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Abstract 

We define the direction of knowledge, and what it means to 

extend that direction. A special case is function inversion, and 

we give three algorithms for function inversion. Their 

performance on non-trivial problems and their shortcomings 

are demonstrated. All algorithms are implemented in Prolog- 

1 Introduction. 

Given a manual describing how to assemble a machine, we 

can usually use that manual to disassemble the same machine; 

given our knowledge of differentiation of algebraic functions, 

we can integrate a variety of functions. On the other hand 

while it is trivial to disarrange Rubik’s Cube it is less trivial to 

arrange it, as many have discovered to their frustration. We 

can then ask ourselves two questions: 

0 Can we characterize the instances of “easily 
invertible” knowledge? 

l Can we automate the inversion of procedural 
knowledge in those easy cases? 

In this paper we mainly ignore the first question, but give a 

partial positive answer to the second one. We present 

essentially three different algorithms for function inversion and 

demonstrate their power and weaknesses. 

Our algorithms are implemented in Prolog ( [Clocksin & 

hlellish Sl]), which may seem at first a bit strange since the 

popular view of Prolog is as a “declarative’ language. In 

section 2 we dispel this optical illusion which oddly enough is 

sometimes encouraged by the logic programming community 

itself. Our algorithms could be written in any applicative 

language that employs backtracking; Prolog happens to be 

particularly convenient because of the explicit representation of 

the output variables (or perhaps this is a post-hoc 
rationalization by the first author of his enthusiasm for the 

language - the reader may be the judge of that). We do not 

rely on the formalism of logic programming, but the reader is 

expected to have a basic understanding of deductive systems 
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like Prolog or DUCK ( [M c D ermott 821) and of the syntax of 

Prolog. 
2 Directed relations. 

Consider the familiar Quicksort, defined by, say: 

qsort([HITl.S) :- 
split(H,T,A,B),!, 
qsort(A,Al), 
qsort(B,Bl), 
append(Al,[HlBll,S). 

qsort( [I, El>. 

split(H.[A~X],[AIY],Z) :- 
order(A,H), split(H,X,Y,Z). 

split(H,[AIXl,Y,[AIZI) :- 
order(H,A), split(H,X,Y,Z). 

sp 1 i tL, [I, [I , 111). 

order(A,B) :- AcEI. 

One would expect invocation of the goal qsort(X, [1,2,31> to 

bind X successively to all six permutations of [1,2,3]. What in 

fact will happen is that the interpreter will return two error 

messages and fail. Other cases are still worse - replacing 

Quicksort by Insertionsort will cause the interpreter to go into 

an infinite recursion, and similar disasters will happen with 

Bubblesort. 

The problem is obviously that goals are invoked with the 

“wrong” arguments instantiated. In this case we might say 

that sortname(X,Y) is a function2 from X to Y rather than a 

relation on X and Y. More generally one can make the 

following definitions: 

Definition: A Prolog predicate R with a given intended 
extension is said to be a function from Sl to S2 if <Sl,S2> 
is a partition of the set of all variables appearing in R, and 
for all invocations of R with all the variables in Sl 
instantiated, all the tuples in the intended extension of R 
matching the instantiation of variables in Sl will be fairly 
generated. 

For our purposes a partition of a set S is a tuple <Sl,S2> 
of disjoint sets whose union is S. A fair generation of a 
sequence is one in which any given element is generated 
after a finite amount of time. 

Deffnition: A Prolog predicate R with a given intended 
extension is said to be D-directed relation if D is a set of 
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tuples {<Sli,SL?i>} such that R is a function from Sli to 
S2i for all i. Note that a function from Sl to S2 is a special 
case of a directed relation, one that is {<Sl,S2>}-directed. 

Definition: A Prolog predicate R is called complete if it is 
D-directed for D the set of all partitions of the set of 
variables in R. 

It is not immediately clear what the direction a given 

predicate in a given program is - the traditional view 

encourages regarding it as complete, while typically it is 

written as a function. However once a predicate is identified as 

a function a question that arises naturally is whether its 

directionality can be extended, perhaps even so as to make it 

complete (in the latter case we will say that the predicate had 

been completed). A special case is where the directed relation 

is a function from Sl to S2, and we want to extend it to be 

{ <Sl,S2>,62,Sl>}-d irected, that is we want to invert the 

function. In another paper ( [Shoham & McDermott 841) we 

describe a general procedure for exploring a directionality of a 

given predicate in a given program. Here we restrict the 

discussion to function inversion, which is the subject of the 

next section. 

3 Function inversion 

The general problem of function inversion is hard and 

suggests some immediate caveats. For example a solution to 

the general problem would yield a factoring algorithm and a 

statement on Fermat’s last theorem. Remember however that 

we are not trying to invert all functions, but rather are 

investigating which ones are easily invertible. Thus the 

algorithms we present are really heuristics for function 

inversion. In this section we are concerned with a detailed 

description of the algorithms and their performance; we return 

to more global considerations in section 4. 
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We first present a simple inversion algorithm which stated 

roughly 

reverse 

says “Given a conjunctive goal 

order. Given a single goal 

solve the conjuncts in 

reduce it if possible, 

otherwise execute it”. The precise Prolog implementation is 

given in Figure 1. 

When we apply the above algorithm to the sorting program 

from section 2 we observe the following behavior:3 

Example 1: 
inverting Quickeort 

1. 
I ?- invgoal( 

qsortK[1,2,31) 

X = [1,2,31 ; 

*Since our formalization ser ves mainly to provide intuition for the 
remainder of the paper, we allow ourselves some freedom in using the 
terminology. As we will define the term /unction it will always denote a 
nondeterminstic function. 

X = [1,3,2] ; 
X = [2,1,3] ; 
X = [2,3,11 ; 
X = [3,1,2] ; 
X = [3,2,1] ; 
no 
I ?- 

which is indeed what is required. However this inversion 

procedure is too simplistic as it does not take into account 

some of Prolog’s idiosyncracies. In Figure 2 we present a 

procedure that adopts the same basic algorithm, but pays more 

respect to special Prolog features. 

Armed with this slightly more meaty 

some more inversions. The next example 

algorithm we can do 

brings us back to our 

original motivation, that of inverting the solution of counting 

problems in combinatorics. Since the example is not trivial, 

and because we think automating the solution of problems in 

combinatorics is of interest in itself, this example will be a bit 

long and the reader’s indulgence is requested. In [Shoham 841 

we describe a program (FAME I) for proving combinatorial 

equalities by combinatorial arguments. The general structure 

of proving two expressions equal by a combinatorial argument 

is showing that both are a correct solution to the same 

counting problem. An example of an equality is 

N*c(N-l,R-l)=R*c(N,R), where c(X,Y) stands for “X choose 

Y”. An example of a combinatorial proof of this equality is 

that both describe the number of ways to choose a team of R 

players from N candidates and appoint a captain from among 

them. The first expression describes the process of first 

choosing the captain and then the rest of the team, and the 

second expression describes the process of first choosing the 

whole team and then the captain. In that paper we pointed 

out the shortcomings of our program, namely that the 

knowledge of counting was only implicit in it and there was no 

obvious way to gracefully extend the program to handle other 

problems in combinatorics. The “correct” way to go about it, 

we said, was to write a program (FAME II) that solved 

counting problems. Then another program could be written 

that used the knowledge of FAME II to synthesize a program 

similar to FAME I, by inverting the knowledge of counting. 

Figure 3 is an example of a counting problem solved by 

FAME II (translated into English it reads “In how many ways 

can you choose a set set2 of size r from a set set1 of size n, 

and choose a set set3 of size 1 from set2?“). 

We now ask the converse question - “What counting 

problem is the expression c(n,r)*c(r,l) a solution to” by 

inverting count. The result is shown in figure 4. 

3All the examples 
version 3.47. 

in this paper were done on a running Prolog- 10 



invgoal((A,B)) :- !, invgoal(B),invgoal(A). 

invgoal(A) :- !,clause(A,B),invgoal(B). 

invgoal(A) :- call(A). 

Figure 1: Algorithm 1: A simple inversion 

invgoal(invgoal(X)) :- call(X). 

invgoal(assert(X)) :- retract(X). 

invgoal(asserta(X)) :- retract(X). 

invgoal(retract(X)) :- assert(X). 

invgoal(A is B+C) :- var(B),B is A-C. % and any other 

invgoal(A is B+C) :- var(C),C is A-B. % mathematical inversions 

invgoal(A is B-C) :- var(B),B is A+C. % needed; see below. 

invgoal(A is B-C) :- var(C),C is B-A. % 

invgoal(A is -B) :- B is -A. % 

invgoal((A,B)) :- ! ,invgoal(B),invgoal(A). 

invgoal(A) :- !,clause(A,B),invgoal(B). 

invgoal(A) :- call(A). 

Figure 2: . Algorithm 2: A less simple inversion, 

1 ?- count([(setl,n),(set2,r),(set3,1)], 

[subset(set3,set2),subset(set2,setl)], 

Solution). 

Solution = c(r,l)*c(n,r) 

Figure 3: Solving a counting problem 1 ?- inv(gensgm(X,input7)). 

1 ?- invgoal(count(X,Y,c(n,r)*c(r,l))). 

** Error: evaluate( -246) 

X = ((_241,r),(_368,1),(_242,n)l_832], 

Y = jsubset(-241,- 242),subset(-368,-241)] ; 

X = 1(_369,r),(_368,1),(_242,n),(_241,1)1_948], 

Y = (subset(-241,- 242),subset(-368,-369)) 

Figure 4: Example 2: inverting Count 

The next algorithm, Algorithm 3, may seem at first sight 

like an elaborate version of Algorithm 2. It has two phases - in 

the first interactive phase the system inverts functions, asserts 

their inverse to the database and writes them to a file - all 

according to the user’s specification. In the second 

independent phase the inverted code is simply run. As it is 

presented here, the inverse of a function F is called i nv (F) . 

The algorithm traverses the computation tree and whenever a 

goal is unifiable with a head of a clause A : - B, the user is 

given the choice of continuing along that branch of the tree or 

quitting it. Continuing means asserting the clause i nv(A) 

: - i nv (B) , and recursing on B.4 This is in contrast to the 

previous algorithm where if a goal is unifiable with a head of a 

clause the algorithm will definitely recurse on the body of that 

clause. The advantage of Algorithm 3 is that the user can 

detect infinite recursion during the inversion phase, and 

prevent it from occurring during runtime. The disadvatage is 

that when the user decides to quit pursuing a branch of the 

tree he may lose information. The example we choose is the 

inversion of a function with side effects. The predicate gensym 

is defined in [Clocksin & Mellish 811 (p. 150) and since our 

definition is very similar we will not repeat it here. 

I ?- findinv(gensym(X,Y)). 

Do you want the resulting code asserted in the database? (y/n) 

I: Y. 

(Where) do you want to save the resulting code? (filename/no) 

I: no. 

Do you want to invert the goal gensym(-31,-52)? (y/n) 

I: Y. 

X = input 

yes 

1 ?- 

Figure 5: Example 5: inverting gensym 

Finally, we demonstrate that the above algorithms will not 

suffice to invert all functions. Consider the following program: 

f([alXl> :- g(X). 
f([blXI) :- g(X). 

gUc,-I) * 
g(X) :- f(X). 

‘The limitations imposed on the length of this presentation prohibit a 
TTWP detailed descriotion of the alnorithm or a comtAete I/O 10~. 



Considered as a function from [X] to fl, f(X) acts as 

recognizer for the regular language (a+b)*.c.C. Inverting f 

would cause it to act as a “fair” generator of the same 

language (in the sense defined in section 2). The reader should 

convince himself that none of the above algorithms will invert 

At this point we should mention an obvious non-solution to 

all inversion problems (and predicate redirection in general) 

- conduct a breadth-first search of the computation tree. Both 

aspects of its %on-solutioness’ (namely, its theoretical 

completeness and impracticality) can be demonstrated on the 

above program. We have implemented a breadth-first theorem- 

prover in Prolog; invoking the goal bf (G) will initiate such a 

proof. 

Example 6: Generating the language (a+b)*.c.C 

I ?- bf(f(X)). 

X = [a,c,-3121 ; 
X = [b.c.-5161 ; 
X = [a,a,c,-13421 ; 
X = [a,b,c,-16181 ; 

X = [b,b,a,a,c,-148651 ; 
X = [b,b,a,b,c,-153981 ; 
X = Cb,b.b,a,c,-159411 ; 

! more core needed 
[ Execution aborted 1 

4 Related work,. Summary, Further Research. 

4.1 Discussion of related work. 

In 1950 hlcCarthy addressed the problem of inverting 

recursive functions [hlcCarthy 561, pointing out the difficulty 

of the problem.’ The one method he discussed explicitely is 

the enumeration procedure, which is the analog of proving a 

theorem by systematically generating English text and testing 

to see if the text is a correct proof of the theorem. He 

speculated on what, would be needed to improve upon this 

procedure, and one can consider the work described here a 

cant inuat ion of those speculations. 

More recently Dijkstra has also considered the problem of 

program inversion. In [Dijkstra 831 he gives a (manual) 

inversion of the vector inversion problem. As he himself says, 

5We do not agree with his claim there that solving any “well specified” 
problem amounted to the inversion of some Turing Machine. In our 
notation a specification procedure is a {<S,[]>}-directed relation R (i.e. a 
function) for some S and R, while the algorithm solving it is not the 
{ <[],S>}-directed R but rather the {<Sl,S2>}-directed R for some 
partition <Sl,S2> of S. This however does not affect the relevance 01 his 
subsequent discussion of inverting functions defined by Turing Machines. 

that inversion is straightforward because “the algorithm is 

deterministic and no information is lost”, while the general 

inversion problem remains open. 

In an interesting paper Toffoli ( [Toffoli 80)) suggests a way 

of transforming any computational circuit to an equivalent 

invertible one with a worst case additional cost of doubling the 

number of channels. While the scope of this paper does not 

permit a detailed discussion of his work, there are two basic 

ideas - add “redundant” information to insure function 

inversion, and try to reduce entropy by making the redundant 

information to one function be essential information for 

another function. The motivation behind that work is different 

from ours, but we feel that the two basic ideas may carry over 

(see last subsect ion). Other references to theoretical work on 

reversible computations are [Bennett 731, [Burks 711, [Toffoli 

771. 

4.2 Summary. 

l We suggest viewing Prolog predicates as denoting 
directed relations. For a predicate denoting a 
relation with a certain direction, we asked whether 
its direction can be extended. A major part of the 
paper has been concerned with the special case of 
function inversion. 

l We have presented two effective algorithms for 
inverting functions - Algorithm 2 and Algorithm 3. 
Both involve reversing the bodies of encountered 
clauses, but the latter is more selective in which 
clauses are inverted. Both allow for extra-logical 
features of Prolog, namely inverting assert/retract 
and arithmetic operations. The treatment of the 
latter is very cursory and ad-hoc, and if any non- 
trivial inversion of mathematical functions is 
desired the question of the representation of 
mathematical objects requires closer attention. 

l It has been demonstrated that these algorithms are 
effective in some non-trivial cases, and that there 
exist functions not invertible by either. The exact 
characterization of functions invertible by each 
algorit,hm has not been given (see discussion below). 

l A complete yet impractical algorithm for predicate 
redirection has been presented (namely a breadth- 
first search of the computation tree) and its 
performance has been demonstrated. 

4.3 Further research. 

We repeat the two questions posed in the introduction: 

0 Can we characterize the instances of “easily 
invertible” knowledge? 

l Can we automate the inversion of procedural 
knowledge in those easy cases? 

As we said there, we only gave a partial answer to 

question. The task remains, then, to complete that 

the second 

answer and 



provide one for the first question. Several ways of approaching 

the first half of the task suggest themselves. First, we have not 

explored the power of combining techniques - for example 

perform Algorithm 2 and add the clause i nvgoa I (bf (G) > 

: - bf (G). A related issue that needs exploring is how to make 

ail implicit knowledge explicit. For example, if we write the 

definite clause f (X, X, Z) with the intention that f(X,Y,Z) be 

used as a function from [X,Y] to [Z], we sometimes ignore 

additional (overdetermining) information, for example that if 

X=Y then Z=[]; th is sort of information may be crucial for 

the inversion of f. 

While we have mentioned and discredited BFS as a sole 

strategy for searching the computation tree, we have not 

mentioned other possible strategies. One obvious candidate is a 

probablistic one - the interpreter could flip a coin to decide on 

which clause to resolve against the current goal, and even to 

decide on the ordering of a clause body. Another approach 

could be more in the spirit of mainstream AI, that the choice 

of ordering itself be a knowledge-intensive problem solving 

task. A recent paper ( [Smith & Genesereth 831) has concerned 

itself with part of the problem, that of deciding on the optimal 

ordering of conjuncts in the simple case where those conjuncts 

resolve only against unqualified assertions in the data base 

(that is, no further inference is necessary). 

Finally, Toffoli’s work suggests both an approach for 

answering the first question as well a technique answering the 

second one. It implies that one should look for an appropriate 

measure of entropy in the computation, and try to minimize it. 

In the case where the entropy is zero the computation is 

invertible. Where the we cannot eliminate the loss of 

information, we should try to supply excess information at the 

start, so that we could reconstruct just the “right” subset of it 

later. This also suggests application of the automatic 

programming paradigm, whereby the process of adding 

redundant information to an existing piece of code is 

automated. 

We have allowed ourselves some free speculation in this last 

subsection, which reflects our excitement with the possibilities. 

It is not clear why the problem has been largely neglected - for 

example in the survey of machine learning ( [Michalski et al 

831) there is no ment)ion of knowledge inversion as part of skill 

acquisition. Whether knowledge inversion is classified as part of 

a learning process or not it see& a fundamental capability of 

people, and AI will benefit much frqm a better understanding 

of it. 
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