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Abstract We demonstrate the advantage of using a 
many-sorted resolution calculus by a mechanical 
solution of a challenge problem. This problem known 
as "Schubert's Steamroller" had been unsolved by 
automated theorem provers until now. Our solution 
clearly demonstrates the power of a many-sorted 
resolution calculus. The proposed method is applic- 
able to all resolution-based inference systems. 

1, SCHUBERT'S PROBLEM 

In 1978, L. Schubert of the University of 
Alberta set up the following challenge 

problem: 

Wolves, foxes, birds, caterpillars, and 
snails are animals, and there are someof 
each of them. Also there are some grains, 
and grains are plants. Every animaleither 
likes to eat all plants or all animals 
much smaller than itself that like to eat 
some plants. Caterpillars and snails are 
much smaller than birds, which are much 
smaller than foxes, which in turn are 
much smaller than wolves. Wolves do not 
like to eat foxes or grains, while birds 
like to eat caterpillars but not snails. 
Caterpillars and snails like to eat some 
plants. Therefore there is an animal that 
likes to eat a grain-eating animal. 

This problem became well known since in 

spite of its apparent simplicity it turned 

out to be too hard for existing theorem 
provers because the search space is just 

too big. 

Using the following predicates as an 
abbreviation: 

A(x) -xisananimal W(x) - x is a wolf 

F(x) - x is a fox B(x) - x is a bird 

C(x) - x is a caterpillar S(x) - xis a snail 

GM - xisagrain p (xl - xis aplant 
M(xy)-x is much smaller than y 
E(xy)-x likes to eaty 

we obtain the following set of clauses as 

a predicate logic formulation of the prob- 
lem: 

(1)IWh)l (2){F(f)) 

(2){B(b)) !4)fC(cj 1 

(5) {S(s) 1 (6; iG(q) 1 
(7)tik,) ,A(x,)) (8) {Fby ) ,A(Xj) 1 

(9) thq) ,A(x,) 1 (lO){~(xl),A(xl)) 

(ll)C%x,),A(x,)) (12)G(x,),P(x1)3 

(13)rA(x,),P(x2),A(x3),P(xq) ,E(x1x2),M[x3xl), 

E (x3x4) $3 (x,x3) 1 
(14)+%x,),B(x2),M(x,x2)! (15)i~(x,),~(x,),M(x,x2)) 
(16)Ih,) &x2) ,M(x1x2) 1 (17)@(xl) @(x2) ,M(x,x2)) 
(18)~~(x,),~(x,),~(x,x1)) (19)~~(x,),W(x2),~(x2x~)~ 

(20){B(x,),~(x2),E(x1x2)} (21)~~(x,),s(x2),~(xlx2)~ 
(22) Ih,) ,P(h(xl) 11 (23)cCk+ ,E(xlh(xl))3 
(24)IS(x1),P(i(xl))J (25)Cs(x,) ,E(xli(xl) )) 
(26) 6(x-,) ,x(x2) ,G( j (x,x,) ) 1 

(27) G(x,) ,%x2) ,E (x1x2) ,E(x2j (x1x2) 1) 

where w,f,b,c,s and g are skolemconstants, 

x1,x2,x3 and ~4 are universally quantified 

variables and h, i and j are skolemfunctions. 

Figure 2.1 Schubert's problem in clause 

notation 

In the fall of 1978 L. Schubert spend his 
sabbatical at the University of Karlsruhe 

and a first-order axiomatization of his 

Problem was given to the Markgraf Karl 
Refutation Procedure (MKRP) CBES811, a 
resolution-based automated theorem prover 
under development at the University of 

Karlsruhe. The system generated the clause 

set of figure 1.1, but failed to find a 

refutation. Though several significant 
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improvements have been incorporated into the 

MKRP-system during the last six years, it is 
still unable to find a refutation of the 

above clause set today. The same is true for 
all the other automated theorem provers we 
know about, which were confronted with this 

problem. But there exists a refutation asit 
can be seen from Schubert's hand computed 
deduction of the empty clause CSch78,Wa184al 
Looking at the clause set of figure 1.1 and 

the handcomputed refutation of the problem, 
the reason for the difficulties of anauto- 

mated theorem prover in computing a solut- 
ion become apparent: 

*The size of the initial search space (we 
can compute 102 distinct clauses, 94 re- 

solvents and 8 factors already inthefirst 
generation) and 
*the search depth necessary to compute the 

empty clause (which is 20 in Schubert's 

handcomputed solution) 

leads to such a 

*rapidly growing search space that the time 
and/or space boundaries of an automated 
theorem prover are exceeded before the 
empty clause can be deduced. 

This holds true even if we use some refine- 

ments, like for instance set-of-support 

CWRC651, which reduces the initial search 

space to 28 potential resolvents and 2 

potential factors. 

2, A MANY-SORTED SOLUTION 

The first-order axiomatization in figure 1.1 
reflects a specific view of the given prob- 
lem: We consider an unstructured universe, 

the objects of which are associated with 
properties (expressed by unary predicates) 
- for instance "is a wolf", "is an animal", 

"is a grain" etc. - and where relations 

between these properties are given by im- 

plications. 

But there is another, more natural way of 

looking at the given scenario, which, in- 

cidentally, enables a human to find a 

solution: Given a many-sorted universe, 
which consists of sorts of objects like 
wolves, animals, grains, plants etc. and 

certain relations between these objects, 
e.g. wolves are animals and grains are 
plants, everything which is true foranimals 

(or plants), automatically holds for wolves 
(or grains respectively). In this scenario 
we talk about the preferences of woZves of 

eating grains and not about these prefer- 

ences of a22 objects, which satisfy "is a 
wolf" and "is a grain". 

Hence a many-sorted first-order calculus is 
more suitable for a formalization of 
Schubert's problem. In such a calculus the 

domains and ranges of functions, predicates 
and variables are restricted to certain sub- 

sets of the universe (which are given as a 

hierarchy of sorts) where these restrictions 

are respected by the inference rules. In a 

many-sorted axiomatization the problem reads 
(in clause notation) as follows: 

(1) R;ype w:w (2) type f:F 
(3) Xgpe b:B (4) ;type c:c 
(5) -type s:s (6) fypc g:G 

(7) aoti W<A (8) au&X F<A 
(9) hoti B<A (10) auti C<A 

(11) hoti %A (12) noti G<P 
(13) {E(a,p,),fi(a2a,),E(a2p2),E(a,a2)~ 

(14) iM(c,b,)) (15) {M(s,b,)) 

(16) (M(blfl)) (17) INflW,)I 

(18) {E(w,f$) (19) mw,g, 11 

(20) 03 b,c-, 1) (21) IE(b,s,)} 
(22) -type h(C):P (23) 02 (c,h k, ) ) 1 
(24) type i(S):P (25) (E(s,i(s.,))) 

(26) Xype j(AA):G (27) IE(a,a2) ,E(a,j (a.,a2) 1 

Figure 2.1 The many-sorted version of 
Schubert's problem in clause 

notation 

In this axiomatization the symbols W,F,B,C, 
S,A,G and P are used as sort symbols which 
are ordered by the subsort order according 

to the subsort declarations (7) - (12), i.e. 
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W,F,... ,S are subsorts of A and G is a sub- 

sort of P. The type declarations (1) - (6), 
e.g. Xyp& w:W, define a signature in which 
for instance w is a constant of sort W. 

The type declarations (22), (24) and (26) 

denote an extension of the given signature 
computed by the system for the skolem- 
functions h, i and j, e.g. h is an unary 

function of sort P with domainsort C. The 
subscripted lower case letters, e.g. alfa2, 

PI . . . . are universally quantified variables 

of the sort denoted by the corresponding 
upper case letter, e.g. A,P,... . 

The MKRP-system was extended to a many- 

sorted theorem prover on the basis of the 
many-sorted calculus as proposed in CWa1831, 
In this calculus, the subsortorder and the 
signature cause a restriction of the unifi- 
cation procedure CWa184bl: A variable xcan 

only be unified with a term t iff the sort 
of t (which is determined as the sort of the 
outermost symbol of t) is a subsort of or 

equals the sort of x. For instance we can 
resolve upon the literals 20(l) and 27(l) in 
figure 2.1 using the most general unifier 

{a,+b.,,a2+c11 (but not {b,+a,,c,+a21). 

However there is no such resolvent upon the 

literals 20 (1) and 21(l) in the many-sorted 
resolution calculus since there is no sub- 
sort relation between C and S. As a conse- 

quence the variables c1 and s1 are not 

unifiable. 

Using the clause set of figure 2.1 the MKRP- 
system computed the following refutation 
within 10 resolution steps: 

(28) rE(a,p,),i;i(a2a,),E(a2j(a,a2))} ;13(4) + 27(l) 
(29) {f(w,p,),E(f,j(w,f,))) 
(30) {E(f,j(w,f,))l 

(31) {~(flp,),E(b,j(f,h~))} 

(32) IE(b,j(f,~,))l _ 

(33) IE_(b2p,),;(s1b2),E(s,p2)1 
(34) {M(s,b,),E(s,p,)1 
(35) IE(s.,p, 11 

(36) i 1 

;17(1) + 28(2) 
:19(l) + 29(l) 
;16(1) + 28(2) 
;30(1) + 31(l) 
;13(4) + 21(l) 
:32(l) + 33(l) 
;15(1) + 34(l) 
:25(l) + 35(l) 

continue next page 

Figure 2.2 The MKRP-solution of the many- 

version of Schubert's problem 

For this proof the system uses the replace- 
ment principle [Rob651 (cf. clause 28) and 

the set-of-support strategy CWRC651 with 
clause 27 as the set of support. Having 
computed the 5th resolvent, i.e. clause 32, 
the control of the search was taken over by 
the terminator module C~0831, which had 

found a unit-refutation for the remaining 

clause set. 

But why does the system find a solution for 
the many-sorted formulation, when it didnot 
find one for the unsorted type? The reason 

is the significantly reduced search space 
as cornparted to the clause set of figure 1.1: 
For the many-sorted case there are only 12 
clauses with 16 literals instead of 27 
clauses with 65 literals. 

The resulting search space is further reduced 
by the constraints imposed on the unification 
procedure: For instance we can compute the 
resolvent upon the literals 20(3) and 21(3) 
in figure 1.1 yielding I~(x,),c(x2),S(x2)1 
from which we obtain {?(x2),s(x2)> by re- 
solution with clause 3. But c(x2)Cz(x2)1 

can only be resolved upon 4(l) C5(1)1 
yielding a pure clause z(c) C?(s)1 ineither 
step. In the many-sorted case these deadends 
are impossible: the correspondins resolution 
step upon the literals 20( 1) and 21(l) in 

figure 2.1 is blocked because the variables 
c1 and s 1 are not unifiable. 

As a result the size of the initial search 
space is totally reduced to 12 potential 
resolvents (compared to 94 potential resol- 
vents and 8 potential factors), which again 
can be reduced to 3 potential resolvents 
(compared to 28 plus 2 potential factors) 

if the set-of-support strateqy is used. The 
following diagram compares the statistical 

values of both solutions, where the values 
of the handcomputed solution are given in 
the black boxes. The relation between the 
size of the corresponding boxes is propor- 
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tional to the ratio of the values: 

initial search 

space 

search depth 

clauses 
generated 

literals 

generated 

deductions 
performed 

deduced clauses 
in proof 

length of 
refutation 

I 8 1 

Figure 2.3 The statistical values of both 

solutions 

3, TtIE EENERAL SOLUTION 

Having found a solution of a many-sorted 
version of Schubert's steamroller, we have 
to verify that this solution also solves 
the original problem. 

It is well known how to compare a many- 
sorted calculus with its unsorted counter- 
part by so-called sort axioms andrezativi- 

zations (cf. CObe62, Wa1831): The sort 

axioms serve to express the signature and 
the subsort order in terms of first-order 
formulas (viz. implications). The relativi- 
zation of a formula expresses the sort of 
each variable by atomic formulas using sort 
symbols as unary predicates. 

In clause notation we obtain for instance 

clause 1 of figure 1.1 as the sort axiom 

corresponding to the type declaration 1 of 
figure 2.1 and we obtain clause 7 of figure 
1.1 as the sort axiom for the subsort decla- 

ration 7 of figure 2.1. The relativization 

of a clause is obtained by extending the 
clause with all literals of form Q(x), where 

x is a variable of sort Q in the given 

clause . For instance clause 13 of figure 

1.1 is a relativization of clause 13 in 

figure 2.1. 

Defining S as the set of all clauses of fi- 
gure 2.1, !? as the set of all relativized 
clauses of S and AC as the set of all sort 

axioms for the signature and the subsort 
order defined in figure 2.1, it is easily 

verified that (t U A') is the set of all 

clauses of figure 1.1 (up to variable re- 

naminqs). From the Soundness-, the Complete- 

ness- and the Sort-Theorem for the many- 

sorted resolution calculus CWa1831 we obtain 

S 17" iff (^s U A') I- q  

(where 1, q  denotes a refutation in themany- 

sorted calculus and I- q  denotes a refutat- 
ion in the ordinary resolution calculus). 

Moreover one direction of this equivalence 
is constructive, i.e. there exists an algo- 

rithm which translates each refutation of S 
into a refutation of (6 U A'). Hence by 
solving the many-sorted version of Schubert's 
problem, a solution of the original problem 

is also obtained using the above transfor- 
mations. 

4, CONCLUSION 

Most mathematical problems have a many-sor- 
ted structure and it is not a mere accident 

that almost all mathematical textbooks are 

written in a many-sorted language (albeit 
often very implicit). 

The advantage of many-sorted theorem pro- 
ving was also recoqnized by CHay71, Hen72, 
Wey77, Cha78, BM79, Coh831. Many-sorted 

first-order calculi were investigated by 
LHer30, Sch38, Sch51, Wan52, Hai57, Gi158, 

Obe62, Ide641 and CWa1831 extends the re- 

sults to the resolution calculus with para- 
modulation. 

The advantage of this calculus for automated 

theorem proving was demonstrated here using 
Schubert's steamroller. Of course, the real 
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power of a many-sorted theorem prover is 

only obtained, if the problem to be solved 
has a many-sorted structure: It turned out 

in several example runs (cf. CWa1831) that 
the performance of the system increases 
with an increasing cardinality of the sub- 
sort order relation. 

Often problems with a many-sorted struc- 

ture are presented in an unsorted axioma- 
tization. For such problems an algorithm 
has been developed which translates an un- 
sorted axiomatization into an equivalent 
many-sorted axiomatization CSch841. 
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