From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.
AUTOMATED COGNITIVE MODELING*

Pat Langley
Stellan Ohlsson
The Robotics Institute
Carncgic-Mcllon University
Pittsburgh, Pennsylvania 15213 USA

Abstract

In this paper we describc an approach to automating the
construction of cognitive process models. We make two psychological
assumptions: that cognition can be modcled as a production system,
and that cognitive behavior involves scarch through some problem
space. Within this framework, we cmploy a problem reduction
approach to constructing cognitive models, in which one begins with a
sct of independent, overly gencral condition-action rules, adds
appropriate conditions to cach of these rules, and then recombincs the
more specific rules into a final model. Conditions arc determined using
a discrimination learning method. which requires a set of positive and
negative instances for cach rule. These instances are based on inferred
solution paths that lead to the same answers as those observed in a
human subject. We have implemented ACM, a cognitive modcling
system that incorporates these methods and applied the system to error
data from the domain of multi-column subtraction problems.

1. Introduction

The goal of cognitive simulation is to construct some process
explanation of human behavior. Towards this end, rescarchers have
developed a number of methods for collecting data (such as recording
verbal protocols, obscrving cye movements, and measuring reaction
times). analyzing these data (such as protocol analysis and linear
regression) and describing cognitive processes (such as production
systems and neo-Piagetian structures). Unfortunately, there are
inherent reasons why the task of cognitive simulation is more difficult
than other approaches to explaining behavior. Cognitive simulators
must infer complex process descriptions from the observed behavior,
and this task is quite different from scarching for a simple set of
equations or even a structural description.

Given the complexity involved in formulating cognitive process
models, it is natural to look to Artificial Intelligence for tools that
might aid in this process. Along these lines, some rescarchers have
constructed Al systems that gencrate process models to explain
errorful behavior in mathematics. For instance, Burton [1] has
described DEBUGGY, a system that diagnoses a student’s behavior in
the domain of multi-column subtraction problems, and creates a
procedural network model of this behavior. In addition, Sleeman and
Smith [2] have developed LMS, a sysiem that diagnoses errorful
algebra behavior, and formulates process models to explain that
behavior.

The task of constructing cognitive models makes contact with two
other areas of current intcrest within Artificial Intelligence. The first of
these is concerned with formulating mental models. This research has
focused on process models of physical phenomena, and though this
work faces problems similar to those encountered in cognitive
modeling, we will not pursue the connections here. The second area of

*This research was supported by Contract N00014-§3-K-0074, NR
154-508. from the Office of Naval Rescarch.

193

contact is the rapidly growing field of machine learning, and it is the
relation between cognitive simulation and machine. learning that we
will discuss in the following pages. Let us begin by proposing some
constraints on the cognitive modcling task that will cnable the
application of machine learning methods in automating this process.

2. A Framework for Cognitive Modeling

Before a rescarcher can begin to construct a cognitive model of
human behavior, he must decide on some representation for mental
processes. Similarly, if we cver hope to aufomate the formulation of
cognitive models, we must sclect some representation and work within
the resulting framework. To constrain the task of cognitive modeling,
we will draw on the following hypothesis, first proposed by Newell [3]:
e The Production System Hypothesis. All human cognitive hehavior

can be modeled as a production system.
A production system is a program stated as a set of condition-action
rules. Combined with a production system architecture, such
programs can be used to simulatc human behavior. We will not argue
here for the psychological validity of the production system approach,
except to mention that it has been successfully used in modeling
behavior across a wide varicty of domains. For our purposcs, we are
morc interested in another feature of production system programs:
they provide a well-defined framework for learning procedural
knowledge. We will discuss this feature in more detail later.

Although the production system hypothesis considerably limits the
class of models that must be considered by an automated system,
additional constraints are required. Bascd on years of experience in
constructing such models, Newell [4] has proposed a sccond general
principle of human behavior:

o The Problem Space Hypothesis. All human cognition involves
search through some problem space.

This proposal carries with it an important implication. This is that if we

plan to model behavior in some domain, we must define one or more

problem spaces for that domain. Such a definition will consist of a

number of components:

e A representation for the initial states, goal states, and intermediate
states in the space;

o A sct of operators for generating new states from existing states;

e A sct of rules that state the legal conditions under which operators
may be applied; we will refer to these move-suggesting rules as
proposers.

For any given task domain, there may be a number of possible spaces,

and the cognitive modcler must be willing to entertain each of these in

his attempt to cxplain the observed behavior. However, by requiring
that these components be specified, the problem space approach
further constrains the task of formulating cognitive process models.

The problem space hypothesis also carrics with it a second interesting

implication: algorithmic behavior should be viewed as "frozen" search

through a problem space in which the proposers suggest only one
move at cach point in the search process.

In addition to being psychologically plausible, the combination of
the problem space hypothesis and a production system representation
has an additional advantage. In this framework, relatively independent
condition-action rules arc responsible for suggesting which operators
to apply. Assuming one’s sct of operators includes those operators
actually uscd by the subject being modeled, then the task of cognitive
modeling can be reduced to the problem of: (1) determining which
operators are useful; and (2) determining the conditions under which
cach operator should be applied. Since the operators are independent
of one another, onc can divide the cognitive modcling task into a
number of simpler problems, cach concerning one of the operators.
We may formulate this as a basic approach to cognitive modeling:

e The Problem Reduction Approach to Cognitive Modeling. Taken
together, the production system and problem space hypotheses
allow one to replace search through the space of cognitive models
with several independent searches through much simpler rule
spaces.

To reiterate, the problem reduction approach lets one factor the

cognitive modeling task into a number of manageable subproblems.

Each of these subproblems involves determining whether a given

operator was used by the subject, and if so, determining the conditions

under which it was used. Once each of these subtasks has been
completed, the results are combined into a complete model of the
subject’s behavior,

This approach is closely related to recent work in the field of
machine learning. A number of the researchers in this area —
including Anzai [5], Langley [6], and Ohlsson [7] — have applied the
problem reduction approach to the task of learning scarch heuristics.
However, this work has focused on acquiring a correct search strategy
for some domain of expertise. Our main contribution has been to
realize that the same basic approach can also be applied to automating
the construction of cognitive models, and to explore the details of this
application. Now that we have laid out our basic framework for stating
process models of cognition, let us turn to one method for
implementing the approach.

3. The Automated Cognitive Modeler

As we seen, our approach to cognitive modcling requires two basic
inputs: the definition for a problem space (consisting of state
descriptions, operators, and proposers) and some information about
the behavior of the person to be modcled. This information may take
the form of problem bchavior graphs, error data, or reaction time
measurements. Given this information, the goal is to discover a set of
additional conditions (beyond the original legal oncs) for each of the
proposers that will account for the observed behavior. Fortunately,
some of the earliest work in machinc learning focused on a closely
related problem; this task goes by the name of "learning from
examples"”, and can be easily stated:

13-5

e Learning from Examples. Given a set of positive and ncgative
instances for some rule or concept, determine the conditions
under which that rule or concept should be applied.

A number of methods for learning from cxamples have been explored,
and we do not have the space to cvaluate the advantages and
disadvantages of them here. However, all of the methods require a set
of positive and negative instances of the concept/rule to be learned, so
let us consider how such a sct can be gathered in the context of
automated cognitive modecling (or learning scarch heuristics).

Recall that we have available a problem space within which the
behavior to be modeled is assumed to have occurred. Since the
proposers are more general than we would like them to be, their
unconstrained application .will lead to breadth-first search through the
problem space. If the observed behavior actually occurred within this
space, then one or more of the resulting paths will successfully
"explain” this behavior.

For example, if partial or complete problem behavior graphs are
available, then one or more paths will have the observed sequence of
operator applications. If only error data are available, then onc or more
paths will Icad to the observed response. Since we have been working
primarily with error data, we shall focus on this latter case in our
discussion. Presumably, the subject has been observed working on a
number of different problems, so that we will obtain one or more
"solution paths" for each of these problems. For now, let us assume
that only one such path is found for each problem; we will return to
this assumption later.

Given a solution path for some problem, one can employ a quite
simple method for generating positive and negative instances for each
of the rules used in searching the problem space. We may summarize
this method as follows:

o Learning from Solution Paths. Given a solution path, label moves
lying along the solution path as positive instances of the rules that
proposed them, and label moves leading one step off the path as
negative instances of the rules that proposed them.

This method allows one to transform a solution path into the set of

positive and negative instances required for learning from examples.

Note that not all moves are classified as desirable or undesirable; those

lying more than one step off the soiution path are ignored, since these

states should never have been reached in the first place. Sleeman,

Langley, and Mitchell[8] have discussed the advantages and

limitations of this approach in the context of learning scarch heuristics.

The most notable limitation is that onc must be able to cxhaustively

search the problem space, or be willing to chance the possibility of

misclassifications, thus lcading to effective “noisc”. Fortunately, in
many of the domains to which cognitive simulation has been applied,
the problem spaces allow exhaustive search.

solution

Figure 1. Search tree for the problem 93 - 25 = 68.

194

Given a set of positive and negative instances for cach of the
proposers, onc can ¢mploy some method for lcarning from examples
to determine additional conditions for these rules. The resulting sct of
more specific rules are guaranteed to regencrate the inferred solution
path for cach problem, and thus constitute a sccond level explanation
of the observed behavior. Taken together, these rules constitute a
cognitive process model stated as a production system.

We have implemented the Automated Cognitive Modeler (ACM),
an Al system that instantiates the approach outlined above. Given a set
of positive and ncgative instances for each proposer, the system
constructs a discrimination network for each rule, using an approach
similar to that described by Quinlan [9]. Once a nctwork has been
found for a proposer, it is transformed into a set of conditions which
are then added to the original rule. These additional conditions let the
proposer match against positive instances, but not against negative
ones, and in this sense explain the observed behavior. The details of
this process are best understood in the context of an example, to which
we now turn,

Table 1. Production system model for the correct subtraction strategy.

find.diffaronca

find-difference

1f you are processing columnl,
and numberl is in columnl and rowl,
PR RS AT - FU- SRR AR JPSpuL ISP |
Al FTUTHOErZ 15 ML COLUITIe: anuua ruwe,

[and row! is above row2],
[and numberl is greater than number?],

then find the difference between number! and number2,
and write this difference as the result for columnl.

decrement
If you are processing columnl,
and nunberl is in columnl! and rowl,
and number2 is in columnl and rew2,
and rowl is above row2,
and column? is left of columnl,
and number3 is in column2 and rowl,
{and number2 is greater than numberl],
then decrement number3 by one.

add-ten
If you are processing columnl,
and aumberl is in columnl and rowl,
and number2 is in columnl and row2,
and row! is above row2,
[and number? is greater than numberl],
then add ten to numberl.

shift-column
If you are processing columnl,
and you have a result for columnl,
and column? is left of columnl,
then process column2.

4. Modeling Subtraction Errors

Qur initial tests of ACM have focused on modeling crrors in the
domain of multi-column subtraction problems. We sclected this
domain as a testbed because substantial cmpirical analyses of
subtraction errors were available, and because other cfforts had been
madc o model subtraction bchavior, to which we could compare our
approach. In particular, Vanl.chn and his collcagucs have compiled
descriptions of over 100 systematic subtraction errors, and have used
this analysis to construct DEBUGGY, a system capable of diagnosing
students’ subtraction stratcgies. Although our work relies heavily on
this group’s analysis of subtraction crrors, our approach to automating
the process of cognitive modeling differs considerably from their

195

scheme, The most obvious difference is that DEBUGGY made
significant use of a "bug library" containing errors that students were
likely to make, while ACM constructs cxplanations of errorful
behavior from the same components used to model correct behavior.
As a result, ACM carries out no more search in modeling behavior
involving multiple bugs than it does in modeling crrors due to single
bugs; we believe this is a very desirable feature of our approach to
cognitive modcling.

In order to model subtraction behavior, ACM must be provided with
a problem space for subtraction. This may seem counterintuitive, since
we tend to think of subtraction strategies as algorithms, but recall that
the problem space hypothesis implics that even algorithmic behavior
can be described in terms of "frozen" search. In addition, different
students clearly usc different subtraction procedures, so one may view
this space as the result of gencralizing across a set of quite distinct
algorithms. In order to define a problem space, we must specify some
representation for states, a set of operators for generating these states,
and a set of proposers. We will not go into the details of our
representation here, and for the sake of clarity, we will focus on only
the four most basic operators — finding a difference between two
numbers in a column, adding ten to a number, decrementing a number
by one, and shifting atteniion from one column to another.* The initial
rules for proposing these operators can be extracted from Table 1 by
ignoring the conditions enclosed in brackets. We will see the origin of
the bracketed conditions shortly.

Although we have applicd ACM to modcling errorful subtraction
procedures, the system can best be cxplained by cxamining its
response to correct subtraction behavior. As we have scen, the overly
general initial conditions on its proposers leads ACM to scarch when it
is given a sct of subtraction problems. Figure 1 shows the system’s
scarch on the borrowing problem 93 — 25, when the correct answer 68
is given by the student that ACM is attempting to model. States along
the solution path arc shown as squares, while other states are
represented by circles. Dead ends occur when the program gencrates a
partial answer that does not match the student’s result. The system is
also given other problems and the student’s answers to those problems,
and ACM also scarches on these until it find acceptable solution paths.

After finding the solution paths for a set of problems, ACM uses the
instances it has generated to formulate more conservative proposers
that will let it regenerate those paths without search. Let us cxamine
the search trec in Figure 1, and some of the good and bad instances
that result. Since most of the interesting learning occurs with respect to
the find-differecnce operator, we shall focus on it here. Upon
examining the scarch tree, we find two good instances of finding a
difference, 13 — 5 and 8 — 2 (which lie on the solution path), and six
bad instances, two cases of 5 — 3, two cases of 3 — S5, and one case
cach of 5 — 13 and 2 — 8 (which lic one step off the solution path).

Given these instances and others based on different problems, ACM
procceds to construct a discrimination network that will let it
distinguish the desirable cases of the find-difference rule from the
undesirable ones. The system itcrates through a list of tests,
determining which tests are satisfied for cach instance. For the
subtraction domain, we provided ACM with ten potentially relevant
tests, such as whether one number was greater than another, whether
one row was above another, whether ten had been added to a number,

*Actually, these operators are not even capable of correctly solving
all subtraction problems (additional operators arc required for
borrowing from zcro, as in the problem 401 — 283), and they are
certainly not capable of modcling all buggy subtraction strategies.
However, limiting attention to this set will considerably simplify the
examples, so we ask the reader to take on faith the system’s ability to
handlc additional opcrators.

and whether a number had already been decremented. For example,
the negative instance 5 — 3 satisfics the greater test, since 5 is larger
than 3, but fails the above test, since the 5’s row is below the 3’s row.

Given this information, ACM determines which of its tests has the
best ability to discriminate positive from ncgative instances. In
determining the most discriminating test, ACM computes the number
of positive instances matching a given test (M |), the number of
negative instances failing to match that test (U _), the total number of
positive instances (T |), and the total number of negative instances
(T _). Using these quantitics, ACM calculates the sum S = M+/T
+ U_/T_, and computes E = maximun (S, 2 — S). The test wi
the highest value for E is sclected.

In a 20 problem run involving the correct subtraction strategy, the
greater test achicved the highest score on the function E, although the
above test scored nearly as well. As a result, ACM used the former test
in the top branch of its discrimination tree. Since all of the positive
instances and some of the negative instances satisfied the greater test,
the system looked for another condition to further distinguish between
the two groups. Again the most discriminating test was found, with the
above relation cmerging as the best. Since these two tests completely
distinguished between the positive. and negative instances, ACM
halted its discrimination process for the find-difference rule, and
moved on to the next proposer.

Once it has generated a discrimination nectwork for each of its
proposers, ACM translatcs these networks into condition-action rules.
To do this for a given network, it first climinates all branches leading
to terminal nodes containing ncgative instances. For each of the
remaining terminal nodes, ACM constructs a different variant of the
proposer by adding each test as an additional condition. Thus, if more
than onc terminal node contains positive instances, the system will
produce a disjunctive set of condition-action rules to represent the
different situations in which an operator should be applied. Once it has
gencrated the variants for each proposcr, ACM combines them into a
single production system model. This program will regenerate the
student’s inferred solution paths without scarch, and can thus be
viewed as a cognitive simulation of his subtraction strategy. Table 1
presents the rules that are generated when correct subtraction behavior
is observed; the conditions enclosed in brackets are those added during
the discrimination process.

Now that we have considered ACM's discovery methods applied to
modecling the correct subtraction algorithm, let us examine the same
mcthods when used to model a buggy strategy. Many subtraction bugs
involve some form of failing to borrow. In onc common version,
students subtract the smaller of two digits from the larger, regardless of
which is above the other. In mudeling this errorful algorithm, ACM
begins with the same proposers as before (i.c., the rules shown in Table

shift

1, minus the bracketed conditions). If we present the same subtraction
problems as in the previous cxample, we find that the buggy student
produces the incorrect answer 93 — 25 = 72, along with similar crrors
for other borrowing problems. As a result, the solution path for the
borrowing problem shown in Figure 2 differs from that for the same
problem when done correctly, shown in Figure 1. In contrast, the
student generates the correct answers for non-borrowing problems,
such as 54 — 23 = 31. As before, ACM’s task is to discover a sct of
variants on the original proposers that will predict these answers.

Table 2. Model for the "smaller from larger” subtraction bug.

find-difference
If you are processing columnl,
and numberl is in columnl and rowl,
and number? is in columnl and row2,
and numberl is greater than number2,
then find the difference between number! and number2,
and write this difference as the result for colurmnl.

shift-column
If you are processing columnl,
and you have a result for columnl,
and column2 is left of columnl,
then process column2,

In the correct subtraction strategy, the decrement and add-ten
operators are used in problems that requirc borrowing. However, the
solution path for the borrowing problem shown in Figure 2 includes
only the find-difference and shift-column operators. Apparently, the
student is treating borrowing problems as if they were non-borrowing
problems, and the student model ACM develops should reflect this
rclationship. As before, the system uses the solution paths it has
inferred to produce positive and negative instances. As in the previous
run, only positive instances of the shift-column operator were found,
indicating that its conditions need not be altered. And since both
positive and negative instances of the find-difference rule were noted,
ACM called on its discrimination process to dctermine additional
conditions for when to apply this operator. The major difference from
the carlier run was that only negative instances of the add-ten and
decrement operators are found. This informed ACM that these rules
should not be included in the final model, since apparently the student
never used these operators.

For this idcalized student, ACM found the greater test to have the
best discriminating power. However, the above test, which was so
uscful in modeling the correct strategy, docs not appear in the final
modcl. In fact, the greater test completely discriminated between the
positive and ncgative instances, leading ACM to a very simple variant

9.

2 solution

Figure 2. Search tree for the problem 93 - 25 = 72.

196

of find-difference rule. This was because the idealized student was
always subtracting the smaller number from the Jarger, regardless of
the position, and this is exactly what the resulting student model docs
as well. Table 2 presents the variant rules that ACM generated for this
buggy strategy. This model is very similar to that for the correct
strategy, except for the missing condition in the find-difference rule,
and the notable absence of the rules for decrementing and adding ten,
since these are not needed.

ACM has been implemented on a Vax 750, and successfully runon a
number of the more common subtraction bugs. Table 3 presents
cleven common bugs reported by Vanl.ehn [10], along with their
observed frequencies. ACM has successfully modeled each of these
bugs, given idcalized bechavior on a sct of 20 representative test
problems. A number of these bugs involve borrowing from zcro, and
so required some additional opcrators beyond those described in the
carlier examples. These operators shift the focus of attention to the left
or to the right, in scarch of an appropriate column from which to
borrow. Introducing these operators considerably expanded the search
tree for each problem, though ACM was still capable of finding a
solution path using cxbaustive search.

Table 3. Subtraction bugs successfully modeled by ACM.

BUG EXAMPLE FREQUENCY

CORRECT STRATEGY 81 ~38=43

SMALLER FROM LARGER 81 - 38 =357 124
STOPS BORROW AT O 404 — 187 = 227 67
BORROW ACROSS 0 904 — 237 = 577 s1
0-N=N 50 -23=33 40
BORROW NO DECREMENT 62— 44 =28 22
BORROW ACROSS 0 OVER 0 802 — 304 = 408 19
0 — N = NEXCEPT AFTER BORROW 906 — 484 = 582 17
BORROW FROM 0 306 - 187 = 219 15
BORROW ONCE THEN SMALLER 7127 - 2389 = 5278 14

FROM LARGER

BORROW ACROSS 0 OVER BLANK 402 — 6 = 306 13
0-N=0 50 -23=130 12

5. Discussion

In cvaluating the problem reduction approach to cognitive modeling
and its implementation in ACM, we must examine three characteristics
of the approach — generality, potential difficultics, and practicality.
On the first of these dimensions, ACM fares very well. One can readily
sce the system being used to model behavior described in terms of a
problem behavior graph; in fact, this task should be considcrably
easier than working only with error data, since the process of inferring
solution paths will be much more constrained. The approach might
even be adapted to reaction time data, though this would certainly be a
more challenging application.

However, there arc some difficultics with our approach to
automating the construction of cognitive models, relating to the three
levels at which explanation occurs in the system. First, it is possible
that a subject’s behavior can be explained in terms of search through
more than one problem space. We have avoided this issue in the
current system by providing ACM with a single problem space.
However, we have described elsewhere [11] our progress in extending
the system to handle multiple spaces, and we plan to continue our
work in this direction. Second, it is possible that more than one
solution path can account for the observed behavior. The current
version simply selects the shortest path, but more plausible heuristics
are desirable. However, this problem is greatest when only error data
are availabic; providing ACM with additional information about the

197

order of operator application (a partial problem behavior graph)
eliminates this ambiguity. Finally, for some sets of positive and ngative
instances, two or more tests may appear jo be equally discriminating.
The current system selects onc of these at random, but future versions
should be able to generate diagnostically useful problems to resolve
the conflict.

In terms of practicality, the existing version of ACM does not
operate quickly enough to be uscful in diagnosing student behavior in
the classroom. For a set of 20 subtraction problems, the system takes
some 2 CPU hours to generate a complete cognitive model. However,
most of the effort occurs during the search for solution paths, which
can be as long as 20 steps for a five-column subtraction problem. There
are many domains which involve substantially smaller spaces, and for
these ACM’s run times should be much more acceptable. In addition
to continuing to test the system on subtraction, our future work will
explore the ACM's application to other domains, showing the
approach’s generality and its practicality in automating the process of
modecling cognitive bebavior.

References

1. Burton, R. R. Diagnosing bugs in-a simple procedural skill. In
Intelligent Tutoring Systems, 1. Sleceman and J. S. Brown, Eds.,
Academic Press, London, 1982,

2. Sleeman, D. H. and Smith, M. J. "Modecling students’ problem
solving." Artificial Intelligence 16 (1981), 171-187.

3. Newell, A. and Simon, H. A.. Human Problem Solving. Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1972.

4. Newell, A. Reasoning, problem solving, and decision processes:
The problem space hypothesis. In Attention and Performance,
R. Nickerson, Ed.,Lawrence Erlbaum Associates, Hillsdale, N. J., 1980.

5. Anzai, Y. Lcarning strategies by computer. Proceedings of the
Canadian Society for Computational Studies of Intelligence, 1978, pp.
181-190.

6. Langley, P. Learning effective scarch heuristics. Proccedings of the
Fighth International Joint Conference on Artificial Intelligence, 1983,
pp. 419-421.

7. Ohlsson, S. A constrained mechanism for procedural learning.
Procecdings of the Eighth International Joint Conference on Artificial
Intelligence, 1983, pp. 426-428.

8. Slceman, D., Langley, P., and Mitchell, T. Learning from solution
paths: An approach to the credit assignment problem. Al Magazine,
Spring, 1982, pp. 48-52.

9. Quinlan, R. Learning efficient classification procedures and their
application to chess end games. In Machine Learning: An Artificial
Intelligence Approach, R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, Eds., Tioga Press, Palo Alto, CA, 1983.

10. VanLehn, K. "Bugs are not enough: Empirical studies of bugs,
impasses, and repairs in procedural skills.” Journal of Mathematical
Behavior 3 (1982), 3-72.

11. Ohlsson, S. and Langley, P. Towards automatic discovery of
simulation modcls. Procecdings of the European Conference on
Artificial Intelligence, 1984.

