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Abstract: The modal logic LL was introduced by Halpern 
and Rabin [HR] as a means of doing qualitative reasoning 
about likelihood. Here the relationship between LL and 
probability theory is examined. It is shown that there is a 
way of translating probability assertions into LL in a sound 
manner, so that LL in some sense can capture the 
probabilistic interpretation of likelihood. However, the 
translation is subtle; several more obvious attempts are 
shown to lead to inconsistencies. We also extend LL by 
adding modal operators for knowledge. The propositional 
version of the resulting logic LLK is shown to have a 
complete axiomatization and to be decidable in exponential 
time, provably the best possible. 

1. Introduction 
Reasoning in the presence of incomplete knowledge plays 

an important role in many AI expert systems. One way of 
representing partially constrained situations is with sentences 
of first-order logic (cf. [MH,Li,Re]). Any set of first-order 
sentences specifies a set of possible worlds (first-order 
models). While such assertions can deal with partial 
knowledge, they cannot adequately represent knowledge 
about relative likelihood. This problem was noted by 
McCarthy and Hayes ([MH]), who made the following 
comments: 

We agree that the formalism will eventually have to 
allow statements about the probabilities of events, but 
attaching probabilities to all statements has the 
following objections: 

1. It is not clear how to attach probabilities to 
statements containing quantifiers in such a way 
that corresponds to the amount of conviction 
that people have. 
2. The information necessary to assign 
numerical probabilities is not ordinarily 
available. Therefore, a formalism that required 
numerical probabilities would be 
epistemologically inadequate. 

There have been proposals for representing likelihood 
where a numerical estimate, or certainty factor, is assigned to 
each bit of information and to each conclusion drawn from 
that information (see [DBS,Sh,Zal] for some examples). But 
none of these proposals have been able to adequately satisfy 
the objections raised by McCarthy and Hayes. It is never 
quite clear where the numerical estimates are coming from; 
nor do these proposals seem to capture how people approach 
such reasoning. While people seem quite prepared to give 
qualitative estimates of likelihood, they are often notoriously 
unwilling to give precise numerical estimates to outcomes (cf. 
iSPI). 

In [HR], Halpern and Rabin introduce a logic LL for 

reasoning about likelihood. LL uses a modal operator L to 
help capture the notion of “likely”, and is designed to allow 
qualitative reasoning about likelihood without the 
requirement of assigning precise numerical probabilities to 
outcomes. Indeed, numerical estimates and probability do not 
enter anywhere in the syntax or semantics of LL. 

Despite the fact that no use is made of numbers, LL is 
able to capture many properties of likelihood in an intuitively 
appealing way. For example, consider the following chain of 
reasoning: if P, holds, then it is reasonably likely that P, 
holds, and if P, holds, it is reasonably likely that P, holds. 
Hence, if P1 holds, it is somewhat likely that P, holds. 
(Clearly, the longer the chain, the less confidence we have in 
the likelihood of the conclusion.) In LL, this essentially 
becomes “from P,+LP, and P,+LP3, conclude P,+L2P,“. 
Note that the powers of L denote dilution of likelihood. 

One way of understanding likelihood is via probability 
theory. To quote [HR], “we can think of likely [the modal 
operator L] as meaning ‘with probability greater than a’ (for 
some user-defined a)“. The exact relationship between LL 
and probability theory is not studied in [HR]. However, a 
close examination shows that it is not completely 
straightforward. Indeed, as we show below, if we simply 
translate “P holds with probability greater than a” by LP, we 
quickly run into inconsistencies. Nevertheless, we confirm 
the sentiment in the quote above by showing that there is a 
way of translating numerical probability statements into LL 
in such a way that inferences made in LL are sound with 
respect to this interpretation of likelihood. Roughly speaking, 
this means that if we have a set of probability assertions 
about a certain domain, translate them (using the suggested 
translation) into LL, and then reason in LL, any conclusions 
we draw will be true when interpreted as probability 
assertions about the domain. However, our translation is 
somewhat subtle, as is the proof of its soundness; several 
more obvious attempts fail. These subtleties also shed some 
light on nonmonotonic reasoning. 

We enrich LL by adding modal operators for knowledge, 
giving us a logic LLK which allows simultaneous reasoning 
about both knowledge and likelihood. This extends the logics 
used in [MSHI,Mo]), where knowledge has been treated in an 
all or nothing way: either a person knows a fact or he 
doesn’t. However, there are many cases in which knowledge 
is heuristic or probabilistic. For example, suppose I know 
that Mary is a woman, but I have never met her and therefore 
do not know how tall she is. Under such circumstances, I 
consider it unlikely that she is over six feet tall. However, 
suppose that I am told that she is on the Stanford women’s 
basketball team. My knowledge about her height has now 
changed, although I still don’t know how tall she is. I now 
consider it reasonably likely that she is over six feet tall. 
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LLK gives us a convenient formal language for reasoning 
about such situations. 

LLK can be shown to have a complete axiomatization, 
which is essentially obtained by combining the complete 
axiomatization of LL with that of the modal logic of 
knowledge. In addition, we can show that there is a 
procedure for deciding validity of LLK formulas which runs 
in deterministic exponential time, the same as that for LL. 
This is provably the best possible. 

In the next section, we review the syntax and semantics 
of LL. In Section 3, we discuss the translation of English 
sentences into LL and show that there is a translation which 
is sound with respect to the probabilistic interpretation of L. 
In Section 4, we add knowledge to the system to get the logic 
LLK. Detailed proofs of theorems and further discussion of 
the points raised here can be found in [HMc], an expanded 
version of this paper. 

2. Syntax and semantics 
We briefly review the syntax and semantics of LL. We 

follow [HR] with one minor modification: for ease of 
exposition, we omit the “conceivable” relation in the 
semantics (and thus identify the operator L* of [HR] with the 
dual of G). We leave it to the reader to check that all our 
results will also hold if we reinstate the conceivable relation. 
The reader should consult [HR] for motivation and more 
details. 

Syntax: Starting with a set @u = {P,Q,R,...] of primitive 
propositions, we build more complicated LL formulas using the 
propositional connectives Y and A and the modal operators G 
and L. Thus, if p and q are formulas, then so are -p, (pAq), 
Gp (“necessarily p”), and Lp. We omit parentheses if they 
are clear from context. We also use the abbreviations pVq 
for -(-PA-q), p*q for -pVq, p=q for (p+w)A(q+p), FP 
(“possibly p”) for -G-p, and Lip for L.,.Lp (i L’s). 

Semantics: We give semantics to LL formulas by means of 
Kripke structures. An LL model is a triple M = (S,g,n), 
where S is a set of ~tclte~, 9 is a reflexive binary relation on 
S (i.e., for all SES, we have (s,s)E~) and 
a:QOxS+(true,false). (Intuitively, 9~ assigns a truth value to 
each proposition at all the states,) 

We can think of (S,p) as a graph with vertices S and 
edges 9. If (s,t)& then we say that t is an &?-successor of s. 
Informally, a state s consists of a set of hypotheses that we 
take to be “true for now”. An g-successor of s describes a 
set of hypotheses that is reasonably likely given our current 
hypotheses. We will say t is reachable (in k steps) from s if, 
for some finite sequence sg,...,sk, we have so=s, sk=t, and 
(s~,s~+~) E A?’ for i < k. 

We define M,s k p, read p is satisfied in state s of model M, 
by induction on the structure of p: 

M,s bP for PE a0 iff v(P,s)=true, 
M,s I= -p iff not(M,s /= p), 
M,s CpAq iff M,s Cp and M,s Cq, 
M,s FGp iff M,t kp for all t reachable from s, 
M,s C LP iff M,t Cp for some t with (s,t) ES?‘. 

Definitions: A formula p is satisfiable iff for some 
M = (S,&?,w) and some s ES we have M,s kp; p is valid iff for 
all M = (S,g,a) and all s ES we have M,s b p. It is easy to 
check that p is valid iff -p is not satisfiable. If Z is a set of 
LL formulas, we write M,s I= Z iff M,s /=p for every formula 
pe 2. C semantically implies a formula p, written Z C p, if, for 
every model M and state s in M, we have M,s C X implies 

MS C p. 

3. The probabilistic interpretation of likelihood 
Lp is supposed to represent the notion that “p is 

reasonably likely”. Certainly one way of interpreting this 
statement is 
to a”. 

“p holds with probability greater than or equal 
However, as already noted in [HR], there are 

problems with this interpretation of Lp. Suppose we take 
a=1/2, and consider a situation where we toss a fair coin 
twice. If P represents “the coin will land heads both times”, 
and Q represents “the coin will land tails both times”, then 
we clearly have L(PVQ), as well as ,LP and -LQ. But, for 
any LL model, L(PVQ) is true iff LPVLQ is true, giving us a 
contradiction. 

We solve this problem by changing the way we translate 
statements of the form “p is reasonably likely” into LL. 
Note that if a state s satisfies the formula p (i.e. M,s tp), 
this does nor imply that p is necessarily true at s, but simply 
that p is one of the hypotheses that we are taking to be true 
at this state. We must use Gp to capture the fact that p is 
necessarily true at s, since M,s /=Gp iff M,t C p for all t 
reachable from s, and thus in no state reachable from s is -p 
taken to be an hypothesis. The English statement “The coin 
is likely to land heads twice in a row” is really “It is likely to 
be (necessarily) the case that the coin lands heads twice in a 
row”, (and not “It is a likely hypothesis that the coin lands 
heads twice in a row”) and thus should be translated into 
LGP rather than LP. Similarly, “the coin is likely to land 
tails twice in a row” is LGQ, while “it is likely that the coin 
lands either heads or tails” is LG(PVQ). With these 
translations, we do not run into the problem described above, 
for LG(PVQ) is not equivalent to LGPVLGQ. These 
observations suggest that the only LL formulas which 
describe real world situations are (Boolean combinations of) 
formulas of the form L’GC, where C is a Boolean 
combination of primitive propositions. We will return to this 
point later. 

Having successfully dealt with that problem, we next 
turn our attention to translating statements of conditional 
probability: “if P, then it is reasonably likely that Q” or “Q 
is reasonably likely given P”. The obvious translation of “if 
P then likely Q” would be P+LQ. The argments of the 
previous paragraph suggest that we should instead use 
GP+LGQ, but even this translation runs into some problems. 

Consider a doctor making a medical diagnosis. His view 
of the world can be described by primitive propositions which 
stand for diseases, symptoms, and test results. The 
relationship between these formulas can be represented by a 
joint probability distribution, or a Venn diagram where the 
area of each region indicates its probability, and the basic 
regions correspond to the primitive propositions. 

For example, the following Venn diagram might 
represent part of the doctor’s view, where PI and P2 
represent diseases, and P, and P, represent symptoms: 
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The diagram shows (among other things) that 
(a) disease P, is reasonably likely given symptom P,, 
(b) P, is always a symptom of Pz, 
(c) if a patient has P2, then it is not reasonably likely 

that he also has P,, 
(d) P, and P4 never occur simultaneously. 

The second statement is clearly G(P,+P,) from which 
we can deduce GP,+GP,. Now suppose that we represented 
the first and third statements, as suggested above, by 
GP,+LGP 1 and GP,+ - LGP 1, respectively. Then simply 
using propositional reasoning, we could deduce that 
GP,+LGP, A - LGP t, surely a contradiction. 

The problem is that when we make such English 
statements as “P, is reasonably likely given P,” or “the 
conditional probability of P3 given P, is greater than one 
half”, we are implicitly saying “given P, and all else being 
equal” or “given P, and no other information”, P, is likely. 
We cannot quite say “given P, and no other information” in 
LL. Indeed, it is not quite clear precisely what this statement 
means (cf. [HM]). However, we can say “in the absence of 
any information about the formulas P,,...,Pk which would 
cause us to conclude otherwise”, and this suffices for our 
applications. In our present example, P, is reasonably likely 
given P, as long as we are not given -P, or P2 or P,. Thus, a 
better translation of “P, is reasonably likely given P,” is: 

,G-PIA-GP,A-GP, AGP3+LGP1. 
Similarly, “if a patient has P2, then it is unlikely that he has 
P,” can be expressed by: 

-GP,AGP,+-LGP,. 
In general, we must put all the necessary caveats into the 
precondition to avoid contradictions. 

This translation seems to avoid the problem mentioned 
above, but how can we be sure that there are no further 
problems lurking in the bushes? We now show that, in a 
precise sense, there are not. 

Fix a finite set of primitive propositions V = {Pl,,..,Pn]. 
An atom of V is any conjunction QfA...AQ,, where each Qi is 
either Pi or ,Pi. Note that there are 2” such atoms. Let 
AT(V) be the set of atoms of V, and let 
LIT(V)={P,-P]PcV] be the set of literals of V. We say a 
function Pr:AT(V) - [O,l] is a probability assignment on V if 
%EAT(“)P’(C) = 1. A propositional probability space is a pair 
W=(V,Pr), where V is a finite set of primitive propositions 
and Pr is a probability assignment on V. 

Let BC(V) consist of all the Boolean combinations of the 
propositions in V. If C,DcBC(V), we write CID if C+D is 
a propositional validity. We extend Pr to BC(V) via Pr(D) = 
‘{CAT 

/ 
V) IC<DJ 

Pr(C). If Pr(D)#O, we define the conditional 
probabi ify of ?Z given D, Pr(C ] D)=Pr(CAD)/Pr(D). 

We now consider a restricted class of probability 
statements about the domain W. Fix a with O<a<l. A 
probability assertion about W is a formula in the least set of 
formulas closed under disjunction and conjunction, and 
containing conditional probability statements of the form 
Pr(C]D)la’ and Pr(C]D)<a’, where iI0, C,DeBC(V) and 
Pr(D)>O. (Closure under negation is built into these 
formulas since, for example, ,Pr(C ] D)>ai iff Pr(C ] D)<ai-) 
Note that by taking D= true, we get Pr(C) > ai or Pr( C)<J, 
and by taking i=O in the former term, we can assert that a 
certain statement holds with probability one). Since we are 
dealing with a discrete probability space, this amounts to 
saying that the statement is true. 

Corresponding to these probability assertions about W, 
we will consider the standard LL formulas over V. These are 
formed by taking formulas of the form LiGC and -L’GC, 
i 2 0, where C eBC(V), and closing off under conjunction and 
disjunction. By the observations above, these are, in some 
sense, exactly those LL formulas that describe a “real world” 
situation involving the primitive propositions of V. 

We want to translate probability assertions about W into 
standard LL formulas over V. As discussed above, a 
conditional probability assertion of the form Pr(C ] D) I ai will 
be translated into a formula of the form 
-GQ,A...A-GQkAGD + L’GC, where Q1 ,..., Qk are the 
“necessary caveats”. We now make the notion of a 
“necessary caveat” precise. Given C,D eBC(V), and 
QcLIT(V), we say Q has negative (resp. positive) impact on C 
given D in W if 

Pr(DAQ)>O and Pr(C 1 DAQ)<Pr(C 1 D) 
(resp. Pr(DAQ)>O and Pr(C 1 DAQ)>Pr(C 1 D)). 

Thus Q has negative (resp. positive) impact on C given D in 
W if discovering Q lowers (resp. increases) the probability of 
C given D. We say Q has potential negative (resp. positive) 
impact on C given D in W if for some D’ID, Q has negative 
(resp. positive) impact on C given D’ in W. Note that if Q 
does not have potential negative impact on C given D in W, 
then once we know D, no matter what extra information we 
get, finding out Q will not lower the probability that C is 
true, Similar remarks hold for potential positive impact. We 
define 

PNI( C,D) = (Q E LIT(V) ] 
Q has potential negative impact on C given D], 

PPI(C,D)=[QeLIT(V) ] 
Q has potential positive impact on C given D]. 

Now using the idea of potential positive and negative 
impact, we give a translation q+qt from probability 
assertions about W to standard formulas over V. We first 
define 

[WC I D)I silt = (AQ~ ~NI(c,D)-GQ)AGD + L’GC, 
[Pr(C I D)<a’l’ = (AQ~~~~(c,D)-GQ)AGD + -L’GC, 

and then translate conjunctions and disjunctions in the 
obvious way; i.e., if p, q are probability assertions about W, 
then (pVq)’ = ptVqt and (pAq)’ = ptAqt. Again we note that 
the term AQ~ PNI(C,D)Q (rev. A\Q~PPI(c,D)Q) in the 
translation of Pr(C ] D)ha’ (resp. Pr(C ] D)<a’) is intended to 
capture the idea of “putting in all the necessary caveats in 
order to avoid contradictions”, 

We now consider a family of translations Tr,, DeBC(V), 
from standard LL formulas over V to probability assertions 
about W. Roughly speaking, we want L’GC to be translated 
to Pr(C)>a’. This will be the effect of Trtrue. Using Tr, 
relativizes everything to D; we require this greater generality 
for technical reasons. Let 

Tr,(L’Gc) = Pr(C I D)>a’, i?O, 
TrD( -I-kc) = Pr(C ] D)<cr’, i?O. 

Again, conjunctions and disjunctions are translated in the 
obvious way, so that if p, q are standard LL formulas: 

Tr,(PVq) = TrD(P)VTrD(q) and 
TrD(PAq) = TrD(P)ATrD(q). 

Finally, let CON(W)=ICcBC(V) I C is a conjunction of 
formulas in LIT(V) and Pr(C)>O]. (We take the empty 
conjunction to be true; of course, Pr(true)=l.) 

With these definitions in hand, we can now state the 
theorem which asserts that there is a translation from 
probability assertions about W into LL which is sound. 



Theorem 1: Let Z be a set of probability assertions true of 
W, and Z’ the result of translating these formulas into LL 
(via p&p’). If q is a standard LL formula which is 
semantically implied by Z’ (i.e., Z’ kq), then for all 
DcCQN(W), TrD(q) is a probability assertion true about W. 

The theorem follows from two lemmas, which are proved 
in [HMc]. The first shows the relationship between the 
translations described above. 

Lemma 1: If q is a probability assertion true of W, then 
TrD(qt) is true of W for all DeCON(W). 

(We remark that neither Lemma 1 nor Theorem 1 holds 
for arbitrary DcBC(V) ( a counterexample is given in [HMc]). 
Since we are mainly interested in Trtrue, this point will not 
greatly concern us here, but it is interesting to note that we 
could have modified the translation p+pt so that Theorem 1 
did hold for all DeBC(V) with Pr(D)>O. The idea would be 
to allow PNI and PPI to include arbitrary elements of BC(V), 
rather than just literals, The cost of doing this is that the 
translation could be doubly exponential in the size of V, 
rather than just linear. If for some reason we are interested 
in TrD for DcBC(V), another (less expensive) solution to the 
problem is to add a new primitive proposition Q to V, extend 
Pr so that Pr(QGD)= 1, and consider TrQ instead.) 

We next construct an LL model Mw=(S,g.v) 
corresponding to the propositional probability space W. The 
set of states S consists of countably many copies of each 
c EBC(V) with Pr(C)>O. Succesive copies are connected by 
2, as well as a state you are likely to move to as your 
knowledge increases. More formally, 

S = ((Ci I i10, CcBC(V), Pr(C)>O), 
e, = ItcitCi), (Ci*Ci+l) Ii201 U 

I(Ci,Du) I D<C, Pr(D I C)za’+l]. 
The definition of v is somewhat arbitrary. All we require is 
that M,Ci /= C, for all Ci ES. For definiteness, we define 7~ is 
follows. For each CcBC(V) such that Pr(C)>O, choose some 
atom DcCON(W)nAT(V) such that D<C (such a D must 
exist since Pr( C) >O). Call this atom AT(C). Then 
n(P,Ci)=true iff AT(C)sP. We leave it to the reader to 
check that with this definition, M,C, b C. 

The following lemma relates truth in Mw to truth in W. 
Lemma 2: If q is a standard LL formula, then Mw,Co tq iff 
Trc(q) is true of W. 

Proof of Theorem 1: Suppose Z is a set of probability 
assertions true of W, Mw is the canonical model for W 
constructed above, q is a standard LL formula over V such 
that X’/=q, and DeCON(W). By Lemma 1, for each formula 
pcx, we know that Tr,(p’) is true of W. By Lemma 2, it 
now follows that Mw,Do I= pt. Thus Mw,Do b Et. Since Zt /= q, 
we also have M w,De /=q. By another application of Lemma 2, 
it follows that TrD(q) is true of W. 0 

Discussion of the theorem: Theorem 1 shows that by putting 
in all the “necessary caveats”, we do indeed get a sound 
translation. But in a real world situation, it is not always 
possible to compute PNI(C,C’) or PPI(C,C’). either because 
we may not know whether a given literal Q should be in one 
of these sets, or because the set of primitive propositions V 
may be so large that the computation is impractical. Indeed, 
in the examples discussed in [McC], V is viewed as being 
essentially infinite. If we take P to be “Tweety is a bird” and 
Q to be “Tweety can fly”, then Q is likely given P as long as 
Tweety is not an ostrich, Tweety is not a a penguin, Tweety 
is not dead, Tweety’s wings are not clipped, . . . . The list of 
possible disclaimers is endless. 

Our assumption of having only finitely many primitive 
propositions does seem to be both epistemologically and 
practically reasonable in many natural applications. For 
example, in medical diagnosis we could take V to consist of 
relevant symptoms, diseases, and possible treatments, where 
the symptoms are qualitative (his temperature is very high) 
rather than quantitative (his temperature is 104’ F.). 

In any case, if we cannot compute PNI or PPI, and 
instead use a subset in the translation, then our reasoning 
may be unsound (in the sense of Theorem 1). This may help 
to explain where the nonmonotonicity comes from in certain 
natural language situations. People often use a type of 
informal default reasoning, saying “P is likely given Q”, 
without specifying the situations where the default Q may not 
obtain. Of course, this means that the conclusion Q may 
occasionally have to be withdrawn in light of further 
evidence. If, on the other hand, we “play it safe”, by 
replacing PNI(C,C’) (resp. PPI(C,C’)) wherever it occurs in 
the translation by a superset, it is straightforward to modify 
to proof of Theorem 1 to show that the resulting translation 
is still sound. 

We have viewed Theorem 1 as a soundness result. It is 
natural to ask if there is also a complementary completeness 
result. For example, suppose q is a standard LL formula over 
V, and for all propositional probability spaces W=(Pr,V), and 
all DcCON(W), we have TrD(q) true of W for all choices of 
a in the translation. Is it then the case that q is a valid LL 
formula? Unfortunately, the answer is no. 

To see this, first note that 
TrD(LGP V LG-P) = Pr(P ]D)za V PR(-P ]D)la 

is true for all probability models W as long as the threshold 
likelihood a is chosen 5 l/2. Similarly, 

TrD(-LGQ V -LG-Q) = Pr(Q ID)<a V Pr(-Q ] D)<a 
is true for all probability models as long as a>1/2. Thus 
TrD(LGP V LG-P V -LGQ V -LG-Q) will be true for all 
choices of a. But it is easy to see that (LGP V LG-P V 
-LGQ V -LG-Q) is not a valid LL sentence. 

The intuitive reason behind this phenomenon is that LL 
can deal with situations where likelihood is interpreted as 
being something other than just probability. Thus, while a 
given LL formula may be true of any situation where L is 
interpreted as meaning “with probability 2 a”, it may not be 
true for some other interpretation of L. We could, for 
example, take LGp to mean “I have some definite information 
which leads me to believe that p holds with probability 2 a”. 
With this interpretation, the sentence above would not be 
valid. 

4. Reasoning about knowledge and likelihood 
We can augment LL in a straightforward way by adding 

modal operators for knowledge, much the same way as in 
[Mo,MSHI]. The syntax of the resulting language, which we 
call LLK, is the same as that of LL except that we add unary 
modal operators K l,...,Kn, one for each of the “players” or 
“agents” 1 ,...,n, and allow formulas of the form Kip (which is 
intended to mean “player i knows p”). Thus, a typical 
formula of LLK might be Ki(GQALGP): player i knows that 
Q is actually the case and it is likely that P is the case. 

We give semantics to LLK by extending the semantics 
for LL so that to each knowledge operator Ki there 
corresponds a binary relation pi which is reflexive, 
symmetric, and transitive (we remark that the assumption of 
symmetry gives us the axiom ,KP+K-KP, and can be 
dropped without affecting any of the results stated below). 
We can think of a state and all the states reachable from it 
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via the 9 relation as describing a “likelihood distribution”, 
Two states are joined via the 3yi relation iff player i views 
them as possible likelihood distributions (rather than just 
possible worlds, as in [Hi,Mo,MSHI]) given his/her current 
knowledge. Further details, as well as proofs of the technical 
results stated for LLK stated in the introduction, can be 
found in [HMc]. 

5. Conclusions 
We have examined the relationship between the logic LL 

and probability theory. We have shown that there is a 
precise sense in which a restricted class of probabilistic 
assertions about a domain can be captured by LL formulas. 
However, in order to correctly deal with statements of 
conditional probability, we must specifically list all the 
situations in which the conclusion may not hold. The failure 
to do so in informal human reasoning is frequently the cause 
of the nonmonotonicity so often observed in such reasoning. 
(However, we note here in passing a number of the problems 
which [McD] suggests can be dealt with by nonmonotonic 
logic can also be dealt with by LL, in a completely monotonic 
fashion. See [HR] for further discussion on this point.) 

Even the restricted class of probabilistic assertions which 
can be dealt with by LL should be enough for many practical 
applications. Indeed, we view the translation from 
probability assertions into LL described in Section 3 as a 
practical tool: a discipline which forces a practitioner to list 
explicitly all the exceptions to his rules. Of course, this 
method does not guarantee correctness. If an exception is 
omitted, then any conclusion made using that rule may be 
invalid. But, whenever a conclusion is retracted, it should be 
possible to find the missing exception and correct the rule 
appropriately. 

As the discussion after Theorem 1 suggests, LL seems to 
be able to express some notions of likelihood which 
probability theory cannot. This may make it applicable in 
contexts where probability theory is not, It would be 
interesting to know whether LL is able to capture other 
notions of reasoning about uncertainty, such as possibility 
theory ([Zal]) or belief functions ([Sh]). (See the survey 
paper by Prade [Pr] for a thorough discussion of various 
approaches to modelling reasoning about uncertainty). A 
number of other interesting open questions regarding 
Theorem 1 remain. Is there a semantics for LL, or an 
interpretation for L, for which a soundness and completeness 
result in the spirit of Theorem 1 is provable? Can we give 
nonstandard LL formulas a reasonable interpretation? Is 
there a reasonable syntax for LL in which, in some sense, all 
formulas are standard? 

An alternative approach to reasoning about likelihood is 
fuzzy logic. Indeed, fuzzy logic has attempted to provide a 
framework for reasoning about notions such as “most”, 
“few”, “likely”, and “several”, which are common 
occurrences in natural language (cf. [Za2 I). However, 
although the syntax of the examples in [Za2] uses these 
natural language notions, the semantics is still quantitative. 
It would be interesting to see if LL or LLK could be extended 
in a reasonable way to deal with the type of examples 
considered by Zadeh in [Za2]. 

Another rich area for further work is simultaneous 
reasoning about knowledge and likelihood. LLK provides a 
first step, but does not allow, for example, statements of the 
form “p is more likely than q”. Gardenfors ([Gal) presents a 
modal logic QP where we can say “p is more likely than q”, 
but not “p is likely”. The axioms of QP seem more 
complicated than those of LL, and although QP is decidable, 

it seems that the decision procedure would be quite complex. 
More research needs to be done to find an appropriate logic 
that is both formally and epistemologically adequate. 
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