
A SELF-ORGANZING RETRIEVAL SYSTEM FOR GRAPHS

Robert Levinson

Department of Computer Sciences

University of Texas at Austin

Austin 9 TX 7871“ Y

ABSTRACT*
The design of a general knowledge base for labeled

graphs is presented. The design involves a partial
ordering of graphs represented as subsets of nodes of a
universal graph. The knowledge base’s capabilities of fast
retrieval and self-organization are a result of its ability to
recognize common patterns among its data items. The
system is being used to support a knowledge base in
Organic Chemistry.

1. Introduction
When asked to develop a retrieval system for known

chemical reactions and molecules, we chose to undertake
the more fundamental task of designing a general
knowledge base for labeled graphs. In particular, we
wished to have a system that would efficiently handle the
query: Given a labeled-undirected graph Q and a data
base of labeled undirected graphs answer the following:
1. Is Q a member of the data base? (exact match)
2. Which members of the data base contain Q as a

subgraph? (supergraphs)
3. Which members of the data base contain Q as a

supergraph? (subgraphs)
4. Which members of the data base have large

subgraphs in the data base in common with Q?
(close matches)

In this paper we discuss a system that meets the design
objective mentioned above and also supports other
features that are highly desirable in intelligent knowledge
bases but are usually difficult to achieve. Most important
of these features is the ability of the system to structure
its own knowledge base through the recognition of
common patterns (subgraphs) in its data items (graphs).
In fact, the critical idea that our system demonstrates is
that the common patterns can be exploited for
multiple purposes. We call these common patterns
concepts. They can be used to enhance retrieval
efficiency, to increase the knowledge of the system
(concept discovery), to characterize the relationships
between its individual data items, and to provide criteria
to select among partial and relaxed matches.

The system is currently being used successfully to
support a knowledge base for Organic Chemistry. In
further research we hope to demonstrate its utility in a
variety of domains where individual data items can be
represented as iabeled graphs. Some of the domains being

*This research is sponsored in part by the Robert A. Welch
Foundation, a Cottrell-Research Grzkt from Research Corporation,
NSF grant MCS-81?2039, and an NSF Graduate Fellowship.

considered are ITSI designs, program trees, computer
networks, structural diagrams, and semantic nets.

2. The data base design
The key to the data base design is the recognition that

(1) All of the graphs of the system can be viewed
as subgraphs of a single Muniversala graph. and that
(2) these graphs can be represented by subsets of
nodes of the universal graph. The universal graph is
constructed as new graphs are added to the system and it
is used when old graphs are to be retrieved. For an
example see Figure 1.

The four graphs:
a b d a a b c a b c

n A - 7-I
c d 0 f d e

can be represen ted as subsets of nodes in a
universal graph : (node labele in parentheses)

7(a)

1 (a>

4(c)

5(e) 6(f)

The euboets are Cl 2 3 4). (3 5 61, (1 2 7 81,
and (1 2 3 8 9).

Figure 1: An example of a universal graph

The rest of the design involves making explicit the
ordering achieved by the partial ordering relation
subgraph-of (see Figure 2.) This is achieved by storing
with each graph pointers to its immediate predecessors
and to it,s immediate successors in the partial ordering.
Each gr:;ph in the system is called a concept and describes
a structure that is determined to be of interest. Initially
the system has only the graphs (concepts) that represent
complete facts in the problem and primitives. Primitives
are the labels t,hat appear on the nohes of the graphs. As
concepts are added to t!he system they are inserted in
their proper position in the partial ordering. Some of
these new concepts may represent new complete objects
and some may represent new primitives. But others may
represent common substructures that are useful in

203

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

analyzing complete objects. These intermediate concepts
provide structure to the partia,l ordering, and thus aid the
response rate and flexibility of the system. Another way
to view the universal graph is that it is a graph that is
pointed to by all graphs at the top of the partial ordering.

universal
graph

D D

data items

D D

C
concepts

C

P primitives

Figure 2: The Partial Ordering of Concepts

(A typical chain is shown)

3. The retrieval algorithm
In this section we describe an algorithm for answering

parts l-4 of the basic query given in-the Introduction. The
algorithm operates on the universal graph and partial
ordering described in Section 1. In fact, the algorithm
works on any set of data for which a partial ordering has
been established. It is desirable to have an algorithm that
minimizes the number of comparison operations that are
necessary to answer the &ery for exact match,
superjqaphs, subgraphs and close matches. This
minimization of comparison operations is particularly
important in a system that uses complex objects like
graphs since the complexity of these operations is usually
exponential. The main way that our algorithm attempts
to- minimize the number of comparisons is by using the
partial orderin, r to segment the data base so that only a
small part of it need actually be considered in detail. The
algorithm has the feature that it is easy to implement and
that it searches nodes in a logical bottom-up order that
may be useful in domains in which additional
computation is desired during the retrieval process. (For
example, we may wish to apply general concepts to a
situation before more specific ones are found to be
applicable.) On a data base of 200 concepts an average of
about ?+5 node-by-node searches are required to answer a
typical query. We are looking for other algorithms that
might require an even smaller number of comparisons.

First we discuss the general algorithm for all partial
orderings, and then we- show how the universal gra,p h
represent ation can be used to further the efficiency of the
aliorithm for a data base of graphs.

The query can be a[iswered by finding where the query
structure should fit in the partial ordering, whether it is
already in the ordering or not, Then Yart 1 can be
answered. Then parts Z-4 of the query can be answered
by simply following pointers (chaining) in the partial
ordering. 1Ve will see that. most of the pointer chasing is

already accomplished in the process of finding the
immediate predecessors and successors of the query object
in the partial ordering. We accomplish this in two phases:

Let 1r(y) denote the set of immediate predecessors of
the data element y. In Phase 1 we determine IF’(Q)
where Q is the query object:

S := c3
While there is an unmarked element J of
the data base such that each member of IP(y) is
marked T or IP(y) = 0 do

If y 5 Cl (* comparieon needed *) then
mark y as T
S := [s - IP(y)I u fy3

Else
mark y as F.

This process terminates with S = II’(Q).
Note that when Phase I begins, all objects at the bottom

of the partial ordering are compared to Q since they have
no immediate predecessors. This process can be
accomplished quickly if we require t#hat the bottom of the
partial orderin, q contain real primitives (such as single
nodes) for Fvhich the comparison operation is trivial.

An informal description of Phase 2 shows what takes
place: The goal of Phase 2 is to calculate IS(&) - the
immediate successors of Q:

Chain up from each member of IP(Q) in breadth
first or depth first fashion (the chaining from
the last member of IP(Q) must be breadth first)
When these upward chains meet (i.e. there is a
data item y on each of these chains) check if
Q -(y. If so, y is in IS(Q), else continue to
chain up from y.

Now let’s go over how Phase I and Phase 3 help to
answer parts l-4 of the query:

1. Exact match: Q already exists in the data base, if IF’(Q)
= IS(Q). If so, then Q is the single element contained in
these sets.

2. Subgraphs: The subgraphs are simply all nodes that
were marked T in Phase 1.

3. Supergraphs: (This is the only place where additional
chaining is required). The supergraphs are t,he union of
the upward chains from each member of IS(Q)

4. Close ma.tches: The close matches are the union of the
upward chains from each member of E’(Q). In the most
obvious implementation of Phase 2, a hash table is used
to manage t,he breadth first search. It contains
information about which nodes have been visited and
which upward chains they are on. The desired union
can be found simply by collecting elements of the hash
table. (In our inlplcmentation of the graph system we
use these nodes a.s candidates for comparison to Q, and
we use an heuristic-based maximal common subgraph
algorithm to extract larger close matches.)

How can the universal graph improve the efficiency of
the algorithm when applied to a data base of graphs?
Since we try to construct the universal graph t,o be as
small as possible, many of its nodes will be shared by
many graphs. This overlap and the fact that the graphs of
the system are represented as sets means that some
exponential graph operations may be improved or
they may be replaced by linear set operations.

Where in the algorithm do these savings take place?

1. If we find a supergraph in Phase 2 we can use the
location of Q in this supergraph to find a proper
occurrence of graph Q in the universal graph itself.
Now that Q has been reduced to a set, we can infer
that all graphs that are represented by sets that are
supersets of this set are supergraphs, wit,hout doing a
node-by-node search. In practice, the universal graph
helps to eliminate about 20? of the node-by-node
searches required in phase 3.

2. If we know the placement of Q in the universal graph
and we \vish to dc~tcrminc common subgrnphs often we
can do this 1)~ taking intcrscctions of Q’s set with the
sets representing other graphs.

4. The system applied to organic chemistry
In this section we show how the system is being used as

a knoislcdgc ~JsSe for organic chemistry. The chemical
data base represents chemical reactions reported in the
chemical literature as labeled graphs. Primitives (see
Section 2) are written in the form “X-Ylr” meaning that
atoms X and Y arc connected with bond t,ype 1 on the
left-hand-side of the reaction and bond r on the right-
hand-side of the reaction. (The atom names represent’ed
bv X and J’ are in lexicographic order.) If a molecule is
b;ing represented, 1 will equal r. For example, C-C21
represents a double-bond between two carbon(C) atoms
that is changed to a single bond. C-002 likewise
represents a newly created double bond between
carbon(C) and oxygen(O). Finally, these labels are given
concept numbers, since all primitives must also be
concepts. Complete molecules and reactions also become
concepts. In addition, intermediate concepts such as the
functional groups arene and ester are added (either by
hand or by the system) to provide additional structure t,o
the part ial ordering. The data base currently has nbout
GO0 concepts for complete structures, 50 intermediate
concepts, and 100 primitives. Soon 500 reactions with the
associated molecules will be added. Preliminary
experinlcnts confirm that the use of well-chosen
intermediate concepts to structure the partial ordering
does in fact significantly limit the number of graphs that
must be examined to answer a query.

To be useful, the chemistry data base (or most any
other data base, for that matter) must contain more than
just graph structures. Other knowledge is associated with
each structure. For example, each reaction concept has
associated with it, pointers to the two graphs representing
the left-hand-side and right-hand-side of the reaction.
This association allows us to view reactions as graph-to-
graph production rules. Further information about. the
chemical reactions such as yields, reaction conditions and
literature references are stored in auxiliary files that are
associated with the standard graph system. This will help
the system to serve as an aid to the organic chemist who
is trying to synthesize an organic moltlculc.

The major difference between our syst,em and other
chemical substructure search systems is our ability to
organize multi-fezjels of search screens tiynamirally. See
also (Adamson, 1973), (Bnwden, 1983), (Dittmar, 1983),
(Feldman and IIod(>s, 1975), (Fugmann, 1979), (O’Korn,
1977) and (!Villett, 1980). The major difference between
our systrm and other systems designed to do organic
synthehis is our ability to organize n.nd employ a large
body of real ujorld daft. Anot her important difference is
the explanatory power that can be gleaned from the
grneralization arcs in the partial ordering. See also

(Gelertner, 1973), (Sridharan, 1973), (Willett, 1980) and
(Wipke, 1977)

5. The system applied to organic chemistry
In this section we discuss features that in addition to the

retrieval capacity make the graph system a useful design
for an Artificial Intelligence knowledge base. Examples
are taken from the Orgaiic Chemistry application.
l The universal graph is an efficient way to store

a large number of graphs since adjacency lists need
only be stored once as part of the universal graph.

l The universal graph and the partial ordering
are excellent aids to concept discovery. We have
seen that in the Organic Chemistry domain useful
concepts to the chemist can be found by finding
common subgraphs among the elements in the data
base. These common subgraphs may be recognized as
overlaps of sets of nodes in the universal graph. For
instance the set {1,2,8} in Figure 1. By finding places
in the partial ordering where further differentiation
among concepts is required we can see where additional
graphs should 1,~ added. See Figure 3. The added
concepts make the ordering more balanced. These
local techniques are important on large data bases
where global statistical techniques like cluster analysis
are co~llputationally infeasible. Examples of common
chemical st rue t ures discovered by our system include
the functional groups arene, ether, - phenol, and
carbosylic acid as well as some useful generalizations of
real-world react ions.

Before After
------ -----

v
(points to 10 graphs)

Figure 3: Adding concepts
(pointo to 4 graphs)

o The partial ordering represents a useful
characterization of the data in the data base. As
we move down the partial ordering we move to
conrepts of greatclr and grca.tcr grnerality. Likewise, as
we move up, we move to more and more specific
concepts. A theory of such generaliznfion hierarchies
is given in (Sowa, 1983). An important feature of our
system is its ability to derive generalizations from its
reaction data bilqc. These generalizations become
import ant M.~IPII they are applied to suggesting
precursors to a molecule not. yet known by the data
base. ldnother unique feature of the Organic Chemistry
domain is that gineralizations can be written down
simply as substructures of larger graphs. See Figure 4.

205

The Reaction:

Br

The Generalization:

(: + II 0 I
Figure 4: A Reaction and Its Generalization

l Retrieval is fastest for graphs that already exist
or are quite similar to stored graphs. This allows
the system. by storing query structures and finding
common patterns jvith them, to adapt its retrieval
capabilities to the needs of an individual user who may
often ask queries that are similar or identical to
previous queries.

l The system has the capability for relaxed-
matching. This is made possible by allowing an
individual label in the query structure to match any of
a set of labels. The retrieval algorithm no longer works
the same as before since the partial ordering does not
contain the pointers associa.ted with the “relaxed”
structures. Subgraphs are discovered as before but
often we must wait until the close match stage to
determine the supergraphs. This is because IP(Q) for a
“relaxed’ Q usually contains more elements than IP(Q)
otherwise. An example of relaxed matching in the
chemistry domain is allowing the primitives C-CL11
and C-BRll and C-F11 to be equivalent since halogens
(Cl, Br, and F) often function similarly. These
equivalence classes currently must be defined by the
user who has the option of invoking one or more of
them at query initiation time. We are exploring
whether the system can discover some of these
equivalence classes on its own.

0. Conclusion
The capabilities of our system mny seem at first glance

to be surprising when taken with the result, that weak,
syntactic method s are usually not enough to support
intelligent, behavior. However, there seems to be a more
powerful principle at work here: An ideal representation
is one that hus a form analogous to what it represents.
1Ve exploit this principle twice:
1. We use chemical structural diagrams. These are

known to be useful analogies of the real world.
?. The universal graph and partial ordering make

explicit the relationships between individual data
items. Graphs that have much in common are
physically and logically close together.

This principle is not new. For example, Doug Lenat cites
this principle as the major reason for success of his ,Wl
program and C:elertncr’s geometry theorem prover (Lcnat
and BroAvn, 108.3) and (Gelertner, 1063). The Handbook
of Artificial Intelligence (Barr, 1081) calls such ideal
representations direct or analogical representations.
Recently, (Pentland and E’ischler, 1083) called these
rc>prescntations isomorphic reyreserztntions .

i+.l’ithout a good deal of commonality between the
individual data items. the power acquired from the second

application of the principle would be lost. However, a
data base of more or less unrelated data items probably
would not be useful for complex reasoning.

ACKNOWLEDGE-MENTS
I would like to thank my advisor Dr. Elaine Rich and my
Bollahorator Dr. Craig \Vilcos (Dept. of Chemistry) for

their support and many contributions to this research. I
also would like to thank James 1Vells for the graphics
programs, and Mohan Ahuja for his encouragement.

REFERENCES

1. Adamson, G. W. , Cowell, J. , Lynch, M. F. , McLure, H. W. ,
Town, W. G. and Yapp, hl. A . ‘Strategic Considerations in the
Design of a Screening System for Suhstracture Searches of Chemical
Structure I:ilerj.’ Journal of Chemical Documentation 13 (1973),
1:&157.

2. Barr, A. and Feigcnbaum, E. A. The Ha7tdbooIi of Artificial

Intflligt~ce. Kaufman, Los Altos, Calif. , 1981.

3. Bawden, D. . “C’omputerized Chemical Structure-Handling
Techniques in Structure-Activity Studies and >lolecu!ar Property
Prediciion.’ Journal of Chemical Information and Computer
Sciences 2.9 (Feb 19X3), 14-32.

4. Dittmar, P. G. , Farmer, N. A. , Fisanick, \V. , Haines, R. C. ,
Mockus, J . “The CXS UNLIKE Search System 1. General System
Design and Selection, Generation, and Use of Search Screens.”
Journal of Cl;cmical Informntion and Computer Sricncrs 23 (Aug

19&q, X3-102.

5. Feldman, A. and Hodcs, L . “An Efficient Design for Chemical

Structure Searching I, The Screens.” Journal of Chexicai
Information and Co77iputtr Science.3 15 (1975). 147-151.

0. Fugmann, R. , Iius~~rrrann, G. , and \Vinter, ,J. II . “The Supply
of Information on Chemical Reactions in the IDC System.”
Information Proceaaing a/rd Munagc77atnt 15 (1979), 303-333.

7. Gelertner, 11 Iic:tlization of Geometry Thrarem Proving
h4nchine. In Conzputrr,q a,Ld Thought, Feigenhaum and Feldmna,
Eds.. hlcgraw-Ijill, 1963, pp. 134-152.

8. Gelcrtner, II ‘The Discovery of Organic Synthetic Routes by
Computer.’ Tupic,s in Currcnf Chemistry 42 (lO”3).

9. Haye+I:otb, F. , W’ntrrman, D. , and Lenat, D. B . Building
Ezytrt Syatetna. Addison-Wesley, 1983.

10. Lenat, D. B. and l!rown, J. S . Why AM and Eurisko Appear
to Work. Proc. A,4AI-83. 1963.

11. O’Korn, L. J . Algorithms in Computer Handliug of Chemical
1nfo;rnation. In Algorithrn~ for Chemical Computationa,
Christofferscn, El. E. , Ed.,American Chemical Society, 1977, pp.
122-148.

12. Pentland, ,4. P. , E‘ischler, M. A .A hlore Rational Vitw of
Logic.” AZ Map,-ir2e 4. 4 (1953).

13. Sowa, J. F. C’onctptunl Structurta: Information Proces.cing
in Afind and M,~chin F. Addison-\Z’cslpy, 1983.

14. Sridharan, N. S. . Search Strategies for the TX!< of Chemical
Organic Synthesis. Proc. IJCAI-3, 1973.

15. \Villett, P . ‘The Evaluation of an Aut.omaticaIly Indexed,
hfachine-Readable Chemical Reactions File.” Journal of Chemical
Information n7ld Computer Sciezrea 80 (1980), 93-96.

18. \Vipke, W. T. and IIowe, W. J.(editors) . Computw-Assisted
Organic Synthesis. American Chemical Society, 1977.

