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ABSTRACT 

The need for presenting useful descriptions of problem 
solving activities has grown with the size and complexity 
of contemporary AI systems. Simply tracing and 
explaining the activities that led to a solution is no longer 
satisfactory. We describe a domain-independent approach 
for selectively abstracting the chronological history of 
problem solving activity (a system trace) based upon user- 
supplied abstraction goals. An important characteristic 
of our approach is that, given different abstraction goals, 
abstracted traces with significantly different emphases can 
be generated from the same original trace. Although we are 
not concerned here with the generation of an explanation 
from the abstracted trace, this approach is a useful step 
towards such an explanation facility. 

I. Introduction: The Problem with Traces 

Understanding the problem solving activities of a large 
knowledge-based AI system is often difficult. Simply 
tracing the activities quickly inundates an observer’s ability 
to assimilate the many inferences and their relationships. 
Despite their unsatisfactory nature, activity traces remain 
a popular means of recording system activity because they 
are easily generated. 

A truce is a chronological execution history of the system. 
It records the many primitive events that comprise the 
problem solving process. An example of a small part of 
a trace, containing the events arising from executing one 
knowledge source in the Distributed Vehicle Monitoring 
Testbed [2] is shown in Figure 1. Traces generated by the 
Testbed typically contain thousands of primitive events. 

When investigating a particular system behavior, many 
events in the trace are unimportant or are meaningful only 
when considered with respect to other events. In addition, 
conceptually adjacent processing activities (for example, an 
activity that creates data used by another activity) can 
be quite distant in the trace. Understanding the system’s 
behavior directly from its trace requires that the user weed 
out those events that are irrelevant to the question at hand 
and group salient events into a meaningful description of 
system activity. Even for the designer of the system, this 
is a tedious and time consuming task. 
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Figure 1: A Portion of A Trace. 

What is needed is to automate the recognition, 
grouping, and potential deletion of traced activities in a 
manner that appropriately summarizes the behaviors under 
investigation. In this paper, we present an approach for 
selectively abstracting a trace based upon user-specified 
abstraction goals. An important characteristic of our 
approach is that abstracted traces with significantly 
different emphases can be generated from the same original 
trace. For example, an abstracted trace that emphasizes 
redundant processing activity might be quite different from 
one that emphasizes unsuccessful solution paths. The 
selective abstraction process is described, followed by an 
example and a presentation of additional issues related 
to the abstraction process. Relations with other work on 
presenting system activity is discussed in the last section. 

II. Trace Nets and Abstraction Actions 

We begin the selective abstraction process by 
transforming the sequence of primitive events in the trace 
into a trace net. A truce net is a data structure that records 
the input/output relationships among problem solving 
activities as well as their execution ordering. We represent 
a trace net as a Petri net (41 on which the execution history 
is imposed. Figure 2 shows a trace net for a small run of 
the Distributed Vehicle Monitoring Testbed. The portion 
corresponding to the trace fragment of Figure 1 has been 
indicated. Not all events in the original trace have been 
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Figure 2: An Example Trace Net. 

represented in Figure 2. In the examples presented In this 
paper, we have chosen to represent only knowledge;source 
executions and hypothesis creation. Trace events that are 
unrelated to this modeling level have been eliminated from 
the trace net. 

Formally, a truce net 2’ is a pair (N, E) where N is a 
Petri net structure N = (0, A, I, 0) with: 

A” 
set of data units 
set of activities 

I:AHD’ an input function connecting input data 
units to activities 

O:A- D’ an output function connecting activities 
to output data units 

and where E is a partial order’ over the set of activities 
called the ezecution order. A data unit might represent a 
single hypothesis or fact and an activity a single knowledge 
source execution or inference rule application. 

An abstracted trace net 9 is then generated by 
appropriately collapsing and deleting portions of the 
original trace net T. The abstracted trace net contains 
a (generally) smaller set of data units and a (generally) 
smaller set of activities than 2’ as well as a reduced (and 
possibly empty) execution order. The execution order of 
the abstracted trace net can be empty if the order in 
which activities execute is considered irrelevant. In an 
abstracted trace net a data unit might represent a group of 
hypotheses or facts and an activity a group of knowledge 

l In a single-processor system, E is a total order. 

Figure 3: An Abstracted Trace Net. 

source executions or inference rule applications. 
The following is a view of the overall abstraction process: 

ABSTRACTION GOALS 
u 

ABSTRACTION PATTERNS 
u 

ABSTRACTION PREDICATES 
u 

ABSTRACTION ACTIONS 
u 

TRACE NET + ABSTRACTED TRACE NET 

An ABSTRACTION ACTION either deletes an object’ from the 
trace or lumps a group of objects into a single object. The 
ABSTRACTION GOAL determines which objects can be deleted 
and/or lumped. An example of an abstraction goal is “show 
redundant processing and the solution path.” An object is 
deleted if it is considered unimportant with respect to the 
specified abstraction goal. A group of objects is lumped if 
it can be considered a single object with respect to the 
abstraction goal. In order to transform the abstraction 
goal into abstraction actions, the system needs to know 
what ABSTRACTION PATTERNS in the trace are relevant to the 
abstraction goal. For the redundant processing abstraction 
goal, important patterns are multiple activities creating 
the same output data units. Each ABSTRACTION ACTION 
is controlled by ABSTRACTION PREDICATES which are logical 
functions over the trace. 

An example trace net and one of its abstractions are 
shown in Figures 2 and 3, respectively. A circle represents 

’ An object is either a data unit or au activity. 
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a data unit, a bar represents an activity, incoming arrows 
connect the activity to its input data units, and outgoing 
arrows connect the activity to its output data units. 

We have found the following to be a relatively general 
and sufficient set of abstraction predicates. Corresponding 
actions are illustrated in Figure 4. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

unused-data-deleted? If true, data which are not input 
to any activity (except for the solution) are deleted. 
no-output-activities-deleted? If true, activities with no 
output data are deleted. 
shared-i/o-activities-lumped? If true, two activities 
in which the first provides inputs to the second are 
replaced by a single activity. 
shared-input-activities-lumped? If irue, activities 
which share input data are replaced by a single activity. 
shared-output-activities-lumped? If true, activities 
which share output data are replaced by a single 
activity. 
input-context-data-lumped ? If true, a group of data 
which are input to a single activity are replaced by a 
single data unit. 
output-context-data-lumped? If true, a group of data 
which are output of a single activity are replaced by a 
single data unit. 
execution-order-ignored? If true, activities can be 
lumped even if they are not successive in terms of 
execution order. 

III. An Example: %how redundant processing” 

The following are the predicate values for the 
abstraction goal ‘show redundant processing and the 
solution path.” The condition condition1 is derived from 
the pattern for the redundant processing abstraction goal 
and is true when data are created by multiple activities. 
Since this pattern represents a relation between a data 
unit and its creating activities, condition1 parameterizes 
predicates 1, 3, 5 and 7: 

1. 

2. 
3. 

4. 
5. 
6. 
7. 

8. 

unused-data-deleted? : true, except for the solution and . . 
condstaonl; 
no-output-activities-deleted? : true; 
shared-i/o-activities-lumped? : true, except for . . 
condstaoq; 
&are&input-activities-lumped? : true; 
shared-output-activities-lumped? : false;* 
input-con text-data-lumped? : true; 
output-con text-dataJumped? : true, except for 
condition1 ; 
execution-order-ignored? : true. 

Figure 3 shows the abstracted trace net obtained from the 
trace net in Figure 2 by performing the abstraction actions 
applicable with the above predicate values. The actions 
performed were (listed by type): 

l Since predicate 5 is defined to cause the lumping only if this pattern 
is true, its value can be set to false, to eliminate testing. 

w5 

Figure 4: The Actions for Abstraction Predicate8 
l-7. 

l delete-data: deleted data 1, 24, 25 and 26 because 
predicate 1 is true; 

l delete-activity: deleted activity 9 because predicate 2 is 
true; 

l lump-data: lumped data 2 and 3 into i’ because 
predicate 6 is true; lumped data 4, 5, 6 and 7 into 2’ 
because predicate 6 is true; 

0 lump-activities: lumped activities 1 and 2 into 1’ 
because predicate 3 is true; lumped activities 3 and 4 
into 2’ because predicate 3 is true; lumped activities 5 
and 9 into 3’ because predicate 4 is true; 

In this example, the abstracted trace has 12 data units and 
10 activities-a reduction of 45% in the number of objects 
from the original trace. More importantly, only irrelevant 
information is abstracted out. All the relevant information 
is preserved; i.e., all of the activities generating redundant 
data can still be seen. 

When considering an object for an action application, 
the predicates are evaluated in the listed order, except 
that predicate 8 is used as a constraint for all activity 
lumping predicates (3, 4 and 5). That is, if the value of 
predicate 8 is false, and the activity considered for lumping 
with the current activity is not the next in the execution 
order, then the action can not be taken. Predicates 1 
and 2 are evaluated first because they cause deletion of 
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objects and thus result in less work for the remaining 
abstraction actions. Activity lumping predicates (3, 4, and 
5) are considered before data lumping predicates (6 and 
7) because they can either make a data lumping action 
unnecessary (see Figure 4 Case 3b) or make a new data 
lumping action possible. Such is the situation in Figure 4 
Case 4 where the output data can be lumped after, but not 
before, the activity lumping action. Predicates 4 and 5 are 
related since both predicates must be true for a lumping 
action to occur if the candidate activity shares both inputs 
and outputs with other activities. Consequently, the false 
value of either predicate excludes the lumping action, and 
both predicates must be evaluated before the action can be 
taken. A similar relation (and the same evaluation order) 
holds for predicates 6 and 7. 

The abstraction process traverses the trace net from 
the top down (from the solution data to the system input 
data), iteratively evaluating all predicates and performing 
all applicable actions until quiescence. There are two 
reasons for our use of the top-down ordering. First, some 
abstraction goals are tied to the solution of the system 
(such as %how only the solution path”). Second, in 
interpretation systems (such as our Distributed Vehicle 
Monitoring Testbed), an activity typically has more input 
data than output data, and a top down traversal causes 
earlier lumping. 

Abstraction predicates are general means of specifying 
the context of the abstraction action application, based on 
the structural properties of the trace net. Although they 
can be generated from abstraction goals, it is important 
for the user to have the ability to access the predicates 
directly. We view the transformation of abstraction goals 
into abstraction predicates as merely an aid to generating 
a suitable set of default predicate values-not as the sole 
means of specifying parameter values. 

If the predicate values are allowed to be arbitrary logical 
functions, the result of two actions can depend on their 
ordering. Consider an example with three activities, the 
first two sharing inputs, and the last two sharing outputs. 
Predicates 4 and 5 have the following values: 

4. shared-input-activities-lumped? : true, if all inputs are 
shared; 

5. shared-output-activities-lumped? : true, if all outputs 
are shared. 

The result of first considering lumping activities 1 and 
2 is different from the result of first considering lumping 
activities 2 and 3 (see Figure 5). Before activities 1 and 2 
are lumped, two lumping actions are applicable (activities 
1 and 2; activities 2 and 3). After lumping activity 1, the 
conditions for lumping activities 2 and 3 are no longer true 
(not all the inputs are shared). Similarly, lumping activities 
2 and 3 eliminates the possibility of lumping activities 1 and 
2. If non-monotonic actions (where applying one action 
precludes applying another action) are specified through 
predicate values, additional action ordering should also be 
specified. 

Left: Lumping activities 1 and 2. 
R.ightr Lumping activities 2 and 3. 

Figure 5: Order Dependent Lumping Actions. 

IV. Adding Domain Dependent Information to 
the Abstraction Procese 

The abstraction process that we have outlined so far 
is completely domain independent. It has used as inputs 
only the information about the structure of the trace net 
(input and output connections and the processing order). 
However, there are cases where some domain dependent 
information can be used to improve the abstraction process. 
Domain-specific information may affect the following: 

1. Abstraction goals. Some abstraction goals can be 

2. 

3. 

- 
satisfied only if certain attributes of objects are known. 
For example, if the abstraction goal is to show 
whether the system was distracted during processing, 
a corresponding pattern is a sequence of activities in 
which there is a shift from processing “good” input 
data, to processing ‘bad” input data. In order to 
recognize this pattern, the abstraction process needs to 
know what constitutes ‘good” and “bad” data. Also 
note that this is one type of abstraction goal for which 
the execution order is important, and the predicate 
execution-order-ignored? must have the value true. 
Abstraction predicates. Domain specific predicates can 
further reduce the amount of information in the trace. 
Consider a predicate that deletes a data unit of a smaller 
scope when an equivalent data unit of a larger scope are 
both inputs to an activity. The assumption here is that 
the smaller scope data contain redundant information. 
The notion of scope is domain dependent. For example, 
in our vehicle monitoring domain, the scope can be 
represented by the length of the track of a vehicle. 
Lumping mechanism. The result of lumping may be 
sensitive to the type of objects that are being lumped. 
Consider, for example, the lumping of two activities 
where the output of the first is the input for the 
second in the vehicle monitoring domain. There are 
two types of activities: merging and synthesis [3). A 
merging activity combines input tracks to produce a 
longer track. A synthesis activity combines lower level 
input data to obtain higher level output data. In 
the same vehicle monitoring example, an activity can 
combine acoustic signals into harmonic groups (signal- 
to-group synthesis), or it can combine harmonic groups 
corresponding to different acoustic sources associated 
with a vehicle type to identify the vehicle (group-to- 
vehicle synthesis). The lumping action for two merging 
activities is shown in Figure 4, case 3a. The lumping of 
two synthesis activities is shown in Figure 4, case 3b. 
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V. Capabilitiee of Our Approach 

Our approach of reducing the trace net into 
an abstracted trace net results in several important 
capabilities: 

0 On/off-line abstractions. The abstraction process can 
be performed either during processing, with only a 
partial trace available, or after a solution has been 
found. The difference is that before processing is 
complete the full implications of activities and the 
relations among all their created data are not known. 
Thus, goals which depend on these implications can not 
be satisfied. At the end of processing, solution data can 
be marked as special type of data, which can be related 
to the abstraction goals. 

l Zooming. The result of lumping is linked to the lumped 
objects. If the user decides that portions of the trace are 
“overabstracted,” the abstraction of any lumped object 
can be restored to see more details. Similarly, more 
constraining predicates can be applied to portions of an 
“underabstracted” trace. 

l Hjghligh ting. When a class of abstraction patterns 
is defined in the system, it can be used not only to 
determine the predicate values but also to tag the 
instances of the patterns found in the trace net. These 
tags serve to highlight the patterns to the user (for 
example, by blinking on an output graphic device). 

l Iterative abstractions/feedback. A uniform representa- 
tion of the trace net and the abstracted trace net fa- 
cilitates an iterative approach to goal satisfaction. If a 
particular abstraction goal does not sufficiently reduce 
the trace net, further abstraction goal refinement can 
be obtained from the user. In particular, at the begin- 
ning of an investigation the user may not know what 
abstraction goals appropriately abstract the “interest- 
ing” activities that occurred in the system. By using an 
initial abstraction goal to reduce the trace net, the user 
may be able to improve his understanding of the sys- 
tem’s behavior to the point of selecting a more suitable 
abstraction goal. This iterative process of selecting an 
abstraction goal and viewing the resulting abstraction 
is a powerful investigative technique. 

VI. Discussion 

Perhaps the system that comes closest to our work 
is the GIST behavior explainer, which generates an 
explanation from the trace of a symbol evaluator [5]. 
The GIST behavior explainer has a single abstraction 
goal: the selection of interesting and surprising events, 
where the notion of interesting and surprising is domain 
dependent. The main focus of the behavior explainer is 
the generation of a natural English explanation, and the 
issues in generating natural language are different from 
issues in generating symbolic descriptions. For example, an 

important strategy in reducing the complexity of natural 
language explanations is to restructure the explanation 
so that the relationships being described are more easily 
comprehended [6]. Such presentation strategies are not an 
issue in our work. 

Work on recognizing patterns of events as a tool for 
debugging distributed processing systems also has much in 
common with our approach [l]. However, we have taken 
the approach of displaying the whole abstracted trace net, 
rather than isolating patterns of activity and presenting 
them to the user. We feel patterns are best understood in 
the context of other events or in the context of the overall 
solution path. 

The trace net to abstracted trace net transformation has 
been implemented and is being used in conjunction with 
the Distributed Vehicle Monitoring Testbed. Presently, the 
generation of abstraction predicates from an abstraction 
goal is not implemented, and the user must set their 
values directly. However, even its current state, the 
implementation is significantly improving our abilities to 
investigate problem solving activities in the Testbed. As 
we increase our experience with the selective abstraction 
process, we hope to automate the transformation of 
abstraction goals into abstraction predicates. 
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