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ABSTRACT 

Some recently developed expert systems have used the Shafer- 
Dempster theory for reasoning from multiple bodies of evidence. 
Many expert-system applications require belief to be specified 
over arbitrary ranges of scalar variables, such as time, distance 
or sensor measurements. The utility of the existing Shafer- 
Dempster theory is limited by the lack of an effective approach 
for dealing with beliefs about continuous variables. This paper 
introduces a uew representation of belief for continuous variables 
that provides both a conceptual framework and a computation- 
ally tractable implementation within the Shafer-Dempster the- 
ory. 

1. Introduction 

The lack of a formal semantics for the representation and 
manipulation of degrees of belief has been a difficulty for expert 
systems. The frequent need to reason from evidence that can be 
inaccurate, incomplete, and incorrect has led to the recognition 
of evidential reasoning as an important component of expert sys- 
tems [2] [3]. Evidential reasoning, based on a relatively new body 
of mathematics commonly called the Shafer-Dempster theory, is 
an extension of the more common Bayesian probability analysis. 
In the theory, the fundamental measure of belief is represented 
as an interval bounding the probability of a proposition, thus 
allowing the representation of ignorance as well as uncertainty. 
A procedure to pool multiple bodies of evidence expressed in 
this manner to form a consensus opinion is also provided by the 
theory. 

Expert systems are often applied to situations involving con- 
tinuous variables such as time, distance, and sensor measure- 
ments. Because the Shafer-Dempster theory is defined over dis- 
crete propositional spaces, dealing with continuous variables has 
been approached by partitioning the variable’s range into discrete 
subsets of possible values. In practice however, this approach has 
two difficulties: conclusions are sensitive to the selected parti- 
tioning, and there is no means for specifying belief in a smoothly 
varying manner. 

Belief as well as ignorance about a continuous variable should 
vary smoothly through the range of possible values. By making 
an appropriate restriction in the class of propositions, smoothly 
varying beliefs can be expressed. This restriction motivates a ~~_ 
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new, continuous representation for belief over continuous vari- 
ables that is computationally practical and conceptually appeal- 
ing. 

The paper begins with a brief overview of the Shafer- 
Dempster theory. Section 3 presents a formalism for representing 
and manipulating evidence about a discretized scalar variable. 
The representation is generalized to the truly continuous case 
in Section 4, enabling discourse about any interval of values at 
any level of detail and permitting the representation of smoothly 
varying beliefs over those intervals. This is followed by an ex- 
ample which illustrates the new representation and its use. The 
paper concludes with a discussion of the theory’s relevance and 
extensions. 

2. Review of Shafer-Dempster Theory 

Suppose that there is a fixed set of mutually exclusive envi- 
ronmental possibilities 

e= {61,62 )“‘, 6,). 

Any proposition of interest can be represented by the sub- 
set of 8 containing exactly those environmental possibilities for 
which the proposition is true. The collection of all propositions 
(i.e., the power set of 9) constitutes the frame of discernment. 
Figure 1 shows the power set of 8 (for n = 4) arranged as a tree. 
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Figure 1: The Frame of Discernment: 8 = {A, B, C, D} 
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The nodes of the tree are the propositions 

each node logically implies its ancestors. 
arranged such that 

Bodies of evidence (i.e., sets of partial beliefs) are repre- 
sented by mass distribt~tions that distribute a unit of belief (i.e., 
mass) across the propositions in 0. In other words, the mass 
distribution assigns a value of belief in the range [0, l] to each 
subset of 8, such that 

c M(F;) = 1 
F,C@ 

M(4) = 0 
where nf (F;) is the mass attributed to proposition F;. Viewed 
intuitively. mass is 
a body of evidence 

attributed to the most precise propositions 

supports. If a portion of mass is attributed 

to a proposition, it represents a minimal commitment to that 
proposition as well as all the propositions it implies (i.e., nodes 
higher in the tree). At the same time, that portion of mass re- 
mains noncommital with regard to those propositions that imply 
it (i.e., descendant nodes in the tree). 

This representation allows one to specify his belief at exactly 
the level of detail he desires while remaining noncommital toward 

those propositions about which he is ignorant. Mass attributed 

directly to the disjunction of all propositions (i.e., 9) is neu- 

tral with respect to all propositions and represents the degree to 
which the ci’idcnce fails to support anything. 

The support for an arbitrary proposition Q, Spt(Q), is the 
total bclic i attributed by the mass distribution to propositions 
that imply Q (r’.e., the sum of the mass attributed to Q and all 
its descendants in the tree). 

Spt(Q) = c M(K) FiCC? 
The plausibility, P/s(Q), is the total belief attributed to propo- 
sitions that do not imply YQ. 

WQ) = c M(Fi) 
FinQfO 

=I- C M(Fi) 
F, E-6 

= 1 - Spt(-Q) 

For each proposition Q, a mass function defines an interval 
[Spf(Q), Pls(Q)] that bounds the probability of Q. The differ- 
ence Pfs(Q) - Spt(Q) p re resents the degree of ignorance; the 
probability of Q is known exactly if Spt(Q) = P/s(Q). 

Dempster’s Rule of Combination pools multiple bodies of 
evidence represented by mass distributions. It takes arbitrarily 
complex mass distributions Ml and M,, and, as long as they are 
not completely contradictory, produces a third mass distribution 
that represents the consensus of those two disparate opinions. 
The rule moves belief toward propositions that are supported by 
both bodies of evidence and away from all others. 

For all F;, Fi, Q C 8 

MS(Q) = & C Ml(Fi) * M2(F') 
F,nF,=Q 
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Figure 2: The Frame of Discernment of a Discretized Variable 

If ic = 1, the bodies of evidence represent,cd by hiI and h!z 
are contradictory, and their combination is not defined. It is 
interesting to observe that Dempster’s Rule is both commutative 
and associative, allowing bodies of evidence to be combined in 
any order and grouping. A thorough treatment of the Shafer- 
Dempster theory can be found in Dempster [1] and Shafer [4]. 

3. Discrete Analysis of a Random Variable 

The standard approach to reasoning with continuous vari- 
ables under the Shafer-Dempster theory has been to associate 
propositions with portions of the number line. Mass can then 
be attributed to individual propositions that correspond to ar- 
bitrary sets of points on the number line, and mass assignments 
from disparate sources can be combined using Dempster‘s Rule 
by computing the intersections of these sets. This approach has 
several undesirable properties. 

Because mass must be assigned to specific propositions, com- 
putations based on such a mass function can be critically sensitive 
to slight variations in the proposition of interest. For example, 
Spt([O,2))’ may differ greatly from Spt([O, 1.99)) if there happens 
to be mass assigned to a proposition such as Spt([l,2)). This 
type of discontinuity is an artifact of the way the propositional 
space is discretized and may not be indicative of the underlying 
beliefs. 

Secondly, the traditional approach provides no means for 
specifying a smoothly varying set of beliefs about the vallle of 
a continuous variable. Intuitively, one would prefer a hrlief func- 
tion that varies gradually with both the magnitude of the propo- 
sition of interest and the level of detail of the proposition. 

The following observation provides the key to overcome these 
difficulties: when reasoning about the value or a cant imlous vari- 
able, expert systems are most often interested in whether or not 
the value lies within some contiguous range of values. For rsam- 
pie, a proposition of interest might be that today’s temperature 
is between 65” and 75”. Rarely does a situation arise in which a 
disjoint subset would be a proposition of interest (such as “the 
temperat.ure is either between 45” and 50” or between 70” and 
80”“). This observation allows the frame of discernment (0 be 

‘Here Spt([O,Z)) d enotes the proposition that the value of the variable is in 
the interval [0,2). W e use open-ended intervals for simplicity. 
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Figure 3: The hlass Function of a Discretized Variable 

restricted 
ability to 

to contain 
represent a 

only contiguous intervals, 
wide range of interesting 

yet to retain 
propositions. 

b 

END 
POINT 

(4 Spt( 

b 

a 

0 

a1 w 

Figure 4: Computation of Support and Plausibility - Discrete 
Case 

The restriction provides several powerful simplifications. 
Imagine dividing the number line from 0 to N into N inter- 
vals of unit length. The number of propositions in this frame 
of discernment is reduced from 2N (the size of the power set) 
to approximately i Sz. Figure 2 depicts the simplified tree. The 
computation of the intersection of pairs of propositions in Demp- 
ster’s Rule is reduced to a simple intersection of contiguous inter- 
vals. Furthermore, the restricted frame of discernment is a class 
of subsets which is closed under the application of Dempster’s 
Rule so that pooled evidence can always be represented in the 
same propositional space (i.e., contiguous intervals). 

The structure of the tree suggests the representation of the 
frame of discernment as a triangular matrix as shown in Figure 
3. IIere the abscissa specifies the beginning of an interval and the 
ordinate specifies the endpoint. The set 8, which represents all 
the environmental possibilities, is the interval [0, N) and is rep- 
resented by the upper left-hand entry. The atomic propositions, 
the intervals of minimum length, are located along the diagonal. 
Intervals with a common starting point are located in the same 
column while those with a common endpoint are in the same 
row. It is easy to see that the matrix of Figure 3 bears a strong 
resemblance to the tree of Figure 2. 

A mass function of a discretized variable can now be rep- 
resented as a triangular matrix. To assign a mass of .l to the 
interval [2,4) f or example, we enter .l at the corresponding lo- 
cation in the matrix. Additional beliefs fill out the remainder of 
the matrix. As with any mass function, Shafer-Dempster theory 
requires that the entries in the matrix sum to one. 

The computation of Spt(Q) and PIs(Q) can be easily un- 
derstood graphically. Spt(Q) is the sum of the masses of those 
intervals wholly contained in Q (the shaded area of Figure 4(a)), 
and P/s(Q) is the sum of the masses of the intervals whose in- 
tersection with Q is not empty (the shaded area of Figure 4(b)). 
The sum of the masses in the difference of those two regions is 
the ignorance remaining about proposition Q. Mathematically, 
(using the obvious notation)2 

STARTING POINT 

0 a b 

the 
b-1 N 

Spt([a, b)) = ‘2 f: WZ,Y) 

z=a y=z+1 

‘Here we use M(z,y) to represent the mass associated with the interval [z,y). 

z=O y=l+max(a,x) 

Given two mass functions represented by triangular matrices, 
one can obtain a third mass function that represents the pooled 
evidence using Dempster’s Rule. The mathematics of intersecting 
sets is straightforward with this representation, and Dempster’s 
Rule can be rewritten as follows: 

- hfl(a, b) . &(a, 6) ) 

N-2 N-t N-I N 

p=Og=pSl r=9 cr+l 

4. Generalization to Continuous Random 

Variables 

The generalization from a finite number of discrete intervals 
to an infinite number of infinitesimal intervals is made using the 
standard ploys of calculus. In the limit’ as the width of the inter- 
vals shrinks to zero, the triangular matrix becomes a triangular 
region where any interval is represented by its location in Carte- 
sian coordinates. 

Let’s examine some properties of the region more closely 
(Figure 5). Th e universal set 8 (the interval [0, N]‘) is located at 
the upper left-hand corner. Points along the hypotenuse refer to 
individual points along the number line. As before, points in the 
same vertical or horizontal line refer to intervals with identical 
aWe switch to closed intervals for the continuous case to simplify the mathe- 

matics. We are no longer concerned with an atomic set of mutually exclusive 
propositions. 

310 



Intervals which contain [a, bl 

\ 

STARTING POINT 

yo a b N 

STARTING POINT STARTING POINT 

END 
POINT 

Intervals of constant 

Intervals of 0 width, 
i.e., exact points along 
the number line 

Point corresponding 

\ 
to the interval [a, b] 

Successively larger intervals \ 

centered around [a, bl 
Region of intervals wholly 
contained in [a, bl 

Figure 5: The Continuous Frame of Discernment 

start or end points. Points along a northwesterly ray from some 
point [a, b] correspond to successively larger intervals centered 
around [a, 61. Points along a northeasterly line refer to intervals 
of identical width, thus representing propositions with a common 
level of detail. The triangular region is, in a sense, the continuous 
analog of the tree structure of Figure 2. 

A continuous mass funct,ion with all the desirable properties 
mentioned earlier is represented by a surface over this region. 
The extent to which the volume under the surface is pushed to- 
ward the northwest corner (Q) indicates the overall degree of 
ignorance. Concentrating all the volume along the hypotenuse 
corresponds to knowin, p the probability density function of the 
variable exactly. 

~11alogo11sly with the discrete case, Spt([a, 61) is the volume 
under the surface within the region shaded in Figure 6(a). Figure 
G(b) shows the region containing Pf~([a,b]). In mathematical 
terms, 

The extension of Dempster’s Rule to the continuous case 
yields the following result: 

Ms(a, 6) = & 1’ lgN[M1(2, 6) . &(a, Y) + M2(z, b) - M&4 d 

+~l(~,~).~~~(~,Y)+~z(~,~)~~l(~,Y)l dYdZ 

b 

END 
POINT 

a 

Figure 6: 
ous Case 

Computation of Support and Plausibilit,y -- Continu- 

This can be construed as a form of convolution of the two mass 
functions being pooled. As in the discrete case, the resultming 
mass function can be represented in the same formalism. 

In theory, if we desire to assign mass to a precise interval 
[u, 61, we must use impulse functions of finite volume at t.he cor- 
responding point. The degree to which we cannot be so precise 
about the interval represents the degree to which the impulse 
is spread out to neighboring points. If impulse funct,ions are 
present, the rule of combination becomes slightly more complex 
since we must take care not to count certain combinations dou- 
bly. Impulse functions need only be considered when merging 
discrete with continuous mass functions. 

5. Example 

We now present a simple example to 
tation and the combination of evidence: 

illustrate the reprcscn- 

The state highway patrol is attempting to identify speed- 
ers on Interstate 80. A patrolman on a motorcycle ob 

serves that his speedometer reads 60 mph when matching 
speed with a suspected speeder. Meanwhile, a parked pa- 

trolman obtains a reading on his radar gun of 57 mph for 
the same vehicle. Is this sufTicient evidence to issue a 

traffic citation for speeding? 

The first thing to do is to construct mass functions for both 
bodies of evidence. Here we will simply present intuitively rca- 
sonable functions; a formal theory for deriving mass functions 
from sensor measurements is the subject of a future paper. Fig- 
ure 7(a) depicts the mass function for the motorcycle spetdome- 
ter reading. The frame of discernment has been restricted to the 
range from 50 to 65 mph (i.e., 9 = (50,651) in order to focus on 
these values. Values outside that range are considered impossible 
in this example. The most precise interval that mass has beeri 
committed to is [58,62], indicating that the precision of the pa- 
trolman reading his speedometer is no better than f2 mph. The 
remainder of the mass function attributes mass to successively 
larger intervals centered around 60 mph (until the upper limit of 
65 is reached at the bend in the ridge). This represents the un- 

k = J,“/,“/,“/r” [M (P, q)%(r, ~+WP, d-W (r, 41 dadrddp 
biased ignorance associated with inaccuracy in the speedometer 
or with the patrolman not matching speeds properly. Note how 
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Figure 7: Representation of Evidence from the Speedometer Reading 
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Figure 8: Representation of Evidence from the Radar Gun 

this differs from an ordinary probabilit,y distribution. The sup- 
port and plausibility for each interval have been computed from 
the mass function and plotted in Figures 7(b) and (c). These 
plots clearly show how the beliefs vary smoothly as the proposi- 
tion of interest is varied. Support and plausibility both increase 
monotonically toward one as the interval is widened. The dif- 
ference between these surfaces at any point represents the igno- 
rance remaining about the probability that the true value lies in 
the interval corresponding to that point. The support for the 
proposition “the suspect is speeding” is Spt([55,65]) = -28 and 
Pls([55,65]) = 1.0, indicating the probability the car was travel- 
ing greater than 55 mph is between .28 and 1.0. 

Figure 8(a) shows the mass function for the evidence ob- 
tained with the radar gun. Some insight can be gained by com- 
paring it with the speedometer mass function. The ridge, which 
is centered at 57 mph, is further to the left indicating a lower mea- 
sured speed. There is more mass near the hypotenuse reflecting 
a more accurate instrument. There is a peak at 8 indicating the 
possibility of a gross error that provides no information about the 
true speed. Based on the evidence from the radar gun, this mass 
function provides Sp1([55,65]) = -23 and Hs([55,65]) = 1.0. The 
support and plausibility surfaces are plotted in Figures 8(b) and 

(c). The values of plausibilit,y along the hypotrnusc constitute 
a curve showing the plausibility of any individual speed. Notice 
how the curve along the hypotenuse is more peaked in Figure 
8(c) than in Figure 7(c), reflecting greater conviction. 

Given these two mass functions, Dempster’s Rule is u>cd to 
compute a third mass function representing the combination of 
the two bodies of evidence (Figure 9). Herr, the two ridges arc 
still visible with some mass having been “sprtad” bttncen tllc 
ridges. This shows support for the intermediate values; that are 
common to both bodies of evidence. Additionally, some rna~s has 
shifted away from 0 toward the hypotenuse indicating an incrr- 
mental narrowing of belief. The support and p!allsibilit y sr~rfnces 
show the bounds on the probabilities of all intervals of speed. The 
support surface has generally risen and the plausibility surface 
along the hypotenuse has grown more peaked, showing that the 
combination of evidence has strengthened and refined out be- 
liefs. This combination of evidence yields Spt([55,65]) = .4-l and 
P19([55,65]) = 1.0, meaning that there is at least a 44% chance 
that the car was speeding and that there is no evidence to the 
contrary. This may still be insuf%cient evidence to prove the 
car was speeding. The important point is that the mass function 
captures exactly those beliefs that are warranted by the evidence, 
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Figure 9: Representation of Combined Evidence 

without overcommitting or understating what is known. Addi- 
tional evidence can be combined in the same fashion to yield mass 
functions that may or may not change our belief in propositions 
about the speed of the car. 

6. Discussion 

Restricting the frame of discernment to include only con- 
tiguous intervals along the number line provides the key to the 
computational and conceptual simplicity of the framework. In 
particular, it reduces the space of propositions from 0(2n) to 
O(n’) where n is the number of atomic possibilities. In most 
cases, the restriction is a natural one because we would rarely 
expect to encounter disjoint intervals. Representing the mass 
function as a two-dimensional surface permits the specification 
of smoothly varyin, p brliefs. A gradual shift in an interval of in- 
terest incurs a gradual change in the associated support for that 
interval. Similarly, a gradual widening of an interval incurs a 
gradual increase in support. 

‘4s an extension, one may expand the frame of discem- 
ment to include intervals that “wrap around” the endpoint N. 
This enlarged class of subsets would allow the representation of 
M(l[a, b]) and is also closed under the application of Dempster’s 
Rule. In this case the triangular mass function becomes a full 
square (with a discontinuity along the diagonal) and formulas for 
S@(e), P/s(.) and Dempster’s Rule can be derived in an analo- 
gous fashion. 

Another extension features the ability to reason over multi- 
dimensional regions. This formulation would allow for bounded 
ateas and volumes in t,he frame of discernment. In the two- 
dimensional case, propositions of interest are restricted to be 
rectangles of fixed orientation. This frame of discernment is 
closed under Dempster’s Rule and requires a four-dimensional 
mass function. Regions of higher dimensionality can be repre- 
sented but the computational burden becomes large. 

The specification of continuous mass functions is a matter 
for further investigation. One may envision special sensors that 
provide not a single value, nor a probability density function as 
output, but a continuous mass function by which they explicitly 
express their imprecision as well as their uncertainty about the 

measurement . 

Evidential reasoning, as based on the Shafer- Dcnlpstcr thca- 
ory, allows belief to be represented at any level of detail and 
allows multiple opinions to be pooled into a conscnc;u\ opinion. 
The ability to reason evidentially over continuous variables is cru- 
cial for expert systems that must reach decisions based on unct’r- 
tain, incomplete, and inaccurate evidence about such quant it it.5 
as time, distance. and sensor measurements. This paper provides 
a novel representation that permits a conceptually appealing im- 
plementation of Shafer-Dempster theory applied to continuous 
variables. It provides the means for expressing belief as a contin- 
uous function over cont,iguous intervals of contin1lous!:; \-iLrj in:: 
widths. 
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