
AUTOMATED COGNITIVE MODELING* 

Pat LangIcy 
Stcllan Ohlsson 

‘I’hc Robotics lnstitutc 
Carncgic-Mellon University 

Pittsburgh, Pennsylvania 15213 USA 

Abstract 

In this paper WC dcscribc an approach to automating the 
construction of cognitive process models. WC make two psychological 
assumptions: that cognition can bc modclcd as a production system, 
and that cognitive behavior involves starch through some problem 
space. Within this framework, WC employ a problem reduclion 
approach to constructing cognitive mod&, in which one begins with a 
set of indcpcndcnt, overly gcncral condition-action rules, adds 
appropriate conditions to each of thcsc rules, and then rccombincs the 
more specific rules into a final model. Conditions arc dctcrmincd using 
a discrimination learning method. which rcquircs a set of po’;itivc and 
ncgativc instances for each rule. Thcsc instances are based on infcrrcd 
solution paths that lead to the same lnswcrs as those obscrvcd in a 
human subject. We have implcmcntcd ACM, a cognitive modeling 
sjstcm that incorporates thcsc methods and applied the system to error 
data from the domain of multi-column subtraction problems. 

1, Int reduction 
The goal of cognitive simulation is to construct some process 

explanation of human behavior. Towards this end, researchers have 
developed a number of methods for collecting data (such as recording 
verbal protocols, observing cyc movements, and measuring reaction 
times), analyzing thcsc data (such as protocol analysis and linear 
regression) and describing cognitive processes (such as production 
systems and nco-Piagctian structures). Unfortunately, there are 
inherent reasons why the task of cognitive simulation is more difficult 
than other approaches to explaining behavior. Cognitive simulators 
must infer complex process descriptions from the observed behavior, 
and this task is quite different from searching for a simple set of 
equations or even a structural description. 

Given the complexity involved in formulating cognitive process 
models, it is natural to look to Artificial Intelligence for tools that 
might aid in this process. Along these lines, some researchers have 
constructed AI systems that generate process models to explain 
errorfir behavior in mathematics. For instance, Burton [l] has 
described DEBUGGY, a system that diagnoses a student’s behavior in 
the domain of multi-column subtraction problems, and creates a 
procedural network model of this behavior. In addition, Sleeman and 
Smith [2] have developed LMS, a sysrcm that diagnoses errortil 
algebra behavior, and formulates process models to explain that 
behavior. 

The task of constructing cognitive models makes contact with two 
other areas of current interest within Artificial Intelligence. The first of 
these is concerned with formulating mental models. This research has 
focused on process models of physical phenomena, and though this 
work faces problems similar to those cncountercd in cognitive 
modcling, WC will not pursue the connections here. The second area of 

*This rcsc;h was suppoltcd by Contract NOOOld-83-K-0074, NK 
154-5(X. from the Office of Naval Rcscarch. 

contact is the rapidly growing field of machine learning, and it is the 
relation bctwccn cognitive simulation and machine. learning that we 
will discuss in the following pages. Let us begin by propdsing some 
constraints on the ropnitivc modcling task that will enable the 
application of machine learning methods in automating this process. 

2. A Framework for Cognitive Modeling 
Bcforc a rcscarchcr can begin to construct a cognitive model of 

human bchacior. hc must dccidc on some rcprcscntation for mental 
proccsscs. Similarly, if WC cvcr hope to aulo/rjale the formulation of 
cognitive models. WC must sclcct some rcprcscntation and work within 
the resulting framework. ‘1‘0 constrain the task of cognitive modeling, 
WC will draw 011 the following hypothesis, first proposed by Newell [3]: 
a The /‘roduc/iutl S’J)s/em H~porhesis. All human cognitive behavior 

can bc modclcd as a production system. 
A production system is a program stated as a set of condition-action 
rules. Combined with a production system archifecfure, such 
programs can be used to simulate human behavior. WC will not argue 
here for the psychological validity of the production system approach, 
except to mention that it has been succcss~lly used in modeling 
behavior across a wide variety of domains. For our purposes, we are 
more intcrcstcd in another feature of production system programs: 
they provide a well-defined framework for learrzing procedural 
knowledge. WC will discuss this fcaturc in more detail later. 

Although the production system hypothesis considerably limits the 
class of models that must be considered by an automated system, 
additional constraints arc required. Based on years of experience in 
constructing such models, Newell [4] has proposed a second general 
principle of human behavior: 
l The Problem Space Hypothesis. All human cognition involves 

search through some problem space. 
This proposal carries with it an important implication. This is that if we 
plan to model behavior in some domain, we must dcfinc one or more 
problem spaces for that domain. Such .a definition will consist of a 
number of components: 
l A reprcsentafion for the initial states, goal states, and intermediate 

states in the space; 
l A set of operators for generating new states from existing states; 
l A set of rules that state the legal conditions under which operators 

may bc applied; we will refer to these move-suggesting rules as 
proposers. 

For any given task domain, there may be a number of possible spaces, 
and the cognitive modclcr must be willing to entertain each of these in 
his attempt to explain the observed behavior. However, by requiring 
that thcsc components be specified, the problem space approach 
tirther constrains the task of formulating cognitive process models, 
The problem space hypothesis also carries with it a second interesting 
implication: algorifhmic behavior should be viewed as “frozen” search 
through a problem space in which the proposers suggest only one 
move at each point in the search process. 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



In addition to being psychologically plausible, the combination of 
the problem spdcc hypothesis and a production system rcprcscntation 
has an additional advantage. In this framework. rclativcly indcpendcnt 
condition-action rules arc rcsponsiblc for suggesting which operators 
to apply. Assuming one’s set of operators includes those operators 
actually used by the subject being modclcd, then the task of cognitive 
modcling can bc reduced to the problem of: (1) determining which 
operators arc useful; and (2) dctcrmining the conditions under which 
each operator should bc applied. Since the operators arc independent 
of one another, one can divide the cognitive modcling task into a 
number of simpler problems, each concerning ol?e of the operators. 
We may formulate this as a basic approach to cognitive modcling: 
l The Problem Reduciion Approach to Cognitive Modeling. Taken 

together, the production system and problem space hypotheses 
allow one to replace search through the space of cognitive models 
with several independent scarchcs through much simpler rule 
spaces. 

To reiterate, the problem reduction approach lets one factor the 
cognitive modeling task into a number of manageable subproblems. 
Each of these subproblcms involves determining whether a given 
operator was used by the subject, and if so, determining the conditions 
under which it was used. Once each of these subtasks has been 
completed, the results are combined into a complete model of the 
subject’s behavior. 

This approach is closely related to recent work in the field of 
machine learning. A number of the researchers in this area - 
illchiding Anzai [5], Langley [6], and Ohlsson [7] - have applied the 
problem reduction approach to the task of learning starch heuristics. 
However, this work has focused on acquiring a correct search strategy 
for some domain of expertise. Our main contribution has been to 
realize that the same basic approach can also be applied to automating 
the construction of cognitive models, and to explore the details of this 
application. Now that we have laid out our basic framework for stating 
process models of cognition, let us turn to one method for 
implementing the approach. 

3. The Automated Cognitive Modeler 
As we seen, our approach to cognitive modeling requires two basic 

inputs: the definition for a problem space (consisting of state 
descriptions, operators, and proposers) and some information about 
the behavior of the person to be modclcd. This information may take 
the form of problem behavior graphs, error data, or reaction time 
measurements. Given this information, the goal is to discover a set of 
additional conditions (beyond the original legal ones) for each of the 
proposers that will account for the observed behavior. Fortunately, 
some of the earliest work in machine learning focused on a closely 
related problem; this task goes by the name of “learning from 
examples”, and can be easily stated: 

l Lear/zing from Examples. Given a set of positive and negative 
instances for some rule or concept, dctcrminc the conditions 
under which that rule or concept should bc applied. 

A number of methods for learning from cxamplcs have been cxplorcd, 
and WC do not have the space to cvaluatc the advantages and 
disadvantages of them hcrc. However, all of the methods require a set 
of positive and ncgativc instances of the conccpt/rulc to bc lcarncd, so 
let us consider how such a set can bc gathered in the context of 
automated cognitive modcling (or learning search heuristics). 

Recall that WC have available a problem space within which the 
behavior to be modclcd is assumed to have occurred. Since the 
proposers are more gcncral than WC would like them to be, their 
unconstrained application .will lead to breadth-first search through the 
problem space. If the obscrvcd behavior actually occurred within this 
space, then one or more of the resulting paths will successfully 
“explain” this behavior. 

For example, if partial or complete problem behavior graphs are 
available, then one or more paths will have the observed sequence of 
operator applications. If only error data arc available, then OIK or more 
paths will lead to the observed response. Since we have been working 
primarily with error data, we shall focus on this latter cast in our 
discussion. Presumably, the subject has been obscrvcd working on a 
number of different problems, so that WC will obtain one or more 
“solution paths” for each of these problems. For now, let us assume 
that only one such path is found for each problem; WC will return to 
this assumption later. 

Given a solution path for some problem, one can employ a quite 
simple method for generating positive and negative instances for each 
of the rules used in starching the problem space. We may summarize 
this method as follows: 
l Learning from Solufion Paths. Given a solution path, label moves 

lying along the solution path as positive instances of the rules that 
proposed them, and label moves leading one step off the path as 
negative instances of the rules that proposed them. 

This method allows one to transform a solution path into the set of 
positive and negative instances required for learning from examples. 
Note that not all moves are classified as desirable or undesirable; those 
lying more than one step off the soiution path arc ignored, since these 
states should never have been reached in the first place. Sleeman, 
Langley, and Mitchell [8] have discussed the advantages and 
limitations of this approach in the context of learning scnrch heuristics. 
The most notable limitation is that one must bc able to exhaustively 
search the problem space, or be willing to chance the possibility of 
misclassifications, thus leading to effective “noise”. Fortunately, in 
many of the domains to which cognitive simulation has been applied, 
the problem spaces allow exhaustive search. 

. . . fJ.2/ solution 

Figure I. Search tree for the problem 93 - 25 = 68. 



Given a set of positive and negative instances for each of the 
proposers, one can employ some method for learning from examples 
to dctcrminc additional conditions for thcsc rules. ‘I’hc resulting set of 
more specific rules arc guaranteed to regencratc the inferred solution 
path for each problem. and thus constitute a second lcvcl explanation 
of the obscrvcd behavior. l’akcn together, thcsc rules constitute a 
cognitive process model stated as a production system. 

WC have implcmcntcd the Automated Cognitive Modclcr (ACM), 
an AI system that instantiates the approach outlined above. Given a set 
of positive and ncgativc instances for each proposer, the system 
constructs a discrimination network for each rule, using an approach 
similar to that dcscribcd by Quinlan [9]. Once a network has been 
found for a proposer, it is transformed into a set of conditions which 
are then added to the original rule. These additional conditions let the 
proposer match against positive instances, but not against negative 
ones, and in this sense explain the observed behavior. The details of 
this process are best understood in the context of an example, to which 
WC now turn. 

Table 1. Production system model for the correct subtraction strategy. 

find-diffcrcnce 
If you are processing columnl, 

and numberi is in colwnnl and rowl, 
and number2 is in columrzl and row2, 
[and row1 is above row2], 
[and number1 is greater than number21, 

then find the difference between numbed and number2, 
and write this difference as the result for columnl. 

decrement 
If you are processing columnl, 

and numbed is in columni and rowI, 
and number2 is in column1 and row2, 
and rowl is above row2, 
and column2 is left of columnl, 
and number3 is in column2 and rowl, 
[and number2 is greater than numberl], 

then decrement number3 by one. 

add-ten 
If you arc processing columnl, 

and number1 is in colum& and rowl, 
and number2 is in columni and row2, 
and robvl is above row2, 
[and number2 is greater than numbed], 

then add ten to numbed. 

shift-column 
If you arc processing cohmnl, 

and you have a result for columnl, 
and colurm2 is left of columnI, 

then process coIumn2. 

4. Modeling Subtraction Errors 
Our initial tests of ACM have focused on modcling errors in the 

domain of multi-column subtraction problems. WC sclcctcd this 
domain as a tcstbcd bccausc substantial empirical analyses of 
subtraction errors wcrc available, and bccausc other efforts had been 
made to model subtraction behavior, to which WC could compare our 
approach. In particular, Vanlelm and his collcagucs have compiled 
descriptions of over 100 systcrnatic subtraction errors, and have used 
this analysis to construct DERUGGY, a system capable of diagnosing 
students’ subtraction strategies. Although our work relics heavily on 
this group’s analysis of subtraction errors, our approach to automating 
the process of cognitive modcling differs considerably from their 

195 

scheme. The most obvious difference is that DEBUGGY made 
significant use of a “bug library” containing errors that students were 
likely to make, while ACM constructs explanations of errorful 
behavior from the same components used to model correct behavior. 
As a result, ACM carries out no more search in modeling behavior 
involving multiple bugs than it does in modeling errors due to single 
bugs: we believe this is a very desirable feature of our approach to 
cognitive modeling. 

In order to model subtraction behavior, ACM must be provided with 
a problem space for subtraction. This may seem countcrintuitivc, since 
WC tend to think of subtraction strategies as algorithms, but recall that 
the problem space hypothesis implies that even algorithmic behavior 
can be dcscribcd in terms of “frozen” search. In addition, different 
students clearly use different subtraction procedures, so one may view 
this space as the result of generalizing across a set of quite distinct 
algorithms. In order to define a problem space, we must specify some 
reprcscntation for states, a set of operators for generating these states, 
and a set of proposers. WC will not go into the details of our 
representation here, and for the sake of clarity, we will focus on only 
the four most basic operators - finding a difference between two 
numbers in a column, adding ten to a number, dccrcmenting a number 
by one, and shifting attention from one column to another.* The initial 
rules for proposing thcsc operators can be cxtractcd from Table 1 by 
ignoring the conditions enclosed in brackets. We will see the origin of 
the bracketed conditions shortly. 

Although WC have applied ACM to modeling crrorful subtraction 
proccdurcs, the system can best be explained by examining its 
rcsponsc to correct subtraction behavior. As we have seen, the overly 
gcncral initial conditions on its proposers leads ACM to starch when it 
is given a set of subtraction problems. Figure 1 shows the system’s 
search on the borrowing problem 93 - 25, when the correct answer 68 
is given by the student that ACM is attempting to model. Stales along 
the solution path arc shown as squares, while other states are 
rcprcscntcd by circles. Dead ends occur when the program generates a 
partial answer that dots not match the student’s result. The system is 
also given other problems and the student’s answers to those problems, 
and ACM also scarchcs on thcsc until it find acccptablc solution paths. 

After finding the solution paths for a set of problems, ACM uses the 
instances it has gcncratcd to formulate more conservative proposers 
that will let it regenerate those paths without search. Let us examine 
the search tree in Figure 1, and some of the good and bad instances 
that result, Since most of the interesting learning occurs with respect to 
the find-difference operator, we shall focus on it here. Upon 
examining the starch tree, we find two good instances of finding a 
diffcrcncc, 13 - 5 and 8 - 2 (which lie on the solution path), and six 
bad instances, two casts of 5 - 3, two cases of 3 - 5, and one case 
each of 5 - 13 and 2 - 8 (which lit one step off the solution path). 

Given these instances and others based on different problems, ACM 
proceeds to construct a discrimination network that will let it 
distinguish the desirable cases of the find-diffcrcnce rule from the 
undesirable ones. The system itcrates through a list of tests, 
determining which tests are satisfied for each instance. For the 
subtraction domain, we provided ACM with ten potentially relevant 
tests, such as whether one number was greater than another, whether 
one row was above another, whcthcr ten had been added to a number, 

- 

*Actually, these operators arc not cvcn capable of corrcdy solving 
all subtraction problems (additional operators are required for 
borrowing from zero, as in the problem 401 - 283) and they are 
ccrtninly not capable of modcling all buggy subtraction stratcgics. 
Howcvcr: limiting attention to this set will considerably simp’:i fy the 

cxamplcs. so WC ask the reader to take on faith the system’s ability to 
handle additional operators. 



and whether a number had already been dccrementcd. For example, 
the negative instance 5 - 3 satisfies the greater test, since 5 is larger 
than 3, but fails the above test, since the S’s row is below the 3’s row. 

Given this information, ACM dctcrmincs which of its tests has the 
best ability to discriminate positive from negative instances. In 
determining the most discriminating test, ACM computes the number 
of positive instances matching a given test (M+), the number of 
negative instances failing to match that test (U-), the total number of 
positive instances [1‘+), and the total number of rrcgatlvc instances 
(l’-). Using thcsc quantities. ACM calculates the sum S = M+/T 
+ u/T-, and computes E = maximum (S, 2 - S). ‘I’hc test wi ik 
the highest value for E is sclccted. 

In a 20 problem run involving the correct subtraction strategy, the 
greater test achicvcd the highest score on the function E, although the 
above test scored nearly as well. As a result, ACM used the former test 
in the top branch of its discrimination tree. Since all of the positive 
instances and some of the negative instances satisfied the greater test, 
the system looked for another condition to further distinguish between 
the two groups. Again the most discriminating test was found, with the 
above relation emerging as the best. Since these two tests completely 
distinguished between the positive and negative instances, ACM 
halted its discrimination process for the find-difference rule, and 
moved on to the next proposer. 

Once it has generated a discrimination network for each of its 
proposers, ACM translates these networks into condition-action rules. 
To do this for a given network, it first eliminates all branches leading 
to terminal nodes containing negative instances. For each of the 
remaining terminal nodes, ACM constructs a different variant of the 
proposer by adding each test as an additional condition. Thus, if more 
than one terminal node contains positive instances, the system will 
produce a disjunctive set of condition-action rules to represent the 
different situations in which an operator should be applied. Once it has 
generated the variants for each proposer, ACM combines them into a 
single production system model. This program will regenerate the 
student’s inferred solution paths without search, and can thus be 
viewed as a cognitive simulation of his subtraction strategy. Table 1 
presents the rules that are generated when correct subtraction behavior 
is observed; the conditions enclosed in brackets are those added during 
the discrimination process. 

Now that WC have considcrcd ACM’s discovery m&hods applied to 
modeling the correct subtraction algorithm, Ict us cxaminc the same 
methods when used to model a buggy strategy. Many subtraction bugs 
involve some form of failing to borrow. In one common version, 
students subtract the smaller of two digits from the larger, rcgardlcss of 
which is above the other. In modeling this crrorful algorithm, ACM 
begins with the same proposers as bcforc (i.c., the rules shown in Table 

shift 

1, minus the brackctcd conditions). If WC prc5cnt the same subtraction 
problems as in the previous cxamplc, WC find that the buggy student 
produces the incorrect answer 93 - 25 = 72, along with similar errors 
for other borrowing problems. As a result, the solution path for the 
borrowing problem shown in Figure 2 differs from that for the same 
problem when done correctly, shown in Figure 1. In contrast, the 
student generates the correct answers for non-borrowing problems, 
such as 54 - 23 = 31. As before, ACM’s task is to discover a set of 
variants on the original proposers that will predict these answers. 

Table 2. Model for the “smaller from larger” subtraction bug. 

find-difference 
If you arc processing columnl, 

and numberl is in coluntnl and r-owl, 
and number2 is in colu~nrrl and row2, 
and numberl is greater than number2, 

then find the diffcrcncc bctwecn numberf and number2, 
and write this difference as the result for columnl. 

shift-column 
If you arc processing columnl, 

and you have a result for columnl, 
and coIumrz2 is left of columnl, 

then process column2. 
-- 

In the correct subtraction strategy, the decrement and add-ten 
operators are used in problems that require borrowing. However, the 
solution path for the borrowing problem shown in Figure 2 includes 
only the find-difference and shift-column operators. Apparently, the 
student is treating borrowing problems as if they were non-borrowing 
problems, and the student model ACM dcvclops should reflect this 
relationship. As bcforc, the system uses the solution paths it has 
infcrrcd to produce positive and negative instances. As in the previous 
run, only positive instances of the shift-column operator wcrc found, 
indicating that its conditions need not be altered. And since both 
positive and negative instances of the find-diffcrcnce rule wcrc noted, 
ACM called on its discrimination proFess to determine additional 
conditions for when to apply this operator. The major difference from 
the earlier run was that only negative instances of the add-ten and 
decrement operators are found. This informed ACM that these rules 
should not bc included in the final model, since apparently the student 
never used these operators. 

For this idcali;rcd student, ACM found the grcatcr test to hale the 
best discriminating power. Howcvcr, the ahovc test, which was so 
useful in modcling the correct strategy. does not appear in the final 
model. In fact, the grcatcr test complctcly discriminated bctwccn the 
positive and ncgativc instances, leading ACM to a very simple variant 

Figure 2. Search tree for the problem 93 - 25 = 72. 

196 



of find-diffcrcncc rule. This was because the idcalilcd student was 
always subtracting the smaller number from the larger, rcgardlcss of 
the position, and this is exactly what the resulting student model does 
as well. Table 2 prcscnts the variant rules that ACM gcncratcd for this 
buggy strategy. This model is very similar to that for the correct 
strategy, cxccpt for the missing condition in the find-differcncc rule, 
and the notable absence of the rules for dccrcmenting and adding ten, 
since these are not needed. 

ACM has been implcmcntcd on a Vax 750, and succcssfi~lly run on a 
number of the more common subtraction bugs. Table 3 presents 
clcvcn common bugs reported by VanLchn [lo], along with their 
observed frequencies. ACM has success~lly modclcd each of these 
bugs, given idcalizcd behavior on a set of 20 representative test 
problems. A number of these bugs involve borrowing from zero, and 
so rcquircd some additional operators beyond those dcscribcd in the 
earlier examples. ‘l’hcsc operators shift the focus of attention to the left 
or to the right, in search of an appropriate column from which to 
borrow. Introducing these operators considerably expanded the search 
tree for each problem, though ACM was still capable of finding a 
solution path using cxhaustivc search. 

Table 3. Subtraction bugs succcss~lly modclcd by ACM. 

BUG EXAMPLE FREQUENCY 

CORRECT STRATEGY 81 - 38 = 43 
ShlALLER FROS4 LARGER 81 - 38 = 57 124 
S I-01’S BORROW AT 0 404 - 187 = 227 67 
BORROW ACROSS 0 904 - 237 = 577 51 
0-N=N SO - 23 = 33 40 
BORROW NO DECREMENT 62-44=28 22 
BORROW ACROSS 0 OVER 0 802 - 304 = 408 19 
0 - S = N EXCEPT AFI-ER BORROW 906 - 484 = 582 17 
BORROW FROM 0 306 - 187 = 219 15 
BORROW ONCE THEN SMALLER 7127 - 2389 = 5278 14 

FRO,M LARGER 
BORROW ACROSS 0 OVER BLANK 402 - 6 = 306 13 
O-N=0 50 - 23 = 30 12 

5. Discussion 
In c\ alunting the prnblcm reduction approach to cognitive modcling 

and its implcmcntation in ACM, WC must cxaminc three characteristics 
of the approach - generality, potential difficulties, and practicality. 
On the first of thcsc dimensions, ACM fares very well. One can readily 
see the system being used to model behavior dcscrihcd in terms of a 
problem behavior graph; in fact, this task should be considerably 
easier than working only with error data, since the process of inferring 
solution paths will be much more constrained. The approach might 
ckcn bc adapted to reaction time data, though this would certainly be a 
more challenging application. 

However, there are some difficulties with our approach to 
automating the construction of cognitive models, relating to the three 
levels at which explanation occurs in the system. First, it is possible 
that a subject’s behavior can bc explained in terms of search through 
more than one problem space. We have avoided this issue in the 
current system by providing ACM with a single problem space. 
However, we have described elsewhere [II] our progress in extending 
the system to handle multiple spaces, and we plan to continue our 
work in this direction. Second, it is possible that more than one 
solution path can account for the observed behavior. The current 
version simply selects the shortest path, but more plausible heuristics 
are desirable. However, this problem is greatest when only error data 
are available; providing ACM with additional information about the 

order of operator application (a partial problem behavior graph) 
eliminates this ambiguity. Finally, for some sets of positive and ngative 
instances, two or more tests may appear to be equally discriminating. 
The current system selects one of these at random, but future versions 
should be able to generate diagnostically useful problems to resolve 
the conflict. 

In terms of practicality, the existing version of ACM does not 
operate quickly enough to be us&l1 in diagnosing student behavior in 
the classroom. For a set of 20 subtraction problems, the system takes 
some 2 CPU hours to gcncrate a complete cognitive model. However, 
most of the effort occurs during the search for solution paths, which 
can be as long as 20 steps for a five-column subtraction problem. There 
arc many domains which involve substantially smaller spaces, and for 
these ACM’s run times should be much more acceptable. In addition 
to continuing to test the system on subtraction, our future work will 
explore the ACM’s application to other domains, showing the 
approach’s generality and its practicality in automating the process of 
modcling cognitive behavior. 

References 

1. Burton, R. R. Diagnosing bugs in a simple procedural skill. In 
Ir~telliga~r Tutoring S~SIEI~~S. I). Slccman and J. S. Isrown, Eds., 
Academic Press, London, 1982. 

2. Slccman, II). H. and Smith, M. J. “Modcling students’ problem 
solving.” ArriJicinl It~rclligerzce 16 (1981), 171-187. 

3. Ncwcll, A. and Simon, H. A.. Hujnnrl f’rubfenz Solving, Prcntice- 
Hall, Inc., Englewood Cliffs, N.J., 1972. 

4. Ncwcll, A. Reasoning, problem solving, and decision processes: 
The problem space hypothesis. In Aftenfion and Pcrfimance, 
R. Nickcrson, Ed.,Lawrcncc Erlbaum Associates, Hillsdale, N. J., 1980. 

5. Anzai, Y. L<carning strategies by computer. Proceedings of the 
Canadian Society for Computational Studies of lntclligcnce, 1978, pp. 
181-190. 

6. Langley, P. Learning effective search heuristics. Proceedings of the 
Eighth International Joint Confcrcnce on Artificial Intclligcnce, 1983, 
pp. 419-421. 

7. Ohlsson, S. A constrained mechanism for procedural learning. 
Proceedings of the Eighth International Joint Confcrcncc on Artificial 
Intclligcnce, 1983, pp. 426-428. 

8. Slceman, D., Langley, P., and Mitchell, T. Learning from solution 
paths: An approach to the credit assignment problem. AI Magazine, 
Spring, 1982, pp. 48-52. 

9. Quinlan, R. Learning efficient classification procedures and their 
application to chess end games. In Machine Learning: An Arlificiul 
Infelligence Approach. R. S. Michalski, J. G. Carbonell, and T. M. 
Mitchell, Eds., Tioga Press, Palo Alto, CA, 1983. 

10. VanLchn, K. “Bugs are not enough: Empirical studies of bugs, 
impasses, and repairs in procedural skills.” Journal of Mafhematical 
Behavior 3 (1982), 3-72. 

11. Ohlsson, S. and Langley, P. Towards automatic discovery of 
simulation models. Proceedings of the European Conference on 
Artificial lntelligcncc, 1984. 


