
EXPLAINING AND ARGUING WlTH EXAMPLES ’

Edwina L. Rissland
Eduardo M. Valcarce

Kevin D. Ashley

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

AlShCt
In this paper, we discuss two tasks - on-line help and
legal argument - that involve use of examples. In the case
of on-line HELP, we discuss how to make it more
intelligent by embedding custom-tailored examples in the
explanations it gives its user. In the case of legal
argumentation, we discuss how hypotheticals serve a central
role in analyzing the strengths and weakness of a tax and
describe the generation of hypotheticals, stronger or weaker
for one of the parties with respect to a doctrinal aspect,
through modification of already existing cases or
hypotheticals.

1. Introduction

Explaining and arguing are two tasks which both
often involve examplebased reasoning. In explaining, one
tries to elucidate certain knowledge, educe and correct
misconceptions, answer questions and otherwise satisfy the
question asker. Argumentation involves all that and more,
but in a much more adversarial context; the emphasis is
on convincing another that one’s position is correct or
showing that the other’s is not. Admittedly there are major
differences in explaining and arguing - for instance, the
goals of the explainer and arguer - but nonetheless, there
are striking commonalities. In particular, both rely heavily
on the use of ‘for instances” to accomplish their tasks. In
this paper, we shall focus on this shared theme.

Examples are critical to learning and to the structure
of knowledge and memory [Dietterich & Michalski, 1983;
Kolodner, 1983; Rissland, 19781. Recently, Schank has
suggested that explaining is perhaps even more critical than
“reminding” in the structure of dynamic memory [Schank,
19&4]. Examples play a central role in explaining since it
is with examples that one fiids the limits of generalizations
and explanations. Anomalies and counter-examples, in
particular, help bound concepts and rules.

In legal argument, one is constantly trying to test the
limits of “rulalike” propositions and show why certain
precedents should or should not control the decision of

‘This work supported in part by Grant ET-8212238 of the
National Science Foundation.

another case. In the law, it is cases, both “real” and
hjrpothetical (i.e., cases which have not actually been
litigated), which seme as examples. Hypotheticals serve
many roles; they create, remake, refocus, and organize
experience and are used to explore concepts and rules and
to tease out hidden assumptions wand, l!W].

Thae observations apply to other domains as well,
Iike mathematics and computer programming. In
mathematics, where concepts and truth are more clearly
defined than in the law, one is constantly engaged in the
“dialectic of proofs and refutations” [LalEatos, 1976J? In
programming, there is an “inevitable intertwining” [Swartout
& Balzer, 19g2) of the examples with the evolution of
programs and specifications. This intertwining of examples
and experience with proposing, refiig and refuting can be
seen “almost everywhere”; it is inherent to the basic life
cycle of science [Kuhn, 19701.

In this paper, we will discuss the use of examples in
two types of explanation and argumentation: the fii is the
case of on-line HELP and the second is legal argument
with hypotheticals.

2. Explanation: On-Line HELP

By on-line help, we mean command assistance and
assistance about certain concepts and standard tasks and,
although we have not included it in our work, error and
prompting assistance as well.

One important component of knowledge that is
missing in most on-line (and off-line) explanation, especially
help and manuals, concerns examples. Examples offer a
concrete illustration of what is being explained and a
memorable hook into more general information. They are
especially important for the beginner.

2 CertainIy in mathematical research. One could argue that
learning mathematics should also foI.Iow along this line.
Regardless, exampIes are an important component of
mathematical knowledge and are vital to teaching, learning and
understanding bland, 19781.

288

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Examples can provide easily understood and
remembered usages. For instance,

PRIM VITAMEY
is clearly more perspicuous than

“PRINT [[Cqf’I z tvrmne[.ext~[~[lCJ[/P]...~ (from PM 19831)

A novice uses simple cases: to figure out how to
instantiate the general syntactic description, to use as
“recipes~ for standard tasks, as a basis for generalizing,
and as a basis for a “retrieval+modification” wand,
19811 approach to generating other examples. For the
expert, examples can serve as a reminder of syntax and
things previously done, much like an icon.

In most current help facilities, like that of
VAXIVMS, the user asks for information about a
particular command, like “HELP PRINT”, and is then
presented with information on PRINT, including relevant
parameter options, but almost never including examples of
standard, potentially dangerous, or clever uses. The
explanations often include system jargon, like “queue”,
“world” or “filespec”, which the user ought to be able to
ask about but usually can’t.

Research on intelligent on-line explanation is still not
very far advanced (see [Houghton, 19841) although some
interesting starts have been made. For instance, Wilensky ,
in his UC system, allows the user to ask for assistance in
natural language; his work has concentrated on request
understanding wilensky, 1982a, 1982b]. Finin, in his
WIZARD system, has focussed on the problem of
recognizing when the user needs help, particularly, because
he is using inefficient means to accomplish a task (e.g.,
using repeated DELETES instead of PURGE) and then
volunteering advice [Shrager & Finin, 1982; Finin, X%3].

Our approach to improving on-line HELP is two-fold:
(1) include more ingredients of expert knowledge like
examples of various categories, heuristics, and pragmatic
knowledge in the information provided to the user; (2)
embed user-tailored examples in the explanations. In the
rest of this discussion, we shall assume that the on-line
help facility has already been invoked (by the user or the
system) and that the facility has already ‘parsed* the use&s
request (i.e., knows with what the user requires assistance).
Our emphasis is on the generation of the response, in
particular, from a model of the user’s expertise, contextual
information, and exemplar knowledge. We don’t use any
text generation, although using a language generation
program like McDonald’s MUMBLE NcDonald, 1982] is
an obvious thing to do. Clearly, this work should
eventually be tied in with work on invocation and parsing
like that of Wilensky or Finin.

2.1 (More) IntelLlgerlt on-uue HELP

In our HELP facility, we too offer explanations on
commands like PRINT but we embed relevant, user-tailored
examples in the explanation and allow the uSer to ask
about system jargon as well as certain tasks. Further, we
‘ripple” contextual information in our explanations as well
as use some (very) crude user modelling. For instance, if
the user has just asked about PRINT and then asks what

a “queuew is, the system would give as examples of queues
those used for print jobs. We also allow the user to ask
for assistance in a more task-oriented way, through
keywords and phraset? like “clean-up” and “unlock”. (The
first leads into assistance about PURGE and saving files;
the second, about setting the protection - which in most
help systems is only accessible by explicitly asking about a
seemingly unrelated command like SET - and possibly
related system jargon like “world”.) Task-oriented requests
usually feed into explanations about specific commands,
which are then focussed by the context defined by this
type of access.

2.2 Embedding Cnstomized lhamplts

We use taxonomic knowledge of examples’ to help
select and order the presentation of examples. For
instance, we provide the absolute neophyte user with
‘%ta.lt-up” examples and the more experienced user with
‘keferences”. Where a sequence of examples is called for,
the taxonomic knowledge can be used to order the
examples, for instance, with references presented before
models which are presented before counter-examples and
anomalies. Taxonomic knowledge can also enable the
explanation facility to allow the user to ask specifically for
examples in a certain class (e.g., “easy”, “anomalous”,
%lever”).

One way to customize examples is to modify them to
reflect specifics of the user and his context, for instance,
using information about the user% own directory in
explanations about directory commands. We use techniques
of retricval+nwdif ication and instantiation in our on-line
HELP by linking the explanation program with an example
generator, which uses an Examples-Knowledge-Base (ERR)
of already existing examples together with procedures for
modification and instantiation. The EKB consists of
examples, represented as frames, harvested and organized
by an expert. Procedurally attached to examples are
instantiation and modification procedures like those to
generate extreme variations or to personalize an example.

The ability to generate examples on the fly allows
the explanation facility to respond dynamically to the user,
his tasks, goals, context, domain, etc. User-specific
“constraints” on the examples are provided by
user-modelling capabilities, for instance, keeping track of
how many examples have already been presented in the
current invocation of HELP, and roughly gauging the
user’s expertise on the basis of certain system data like the
block size of the directory, the number of subdirectories,
the types of files owned, etc.

3 Already known to the system and available for perusal by the
user, this list easily can be augmented on the basis of users’
needs.

’ bland, 1!978] described a taxonomy of examples: %tart-up”
(easy, perspicuous cases); “reference” (standard, textbook cases);
“model” (paradigmatic, template-like cases); %ountertxamples”
(Iimiting, bad cases); “anomalous” (ill-understood, strange cases).

289

The point is to work examples into the explanation
given the user, and better still to make the examples
meaningful in the sense of addressing the particular needs
and knowledge of the user.

23 TEXPLATER !kpnrating Control from Couteut

In our HELP system, we separate the control of the
help session from its content. We use a script-like control
structure of text and examples organized in a template, a
‘TEXPLATE”, which is then used to generate HELP’s
respon=. The explanations are assembled by retrieving the
needed text and examples which are pointed to in the
relevant texplate (texplates are indexed by commands,
jargon and task keywords).

A TEXPLATE is a set of related nodes, each of
which points to chunks of text or examples, and contains
the selection criteria for that node. To maintain
consistency with other system documentation, wherever
possible we use text used elsewhere, for instance, in the
manual. Calls to examples are either requests for explicitly
named examples in the EKB or constraints describing
modiiications to be made to an example. For instance,
example calls could be for: a named, known extreme case
(e.g., DEL *.*.*); an example generated to fulfill prescribed
constraints (like using the name of the user’s most recently
edited file); using a previously used example perhaps with
an embellishment to m*e it extreme, anomalous, or clever.

A Texplate-Interpreter controls the flow through the
texplates, including which user-options to present and what
to do in response (e.g., MORE to go on with the
explanation, EXAMPLE for an example, QUIT, etc.) as
well as directing the generation of sequences of examples,
should the user repeatedly ask to see an example. Each
TEXPLATE defines a context within which the possible
meanings of a particular request are narrowed. For
instance, asking about the PRINT command will constrain
certain specifications in subsequently selected examples such
as those for related jargon (e.g., “queue”, “job”), commands
(e.g., SHOW/QUEUE), and tasks like those that wzdo the
command just explained, (e.g., deleting a job from a print
queue). Thus, if the user then asked about the meaning
of ‘queue”, the examples would be tuned to reflect the
fact that the system just explained PRINT. Certain control
options are always available for a texplate: these include
asking for repeated examples and asking about commands
that verifv or undo the command just explained.

2.4 Two Examples: IA-LADYBUG & VM!S

In our on-going work, we are working within two
systems. The first is IA-LADYBUG, a system designed
specifically for novice programming students with the aim
of introducing them to notions useful in the Pascal
programming language (like subprocedures) by having them
work with a graphics icon, the LADYBUG, which can be
commanded by LOGOlike commands such as CRAWL,
RIGHT-TURN, etc. [LRvine & Woolf, 19&t]. The second
is a subset of VAYUVMS command language [DEC, 19781
dealing with directory and protection commands like
PURGE, DELETE, and SET PROTECTION.

Figure I. Example scenario of user interactions with HELP

S help

Enter a subject or command you need help with, or type
a ? for a list of choices. Enter Q to quit.

HELP >prhlt

PRINT
Queues one or more files for printing, either on a
default system printer or on a specified device.
For example:

print !ogin.com
will cause your file loginwm to be printed on the default
system printer.

HELP (Type M for More, E for ExampIe, Q for Quit, or
enter another request)> queue

A print queue is a list of files to be printed on a specific
device.

For example:
print Iogincom /queue=narrow

requests that file logincom be printed on the printer
corresponding to the queue named “narrow”.

The /QUEUE qualifier is synonymous with the /DEVICE
qualifier. For instance,

print login.com /device=narrow
will do the same thing.

HELP (Type M for More, E for exampIe, Q to quit, or enter
another request)>E

Another example:
print IogincomIqueue =sys$Iaser

wilI cause the file logincom to be printed on the laser
printer

HELP (M, E, Q,...)> m

PRINT expects the file type to be “LIS” unkss otherwise
specified.

For example:
print 1ogi.n

will not print your file logincom and it wilI cause an
error because you do not have a fiIe named loginlis.

HELP@& E, Q,...)-ndo

To remove a file from a print queue, use
DELETE/ENTRY.

For example:

deletelentry=l234 narrow
wilI remove the job with entry number 1234 from the
queue named narrow.

HELP&l, E, Q,...)>M

To see what job number to -9 typt
show queue/ah narrow

Another way to stop a file being printed is to rename
or delete it; this avoids having to know the job entry
number.

=LPIM, Es Q,...)>Q

290

For the IA-LADYBUG system, over which we have
total control, the manual, an on-line tutorial, and on-line
HELP deliberately share material, specifically examples and
text. Often, the tutorial and HELP present dynamic
examples only summarized in the manual, for instance, one
involving the ladybug crawling off the screen, or examples
too complicated or whose effect (like color) would be lost
in the manual. The simpler “start-up” and “reference”
examples presented in the manual are the fii examples
presented in the tutorial and HELP. Both, but especially
HELP, go on to present more complex or difficult
examples, like counterexamples to show the limits of
commands (e.g., RIGHT 362 exceeds the parameter range
for degrees of turning). HELP also tunes its examples
based on user-information like the user’s directory (e.g., in
DIR examples) or procedures already completed (e.g., in
SEQUENCE examples).

Figure I gives an example scenario of user
interactions with HELP in our second domain of
application, VAYWMS command language. (What the
uSer types is indicated in bold face.) A few things should
be noted: (1) the first sentence explaining PRINT is that
used in the existing system documentation which doesn’t
contain examples; (2) the explanation given for uqueuen not
only reflects what has just been explained (PRINT), but
also offers some information on synonomous qualifiers; (3)
HELP relates the “undo” explanation with what has gone
before and also provides an alternative way of
accomplishing the same task. (4) HELP provides pragmatic
knowledge; (5) HELP provides counter-examples, i.e.,
instances of “bad” usage.

3. Argumentation: Dynamic Hypothetical8

In our second line of research on examples, we have
built a program that will generate hypothetical cases
(“hypes”). One area of our current work concerns cases
involving protection of property interests in software under
trade secret law. Using prior decided cases as examples
and guides, the program will modify the hypos to make
them stronger or weaker cases in favor of the plaintiff or
defendant. Hypes and cases are contained in an EKB and
are both represented using similar frames. The frames
have three or four levels of subframes presenting
increasingly detailed factual information.

A trade secret case frequently involves two
corporations, a plaintiff and defendant, who produce
competing products. The plaintiff usually alleges that the
defendant gained an unfair competitive advantage in
developing and marketing its product by misappropriating
trade secret information developed by the plaintiff. There
are at least three stereotypical scenarios by which the
defendant gains access to the plaintiff’s trade secrets: (1) A
former employee of the plaintiff with knowledge of the
trade secrets enters into the defendant’s employ and brings
with him trade secret information which he learned while
working for the plaintiff; (2) The plaintiff may disclose the
“secret” information to the defendant perhaps in connection
with an attempt to enter into a sales or other agreement
with the defendant; (3) The trade secret information may
be stolen from the plaintiff and passed to the defendant.

291

Frames and subframes have been defined to represent
these typical trade secret fact patterns. Figure 2
illustrates excerpts of frame structures representing the
following hypothetical trade secret case, involving the fii,
“employee”, scenario, named RCAVICTIM v. SWIPEINC
aml Leroy Sold.

In the hypo, plaintiff RCAVICTIM sues defendants
SWIPEIIUC and Leroy Soleil for misappropriation of trade
secrets in connection with software developed by the
plaintiff over a period of two years, from 1980 to 198L,
with an expenditure of $2 million. Plaintiff markets the
software, known as AUTOTELL, a program to operate a
system of automated teller machines, to the banking
industry. In 1982, computer whiz Leroy Soleil, one of
plaintiff’s key personnel on the AUTQI’ELL project, left
RCAVICTIM and began working for SWIPEJNC on a
competing product, TELLERMATIC, also an automated
teller program, which the defendant had just begun to
develop. SWIPEINC managed to perfect TELLERMATIC
also in about two years after spending about $2 million.
RCAVICTIM claimed that SWIPEINC used trade secret
information about AUTQTELL which Soleil brought with
him.

3.1 DImensional Analysts

In actual trade secret cases, the courts have decided
a number of legal issues. For each issue decided, the
court frequently identifies certain facts that it deems
significant in making its “holding” in favor of a party
[Levi, 19491. The holdings of prior cases may be grouped
into general categories that represent dimensions along
which a hypo can be modified in ways that have legal
significance for one or the other party. The dimensions
factor a legal domain into basic modifications that affect
the relative strengths of the parties’ arguments and
organize the prior cases in terms of how they can be
used to guide modifying a hypo or to support a
hypothetical party% argument.

Dimensions that have been identified in the trade
secret case law [Gilbume & Johnston, 19821 and
implemented in the program include the following:

1. Unfair Competitive Advantage: Plaintiff’s argument
is strengthened if the alleged trade secret information
allowed defendant to gain a competitive advantage
over plaintiff.

2. Generally Known: Plaintiff’s argument is weakened
if the alleged trade secret information is generally
known within the industry.

3. Learnable Hsewherc: If the information was
learned by an employee in his work for the plaintiff
and he could have learned the information working
for some other employer, plaintiff’s argument is
weakened.

4. Vertical Knowledge: Plaintiff’s argument is
weakened if the alleged trade secret information was
about a vertical market. For example, cases imply
that knowledge about a vertical market, such as
knowledge of the structure of the banking industry,
that an employee might learn in the course of
developing computer programs for that market is not
protectible as trade secret information.

5. TeUtaIe Signs of Misappropriation: Plaintiff’s
argument is strengthened if there are certain telltale
signs that the defendants sought to misappropriate
the plaintiff% alleged trade secret information, e.g.,
that the corporate defendant paid a very high bonus
to get the employee to bring with him a copy of the
code he worked on for the plaintiff.

6. Noncompetition Agreement: Plaintiff’s argument is
strengthened if the employee entered into an
agreement not to work for plaintiff’s competitors.

7. Accessible by Others: Plaintiff’s argument is
weakened to the extent that plaintiff did not keep
secret its alleged trade secret information by allowing
an increasing number of other persons to have access
to the information.

8. Confldentfnlity Agreements Cum&rain& Access:
Plaintiff’s argument is strengthened to the extent that
the persons with access to the trade secret
information entered into agreements not to disclose
the information to others.

33 Dimension- and Example-Directed Modification

Our HYPO program can modify a hypothetical case
in favor of either party along any of the above
dimensions. For instance, one simple way to modify the
hypo in favor of plaintiff is to introduce the fact that
SWIPEINC developed the competing software after 1982,
the date when Soleil joined the company, at a considerable
saving in time and money compared to plaintiff’s
expenditures. Such a modification is done so as to reflect
the fact situation of an actual case in the knowledge base,
thus allowing one to argue analogically for or against a
party-s position.

Suppose that there is a trade misappropriation case in
the EKB, JCN Corp. v. TEREX , where the court held
for plaintiff JCN and TEREX took two years and
$l,ooO,ooO to develop a product that JCN took four years
and $2,00O,CNMI to develop. The modification procedure
simply computes the relative savings in development time
and expenditures in the case from the EKB and modifies
the appropriate slots in the hypo so that SWIPEJNC also
saved relatively the same amounts in developing the
program. See figure 2. Under the new facts of the
hypo, RCAVICTIM’s attorney could cite JCN Corp. v.
TEREX in favor of his client’s position. If on the other
hand, the hypo were to be modified in favor of the
defendant, the procedure would decrease the relative
savings in development expenditures so that SWIPEINC’s
attorney could distinguish JCN Corp. v. TELEX on the
basis that his client did not save as much in development
costs as TEREX did.

Plaintiff Defendant-l
Name: RCAVICTZhf SWZPEZNC
Produce8: Product-l Product-2

Product-l
Name: Autotefl
Devd~By: RCAVZCTZM

,Key-employee~: Leroy Soled
Demlopmtmbstartl~Date: 1980 -
Devekbpmmt-ComplDate: 1982
Devebpmemt-TlmeEx~ended: 2 years
DeNelopment-Morley-Exm: $2,ooo,ooo~

~Knowledge-Used: Secret-Knowledge-l
Competes-With: Product-2

1 Secret-Knowledge-l
Subject-Matte: Vertical-knowledgeabout-banking /
Gemrally-Known-h-hdwtry?: Generally-known
LeamabbElsewhere?: Yes
Number-Of-Persona-Wtlh-Access: 0

I/
(1) Modify for plaintiff along Dimension 1

using JCN Corp. v. Terex as a guide.
(See text.)

(2) Modify for plaintiff along Dimensions 2-4.

Confldentlallty-Agr-WbAcceasor 83: N.A. 1

0

Defendant-2
Leroy Soled

Product-2
Tellermatic
SWZPEZNC

HYPO-1A

I&’ i978
PC-D: 1982
BT-E: 4 years
D-M-E: $4,000,000

Leroy Soled
1982
1984
2 years
sums
Secret-Knowledge-l

S-M : l .

Technical-knowledge
about-real-time-
applications-software

GK-H?:
Novel-application-of-
technical-knowledge

-L-E?: No

p-0-P-W-A: 1
LISA-W-A?: YES

Key to Modifications:

(3) Modify for defendant along Dimension 7
and for plaintiff along Dimension 8.

Figure 2. Hpl, RCAVZCTZM v. SWIPEINC & &my Soled, and Modifications

292

Figure 2 illustrates other modifications that strengthen
plaintiff’s argument in the hypothetical The subject matter
of the claimed trade secret can be characterized as
technical information, e.g., about software engineering issues
relevant to real time applications, as opposed to vertical
knowledge about the banking business (Dimension 4). The
technical knowledge can be characterized as applied in a
novel way, newly discovered by plaintiff’s personnel, or
combined in a unique way with other technical knowledge,
as opposed to being generally known within the industry
(Dimension 2). It may be taken that Leroy Soleil would
not have been able to learn such knowledge while workiig
with any one other than the plaintiff (Dimension 3), or
that SWIPEINC paid him a bribe to enter its employ
(Dimension 5), or that Soleil brought with him a copy of
the source code of plaintiff-s program when he switched to
SWIPEINC’s employ (Dimension 5).

Modifications along each of the dimensions affect the
values in some subset of the frame slots representing the
hypo. The dimensions provide access to those cases in the
database that could be cited or distinguished by virtue of
the modification.

3.3 Umitations and Applications

The effects of the modifications on the relative
strengths of the parties are not n-y independent. For
example, the hypo could be modified in favor of the
plaintiff along Dimension 6 so that Leroy !Wei.l and
plaintiff had entered into an enforceable noncompetition
agreement. Now the effect of modifications along
Dimensions 1 through 5 that otherwise would favor the
defendant is rendered moot. That is, eventhough the
plaintiff has a weak argument (along Dimensions l-5) that
the claimed secret knowledge is protectible as a trade
secret, he may still be able to enforce the noncompetition
agreement.

Another example of a collision in the effects of
modifications along dimensions can be illustrated by
modifying the hypo in favor of the defendant along
Dimension 2 and for the plaintiff along Dimension 3. As
a result, the claimed secret knowledge is both generally
known within the industry and not learnable by employees
working any where but with the plaintiff, a contradiction.

The modification procedures can be used to generate
a “slippery slope” type sequence of hypos, a common
feature of legal argument. Suppose the hypo is modified
along Dimension 7 in favor of the defendant so that one
other person, let us say a customer, has access to the
information that plaintiff claims is a trade secret. This
weakens plaintiff’s argument because it implies that plaintiff
did not treat the information as secret. If the hypo is
modified along Dimension 8 in favor of plaintiff, that
customer is made subject to a contractual obligation not to
divulge the information it received from the plaintiff;
plaintiff’s argument that it treated the information as secret
is restored. Suppose this sequence of modifications were

iepeated so that instead of one customer’s having access to
the information, twenty did. Plaintiff could still prevail

since the corraponding modifications along Dimension 8
impose confidentiality agreements on all twenty customers.
Now suppose that the sequence were repeated so that the
number of customers with access were twenty thousand,
two hundred thousand, two million. The gambit of
imposing confidentiality agreements on all of the customers
may not continue to satisfy plaintiff’s burden of showing
that it had kept secret the information. If 200,ooo
customers have access, even if they have entered into
confidentiality agreements, from whom is the secret being
kept? To the distributors of software to the mass market
this hypothetical fact situation is of more than academic
interest.

Modifications along one dimension may make other
dimensions applicable or inapplicable. For example, as has
already been mentioned, the hypo can be modified along
Dimension 6 to introduce a noncompetition agreement. As
a result of this modification, another dimension becomes
applicable to the case:

9. Duration of Noncompetition Prof3Mtfon: Plaintiff’s
argument is weakened if the noncompetition
agreement purports to prohibit the employee from
working for competitors for too long a period.

The hypo can be modified to increase the time period for
which the agreement purports to prevent the employee
from competing, eventually to the point where the
agreement is no longer enforceable by the plaintiff.

How long a prohibition against competition by the
employee is too long to be enforced? The legal rule
which purports to answer that question is that the covenant
not to compete will be enforced as long as its terms are
not unreasonable. Obviously such a rule provides a
program little guidance in the modification of the
hypothetical. Legal cases in the EKB which are relevant
to Dimension 9, however, constitute specific examples of
the application of this rule, complete with actual time
periods that courts have deemed reasonable and others
deemed unreasonably long. The modification procedure
will use the actual time periods as guides in strengthening
or weakening the plaintiff% argument. The cases indexed
under Dimension 9 can be cited to justify the
interpretation of the effect of the modification and to
fashion an explanation of the argument by reference to the
general rule enunciated in the cited cases.

A case from the EKB may participate in more than
one dimension and be applied to modify a hypo along a
dimension eventhough the case differs substantially from
the hypo in other respects. Where a dimension involves
slots whose values are not quantitative, more complex
methods of modifying the slot values are necessary. The
modifications must be made consistently within the context
of the hypo’s other facts, particularly the time ordering of
significant events in the hypo.

293

4. snmmaly

In this paper we have examined two lines of
research sharing the theme of examples and example
generation. In the first, on-line explanation systems, there is
no distinction made between real and hypothetical examples
as there is in the second, legal argumentation. Both
research programs rely heavily on a preexisting corpus of
examples, structured and represented in an
mples-Knowledge-Base (KKB) and the use of
domain-specific procedures to modify existing examples to
create new ones.

In each program, there are constraints on the
selection and generation of new examples. In the case of
on-line HELP, the constraints come from knowledge of the
user, his task and context as well as the subject matter
being explained. In the case of legal argumentation, the
constraints come from internal consistency (e.g., of time)
within the example, dimensional analysis, domain-specific
doctrinal aspects, and the desired direction of the
modification (i.e., stronger or weaker for plaintiff or
defendant) with respect to the controlling case from the
EKB. Particularly, in the argumentation examples there is
the need to mediate between potentially conflicting
constraints.

In our future work on argumentation and
explanation, we plan to explore contextual knowledge,
which relates to the constraints to be placed on the
examples to be generated and on goal knowledge, of the
user and arguer. Such
deeper analyses of the
arguments, as well as
involved.

research -directions will involve
structure of explanations and

of the knowledge and parties

5. References

DEC (1978). VAXIVMS Command Lunguage User Guide.
Digital Equipment Corporation. Order No. AADO23ETE.

Dietterich, T., and Michalski, R. S. (1983). “A
Comparative Review of Selected Methods for Learning
from Examples”. In Michalski, Carbonell & Mitchell (Eds.)
Machine Learning: An Artificial Intelligence Approach, Tioga
Publishing, CA.

Finin, T. W. (1983). ‘Providing Help and Advice in Task
Oriented Systems”. In Prmcedings IJCAI83. Karlsruhe, W.
Germany.

Gilbume, M. R., and Johnston, R. L. (1982). ‘Trade
Secret Protection for Software Generally and in the Mass
Market”. ComputerLuw Journal. Vol III, No. 3 (Spring).

Houghton, R. C. (1984). “Gnline Help Systems: A
Conspectus”. CACM, Vol. 27, No. 2, February.

IBM (1983). Disk Operating System by Microsqft, Inc.. IBM
Personal Computer Language Series, IBM Corp.

Kolodner, J. L. (1983). ‘Reconstructive Memory: A
Computer Model”. Cognitive Science. Vol. 7, NO. 4.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions.
Second Edition. University of Chicago Press.

Lakatos, I. (1976). Proofs and Refutations. Cambridge
University Press.

Levi, E. (1949). An Introduction to Legal Reasoning.
University of Chicago Press.

Levine, L., and Woolf, B. (1984). “Do I Press Return?” In
Proceedings ACM-SXGCSE Symposium on Computer Science
and Education, Philadelphia, February.

McDonald, D. D. (1982). ‘Natural Language Generation as
a Computational Problem: An Introduction”. In Brady (Ed.)
Computational Theories of Discourse, MIT Press.

Rissland, E. L. (1981). Constrained Example Generation.
COINS TR 81-24, Department of Computer and
Information Science, University of Massachusetts, Amherst.

Rissland, E. L. (1983). “Examples in Legal Reasoning:
Legal HypotheticaIs”. In Proceedings IJCAf-&f. Karbruhe,
W. Germany.

Rissland, E. L. (1984). “Lear&g to Argue: Using
Hypothetical!?. Proceedings First Annual Work&q on
Theoretical Issues in Conceptual Id- Processing.
Atlanta, GA.

Rissland, E. L. (1978). “understanding Understanding
Mathematics- Cognitive Science, Vol. 2, NO. 4.

Schank, R. S. (1984) “Explaining”. Keynote talk at First
AMU~ Conference on Theoretical Issues in Conceptual
Information Processing, Atlanta, GA.

Shrager, J., and Finin, T. W. (1982). “An Expert System
that Volunteers Advice”. In Pruceedings -82,
Pittsburgh, PA, August.

Swartout, W., and Balxer, R. (1982). “Gn the Inevitable
Intertwining of Specifications and Programs”. CACM, Vol.
25, No. 7, July.

Wile&y, R. (1982a). “Talking to UNIX in English: An
Overview of UC”. In Pruceedings m-82, Pittsburgh, PA,
August.

Wilensky, R. (1982b). Talking to UNIX in English: An
Overview of an On-fine consuftant. Report No.
UCBICSD82/104, Computer Science Division, University of
California, Berkeley, September.

