
SELECTIVE ABSTRACTION OF AI SYSTEM ACTIVITY

Jasmina Pavlin and Daniel D. Corkill

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

ABSTRACT

The need for presenting useful descriptions of problem
solving activities has grown with the size and complexity
of contemporary AI systems. Simply tracing and
explaining the activities that led to a solution is no longer
satisfactory. We describe a domain-independent approach
for selectively abstracting the chronological history of
problem solving activity (a system trace) based upon user-
supplied abstraction goals. An important characteristic
of our approach is that, given different abstraction goals,
abstracted traces with significantly different emphases can
be generated from the same original trace. Although we are
not concerned here with the generation of an explanation
from the abstracted trace, this approach is a useful step
towards such an explanation facility.

I. Introduction: The Problem with Traces

Understanding the problem solving activities of a large
knowledge-based AI system is often difficult. Simply
tracing the activities quickly inundates an observer’s ability
to assimilate the many inferences and their relationships.
Despite their unsatisfactory nature, activity traces remain
a popular means of recording system activity because they
are easily generated.

A truce is a chronological execution history of the system.
It records the many primitive events that comprise the
problem solving process. An example of a small part of
a trace, containing the events arising from executing one
knowledge source in the Distributed Vehicle Monitoring
Testbed [2] is shown in Figure 1. Traces generated by the
Testbed typically contain thousands of primitive events.

When investigating a particular system behavior, many
events in the trace are unimportant or are meaningful only
when considered with respect to other events. In addition,
conceptually adjacent processing activities (for example, an
activity that creates data used by another activity) can
be quite distant in the trace. Understanding the system’s
behavior directly from its trace requires that the user weed
out those events that are irrelevant to the question at hand
and group salient events into a meaningful description of
system activity. Even for the designer of the system, this
is a tedious and time consuming task.

This research was sponsored, in part, by the National Science
Foundation under Grant MCS-8306327 and by the Defense
Advanced Research Projects Agency (DOD), monitored by the
Office of Naval Research under Contract NRO4!%041.

tssts~stssssstsssssssssssssssssss~sssssssssssssssnssssss~~sssss
Executing Node 2 --- Inv Kaia 4 -- Time Frame 4 -- Node Time 51
BLACKBOARD EVENT --z quieaence external receive
BLACKBOARD EVENT -> quieaence external send
INVOKED KS1 -------> kai:02:0604 46 a:gl:vl 51 (g:02:0837

g:02:0047 g:02:0052 g:02:0079)
(h:02:0016 h:02:0017 h:02:0018) (13171

CREATED HYP ------> h:82:0019 v I ((3 (16 16) 1) 1 11200)
SUPPORT I NG HYP ---> h:82:0016 gl ((3 (16 16) 1 I 1 (6001
SUPPORTING HYP ----> h:02:0019 gl ((3 (16 16) 1) 2 11200)
SUPPORTING HYP ---> h:82:0019 gl ((3 (16 16))) 3 11200)
BLACKBOARO EVENT --> hyp-creation VI (h:82:0019)
INSTANTIATED KS1 --> kai:82:0017 goal-aend:vt (g:02:0093)

(h:82: 0019) <1200 -10000> (2194)
INSTANTIATED KS1 --> kai:02:0018 jf:vl:vt (g:02:0099)

(h:02:0019) <1200 2432, (14521
UNSUCCESSFUL KS1 -> jb:vl:vt g:02:0105 (h:82:0019) (nil nil)

-10000
INSTANTIATED KS1 --> kai:02:0019 ff:vl:vt (g:02:0105)

(h: 02: 0019) <1200 2432> (358)
RERATED KS1 ------ > kai:02:0018 jf:vl:vt (g:02:0026 g:82:0859

g:02:0072 g:02:0089 g:02:0B99) (h:62:0019)
cl0000 2432~ 11452 to 59851

RERATEO KS1 -------> kai:02:0012 a:gl:vl (g:02:0065 g:02:0100)
(h:02:0019 h:02:0020 h:02:0021) cl320 1032>
(1012 to 1072)

sstsstssssssstsssstsssssssssssssssssssssssssssss%ssssssssssssss

Figure 1: A Portion of A Trace.

What is needed is to automate the recognition,
grouping, and potential deletion of traced activities in a
manner that appropriately summarizes the behaviors under
investigation. In this paper, we present an approach for
selectively abstracting a trace based upon user-specified
abstraction goals. An important characteristic of our
approach is that abstracted traces with significantly
different emphases can be generated from the same original
trace. For example, an abstracted trace that emphasizes
redundant processing activity might be quite different from
one that emphasizes unsuccessful solution paths. The
selective abstraction process is described, followed by an
example and a presentation of additional issues related
to the abstraction process. Relations with other work on
presenting system activity is discussed in the last section.

II. Trace Nets and Abstraction Actions

We begin the selective abstraction process by
transforming the sequence of primitive events in the trace
into a trace net. A truce net is a data structure that records
the input/output relationships among problem solving
activities as well as their execution ordering. We represent
a trace net as a Petri net (41 on which the execution history
is imposed. Figure 2 shows a trace net for a small run of
the Distributed Vehicle Monitoring Testbed. The portion
corresponding to the trace fragment of Figure 1 has been
indicated. Not all events in the original trace have been

264

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Figure 2: An Example Trace Net.

represented in Figure 2. In the examples presented In this
paper, we have chosen to represent only knowledge;source
executions and hypothesis creation. Trace events that are
unrelated to this modeling level have been eliminated from
the trace net.

Formally, a truce net 2’ is a pair (N, E) where N is a
Petri net structure N = (0, A, I, 0) with:

A”
set of data units
set of activities

I:AHD’ an input function connecting input data
units to activities

O:A- D’ an output function connecting activities
to output data units

and where E is a partial order’ over the set of activities
called the ezecution order. A data unit might represent a
single hypothesis or fact and an activity a single knowledge
source execution or inference rule application.

An abstracted trace net 9 is then generated by
appropriately collapsing and deleting portions of the
original trace net T. The abstracted trace net contains
a (generally) smaller set of data units and a (generally)
smaller set of activities than 2’ as well as a reduced (and
possibly empty) execution order. The execution order of
the abstracted trace net can be empty if the order in
which activities execute is considered irrelevant. In an
abstracted trace net a data unit might represent a group of
hypotheses or facts and an activity a group of knowledge

l In a single-processor system, E is a total order.

Figure 3: An Abstracted Trace Net.

source executions or inference rule applications.
The following is a view of the overall abstraction process:

ABSTRACTION GOALS
u

ABSTRACTION PATTERNS
u

ABSTRACTION PREDICATES
u

ABSTRACTION ACTIONS
u

TRACE NET + ABSTRACTED TRACE NET

An ABSTRACTION ACTION either deletes an object’ from the
trace or lumps a group of objects into a single object. The
ABSTRACTION GOAL determines which objects can be deleted
and/or lumped. An example of an abstraction goal is “show
redundant processing and the solution path.” An object is
deleted if it is considered unimportant with respect to the
specified abstraction goal. A group of objects is lumped if
it can be considered a single object with respect to the
abstraction goal. In order to transform the abstraction
goal into abstraction actions, the system needs to know
what ABSTRACTION PATTERNS in the trace are relevant to the
abstraction goal. For the redundant processing abstraction
goal, important patterns are multiple activities creating
the same output data units. Each ABSTRACTION ACTION
is controlled by ABSTRACTION PREDICATES which are logical
functions over the trace.

An example trace net and one of its abstractions are
shown in Figures 2 and 3, respectively. A circle represents

’ An object is either a data unit or au activity.

265

a data unit, a bar represents an activity, incoming arrows
connect the activity to its input data units, and outgoing
arrows connect the activity to its output data units.

We have found the following to be a relatively general
and sufficient set of abstraction predicates. Corresponding
actions are illustrated in Figure 4.

1.

2.

3.

4.

5.

6.

7.

8.

unused-data-deleted? If true, data which are not input
to any activity (except for the solution) are deleted.
no-output-activities-deleted? If true, activities with no
output data are deleted.
shared-i/o-activities-lumped? If true, two activities
in which the first provides inputs to the second are
replaced by a single activity.
shared-input-activities-lumped? If irue, activities
which share input data are replaced by a single activity.
shared-output-activities-lumped? If true, activities
which share output data are replaced by a single
activity.
input-context-data-lumped ? If true, a group of data
which are input to a single activity are replaced by a
single data unit.
output-context-data-lumped? If true, a group of data
which are output of a single activity are replaced by a
single data unit.
execution-order-ignored? If true, activities can be
lumped even if they are not successive in terms of
execution order.

III. An Example: %how redundant processing”

The following are the predicate values for the
abstraction goal ‘show redundant processing and the
solution path.” The condition condition1 is derived from
the pattern for the redundant processing abstraction goal
and is true when data are created by multiple activities.
Since this pattern represents a relation between a data
unit and its creating activities, condition1 parameterizes
predicates 1, 3, 5 and 7:

1.

2.
3.

4.
5.
6.
7.

8.

unused-data-deleted? : true, except for the solution and . .
condstaonl;
no-output-activities-deleted? : true;
shared-i/o-activities-lumped? : true, except for . .
condstaoq;
&are&input-activities-lumped? : true;
shared-output-activities-lumped? : false;*
input-con text-data-lumped? : true;
output-con text-dataJumped? : true, except for
condition1 ;
execution-order-ignored? : true.

Figure 3 shows the abstracted trace net obtained from the
trace net in Figure 2 by performing the abstraction actions
applicable with the above predicate values. The actions
performed were (listed by type):

l Since predicate 5 is defined to cause the lumping only if this pattern
is true, its value can be set to false, to eliminate testing.

w5

Figure 4: The Actions for Abstraction Predicate8
l-7.

l delete-data: deleted data 1, 24, 25 and 26 because
predicate 1 is true;

l delete-activity: deleted activity 9 because predicate 2 is
true;

l lump-data: lumped data 2 and 3 into i’ because
predicate 6 is true; lumped data 4, 5, 6 and 7 into 2’
because predicate 6 is true;

0 lump-activities: lumped activities 1 and 2 into 1’
because predicate 3 is true; lumped activities 3 and 4
into 2’ because predicate 3 is true; lumped activities 5
and 9 into 3’ because predicate 4 is true;

In this example, the abstracted trace has 12 data units and
10 activities-a reduction of 45% in the number of objects
from the original trace. More importantly, only irrelevant
information is abstracted out. All the relevant information
is preserved; i.e., all of the activities generating redundant
data can still be seen.

When considering an object for an action application,
the predicates are evaluated in the listed order, except
that predicate 8 is used as a constraint for all activity
lumping predicates (3, 4 and 5). That is, if the value of
predicate 8 is false, and the activity considered for lumping
with the current activity is not the next in the execution
order, then the action can not be taken. Predicates 1
and 2 are evaluated first because they cause deletion of

266

objects and thus result in less work for the remaining
abstraction actions. Activity lumping predicates (3, 4, and
5) are considered before data lumping predicates (6 and
7) because they can either make a data lumping action
unnecessary (see Figure 4 Case 3b) or make a new data
lumping action possible. Such is the situation in Figure 4
Case 4 where the output data can be lumped after, but not
before, the activity lumping action. Predicates 4 and 5 are
related since both predicates must be true for a lumping
action to occur if the candidate activity shares both inputs
and outputs with other activities. Consequently, the false
value of either predicate excludes the lumping action, and
both predicates must be evaluated before the action can be
taken. A similar relation (and the same evaluation order)
holds for predicates 6 and 7.

The abstraction process traverses the trace net from
the top down (from the solution data to the system input
data), iteratively evaluating all predicates and performing
all applicable actions until quiescence. There are two
reasons for our use of the top-down ordering. First, some
abstraction goals are tied to the solution of the system
(such as %how only the solution path”). Second, in
interpretation systems (such as our Distributed Vehicle
Monitoring Testbed), an activity typically has more input
data than output data, and a top down traversal causes
earlier lumping.

Abstraction predicates are general means of specifying
the context of the abstraction action application, based on
the structural properties of the trace net. Although they
can be generated from abstraction goals, it is important
for the user to have the ability to access the predicates
directly. We view the transformation of abstraction goals
into abstraction predicates as merely an aid to generating
a suitable set of default predicate values-not as the sole
means of specifying parameter values.

If the predicate values are allowed to be arbitrary logical
functions, the result of two actions can depend on their
ordering. Consider an example with three activities, the
first two sharing inputs, and the last two sharing outputs.
Predicates 4 and 5 have the following values:

4. shared-input-activities-lumped? : true, if all inputs are
shared;

5. shared-output-activities-lumped? : true, if all outputs
are shared.

The result of first considering lumping activities 1 and
2 is different from the result of first considering lumping
activities 2 and 3 (see Figure 5). Before activities 1 and 2
are lumped, two lumping actions are applicable (activities
1 and 2; activities 2 and 3). After lumping activity 1, the
conditions for lumping activities 2 and 3 are no longer true
(not all the inputs are shared). Similarly, lumping activities
2 and 3 eliminates the possibility of lumping activities 1 and
2. If non-monotonic actions (where applying one action
precludes applying another action) are specified through
predicate values, additional action ordering should also be
specified.

Left: Lumping activities 1 and 2.
R.ightr Lumping activities 2 and 3.

Figure 5: Order Dependent Lumping Actions.

IV. Adding Domain Dependent Information to
the Abstraction Procese

The abstraction process that we have outlined so far
is completely domain independent. It has used as inputs
only the information about the structure of the trace net
(input and output connections and the processing order).
However, there are cases where some domain dependent
information can be used to improve the abstraction process.
Domain-specific information may affect the following:

1. Abstraction goals. Some abstraction goals can be

2.

3.

-
satisfied only if certain attributes of objects are known.
For example, if the abstraction goal is to show
whether the system was distracted during processing,
a corresponding pattern is a sequence of activities in
which there is a shift from processing “good” input
data, to processing ‘bad” input data. In order to
recognize this pattern, the abstraction process needs to
know what constitutes ‘good” and “bad” data. Also
note that this is one type of abstraction goal for which
the execution order is important, and the predicate
execution-order-ignored? must have the value true.
Abstraction predicates. Domain specific predicates can
further reduce the amount of information in the trace.
Consider a predicate that deletes a data unit of a smaller
scope when an equivalent data unit of a larger scope are
both inputs to an activity. The assumption here is that
the smaller scope data contain redundant information.
The notion of scope is domain dependent. For example,
in our vehicle monitoring domain, the scope can be
represented by the length of the track of a vehicle.
Lumping mechanism. The result of lumping may be
sensitive to the type of objects that are being lumped.
Consider, for example, the lumping of two activities
where the output of the first is the input for the
second in the vehicle monitoring domain. There are
two types of activities: merging and synthesis [3). A
merging activity combines input tracks to produce a
longer track. A synthesis activity combines lower level
input data to obtain higher level output data. In
the same vehicle monitoring example, an activity can
combine acoustic signals into harmonic groups (signal-
to-group synthesis), or it can combine harmonic groups
corresponding to different acoustic sources associated
with a vehicle type to identify the vehicle (group-to-
vehicle synthesis). The lumping action for two merging
activities is shown in Figure 4, case 3a. The lumping of
two synthesis activities is shown in Figure 4, case 3b.

267

V. Capabilitiee of Our Approach

Our approach of reducing the trace net into
an abstracted trace net results in several important
capabilities:

0 On/off-line abstractions. The abstraction process can
be performed either during processing, with only a
partial trace available, or after a solution has been
found. The difference is that before processing is
complete the full implications of activities and the
relations among all their created data are not known.
Thus, goals which depend on these implications can not
be satisfied. At the end of processing, solution data can
be marked as special type of data, which can be related
to the abstraction goals.

l Zooming. The result of lumping is linked to the lumped
objects. If the user decides that portions of the trace are
“overabstracted,” the abstraction of any lumped object
can be restored to see more details. Similarly, more
constraining predicates can be applied to portions of an
“underabstracted” trace.

l Hjghligh ting. When a class of abstraction patterns
is defined in the system, it can be used not only to
determine the predicate values but also to tag the
instances of the patterns found in the trace net. These
tags serve to highlight the patterns to the user (for
example, by blinking on an output graphic device).

l Iterative abstractions/feedback. A uniform representa-
tion of the trace net and the abstracted trace net fa-
cilitates an iterative approach to goal satisfaction. If a
particular abstraction goal does not sufficiently reduce
the trace net, further abstraction goal refinement can
be obtained from the user. In particular, at the begin-
ning of an investigation the user may not know what
abstraction goals appropriately abstract the “interest-
ing” activities that occurred in the system. By using an
initial abstraction goal to reduce the trace net, the user
may be able to improve his understanding of the sys-
tem’s behavior to the point of selecting a more suitable
abstraction goal. This iterative process of selecting an
abstraction goal and viewing the resulting abstraction
is a powerful investigative technique.

VI. Discussion

Perhaps the system that comes closest to our work
is the GIST behavior explainer, which generates an
explanation from the trace of a symbol evaluator [5].
The GIST behavior explainer has a single abstraction
goal: the selection of interesting and surprising events,
where the notion of interesting and surprising is domain
dependent. The main focus of the behavior explainer is
the generation of a natural English explanation, and the
issues in generating natural language are different from
issues in generating symbolic descriptions. For example, an

important strategy in reducing the complexity of natural
language explanations is to restructure the explanation
so that the relationships being described are more easily
comprehended [6]. Such presentation strategies are not an
issue in our work.

Work on recognizing patterns of events as a tool for
debugging distributed processing systems also has much in
common with our approach [l]. However, we have taken
the approach of displaying the whole abstracted trace net,
rather than isolating patterns of activity and presenting
them to the user. We feel patterns are best understood in
the context of other events or in the context of the overall
solution path.

The trace net to abstracted trace net transformation has
been implemented and is being used in conjunction with
the Distributed Vehicle Monitoring Testbed. Presently, the
generation of abstraction predicates from an abstraction
goal is not implemented, and the user must set their
values directly. However, even its current state, the
implementation is significantly improving our abilities to
investigate problem solving activities in the Testbed. As
we increase our experience with the selective abstraction
process, we hope to automate the transformation of
abstraction goals into abstraction predicates.

PI

PI

PI

PI

151

PI

REFERENCES

Peter Bates and Jack C. Wileden.
Event definition language: An aid to monitoring and

debugging of complex software systems.
Proceedings of the Fifteenth Hawaii International

Conference on System Sciences, pages 86-93,
January 1982.

Victor R. Lesser and Daniel D. Corkill.
The Distributed Vehicle Monitoring Testbed: A

tool for investigating distributed problem solving
networks.

AI Magazine 4(3):15-33, Fall 1983.

Jasmina Pavlin.
Predicting the performance of distributed knowledge-

based systems: A modeling approach.
Proceedings of the Third National Conference on

Artificial Intelligence, pages 314-319, August 1983.

James L. Peterson.
Petri Net Theory and Modeling of Systems, Prentice-

Hall, 1981.

Bill Sw artout.
The GIST behavior explainer.
Proceedings of the Third Nationat Conference on

Artificial Intelligence, pages 402-407, August 1983.

J. L. Weiner.
BLAH: A system which explains its reasoning.
Art&U Intelligence 15(1):19-48, September 1980.

