add the clause i nvgoa I (bf (G) >

: - bf (G). A related issue that needs exploring is how to make

ail implicit knowledge explicit. For example, if we write the

definite clause f (X, X, Z) with the intention that f(X,Y,Z) be

used as a function from [X,Y] to [Z], we sometimes ignore

additional (overdetermining) information, for example that if

X=Y then Z=[]; th is sort of information may be crucial for

the inversion of f.

While we have mentioned and discredited BFS as a sole

strategy for searching the computation tree, we have not

mentioned other possible strategies. One obvious candidate is a

probablistic one - the interpreter could flip a coin to decide on

which clause to resolve against the current goal, and even to

decide on the ordering of a clause body. Another approach

could be more in the spirit of mainstream AI, that the choice

of ordering itself be a knowledge-intensive problem solving

task. A recent paper ([Smith & Genesereth 831) has concerned

itself with part of the problem, that of deciding on the optimal

ordering of conjuncts in the simple case where those conjuncts

resolve only against unqualified assertions in the data base

(that is, no further inference is necessary).

Finally, Toffoli’s work suggests both an approach for

answering the first question as well a technique answering the

second one. It implies that one should look for an appropriate

measure of entropy in the computation, and try to minimize it.

In the case where the entropy is zero the computation is

invertible. Where the we cannot eliminate the loss of

information, we should try to supply excess information at the

start, so that we could reconstruct just the “right” subset of it

later. This also suggests application of the automatic

programming paradigm, whereby the process of adding

redundant information to an existing piece of code is

automated.

We have allowed ourselves some free speculation in this last

subsection, which reflects our excitement with the possibilities.

It is not clear why the problem has been largely neglected - for

example in the survey of machine learning ([Michalski et al

831) there is no ment)ion of knowledge inversion as part of skill

acquisition. Whether knowledge inversion is classified as part of

a learning process or not it see& a fundamental capability of

people, and AI will benefit much frqm a better understanding

of it.

ACKNOWLEDGMENTS

Thanks go to Tom Dean, Stan Letovsky, Dave Miller and Jim

Spohrer for helpful comments on previous drafts. We &o thank one

referee for correctly pointing out related work by S. Sickel of which

we had not been aware.

References
[Bennett 731 Bennett, C.H.

Logical Reversibility of Computation.
IBM J. Res. Dev. 6, 1973.

(Burks 711 Burks, A.W.
On Backwards-Deterministic, Erasable, and

Garden-of-Eden Automata.
Technical Report 012520-4-T, Comp. Comm.

Sci. Dept., University of Michigan, 1971.
[Clocksin & Mellish 811

[Dijkstra 83)

Clocksin, W.F. and Mellish, C.S.
Programming in Prolog.
Springer-Verlag, 1981.
Dijkstra, E.W.

[McCarthy 561

[McDermott 821

In Shannon, C.E. and McCarthy, J. (editor),
Automata Studies, . Princeton University,
Press, 1956.

McDermott, D.V.
DUCK: A Lisp-Based Deductive System.
Yale University, Department of Computer

. Science , 1982.
[Michalski et al 83)

Michalski, R.S., Carbone!!, J.G. and Mitchell,
T.M.
Machine Learning: An Artificial Intelligence

approach.

,!iJ’WD671: Program Inversion.
Springer-Verlag, 1983, .
McCarthy, J.
The Inversion of Functions Defined by Turing

Machines.

[Shoham 841
Tioga, 1983.
Shoham, Y.
FAME: A Prolog Program That Solves

Problems in Combinatorics.
In Proc. 2nd Intl. Logic Programming Conf..

Uppsala, Sweden, 1984.
to appear.

[Shoham & McDermott 841
Shoham,Y. and McDermott, D.V.
Prolog Predicates as Denoting Directed

Relations.
submitted , 1984.

[Smith & Genesereth 831
Smith, D.E. and Genesereth, M.R.
Ordering Conjuncts in Problem Solving.
Computer Science Department, Stan ford

Uniuersity , 1983.
unpublished at this time.

[Toffoli 771 Toffoli, T.
Computation and Construction Universality

of Reversible Cellular Automata.
J. Comp. Sys. Sci. 15, 1977.

[Toffoli 801 Toffoli, T.
Reversible Computing,
Technical Report MIT/LCS/TM-151,

Laboratory for Computer Science, MIT,
February, 1980.

299

