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ABSTRACT* 
The design of a general knowledge base for labeled 

graphs is presented. The design involves a partial 
ordering of graphs represented as subsets of nodes of a 
universal graph. The knowledge base’s capabilities of fast 
retrieval and self-organization are a result of its ability to 
recognize common patterns among its data items. The 
system is being used to support a knowledge base in 
Organic Chemistry. 

1. Introduction 
When asked to develop a retrieval system for known 

chemical reactions and molecules, we chose to undertake 
the more fundamental task of designing a general 
knowledge base for labeled graphs. In particular, we 
wished to have a system that would efficiently handle the 
query: Given a labeled-undirected graph Q and a data 
base of labeled undirected graphs answer the following: 
1. Is Q a member of the data base? (exact match) 
2. Which members of the data base contain Q as a 

subgraph? (supergraphs) 
3. Which members of the data base contain Q as a 

supergraph? (subgraphs) 
4. Which members of the data base have large 

subgraphs in the data base in common with Q? 
(close matches) 

In this paper we discuss a system that meets the design 
objective mentioned above and also supports other 
features that are highly desirable in intelligent knowledge 
bases but are usually difficult to achieve. Most important 
of these features is the ability of the system to structure 
its own knowledge base through the recognition of 
common patterns (subgraphs) in its data items (graphs). 
In fact, the critical idea that our system demonstrates is 
that the common patterns can be exploited for 
multiple purposes. We call these common patterns 
concepts. They can be used to enhance retrieval 
efficiency, to increase the knowledge of the system 
(concept discovery), to characterize the relationships 
between its individual data items, and to provide criteria 
to select among partial and relaxed matches. 

The system is currently being used successfully to 
support a knowledge base for Organic Chemistry. In 
further research we hope to demonstrate its utility in a 
variety of domains where individual data items can be 
represented as iabeled graphs. Some of the domains being 
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considered are ITSI designs, program trees, computer 
networks, structural diagrams, and semantic nets. 

2. The data base design 
The key to the data base design is the recognition that 

(1) All of the graphs of the system can be viewed 
as subgraphs of a single Muniversala graph. and that 
(2) these graphs can be represented by subsets of 
nodes of the universal graph. The universal graph is 
constructed as new graphs are added to the system and it 
is used when old graphs are to be retrieved. For an 
example see Figure 1. 

The four graphs: 
a b d a a b c a b c 

n A - 7-I 
c d 0 f d e 

can be represen ted as subsets of nodes in a 
universal graph : (node labele in parentheses) 

7(a) 

1 (a> 

4(c) 

5(e) 6(f) 

The euboets are Cl 2 3 4). (3 5 61, (1 2 7 81, 
and (1 2 3 8 9). 

Figure 1: An example of a universal graph 

The rest of the design involves making explicit the 
ordering achieved by the partial ordering relation 
subgraph-of ( see Figure 2.) This is achieved by storing 
with each graph pointers to its immediate predecessors 
and to it,s immediate successors in the partial ordering. 
Each gr:;ph in the system is called a concept and describes 
a structure that is determined to be of interest. Initially 
the system has only the graphs (concepts) that represent 
complete facts in the problem and primitives. Primitives 
are the labels t,hat appear on the nohes of the graphs. As 
concepts are added to t!he system they are inserted in 
their proper position in the partial ordering. Some of 
these new concepts may represent new complete objects 
and some may represent new primitives. But others may 
represent common substructures that are useful in 
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analyzing complete objects. These intermediate concepts 
provide structure to the partia,l ordering, and thus aid the 
response rate and flexibility of the system. Another way 
to view the universal graph is that it is a graph that is 
pointed to by all graphs at the top of the partial ordering. 

universal 
graph 

D D 

data items 

D D 

C 
concepts 

C 

P primitives 

Figure 2: The Partial Ordering of Concepts 

(A typical chain is shown) 

3. The retrieval algorithm 
In this section we describe an algorithm for answering 

parts l-4 of the basic query given in-the Introduction. The 
algorithm operates on the universal graph and partial 
ordering described in Section 1. In fact, the algorithm 
works on any set of data for which a partial ordering has 
been established. It is desirable to have an algorithm that 
minimizes the number of comparison operations that are 
necessary to answer the &ery for exact match, 
superjqaphs, subgraphs and close matches. This 
minimization of comparison operations is particularly 
important in a system that uses complex objects like 
graphs since the complexity of these operations is usually 
exponential. The main way that our algorithm attempts 
to- minimize the number of comparisons is by using the 
partial orderin, r to segment the data base so that only a 
small part of it need actually be considered in detail. The 
algorithm has the feature that it is easy to implement and 
that it searches nodes in a logical bottom-up order that 
may be useful in domains in which additional 
computation is desired during the retrieval process. (For 
example, we may wish to apply general concepts to a 
situation before more specific ones are found to be 
applicable.) On a data base of 200 concepts an average of 
about ?+5 node-by-node searches are required to answer a 
typical query. We are looking for other algorithms that 
might require an even smaller number of comparisons. 

First we discuss the general algorithm for all partial 
orderings, and then we- show how the universal gra,p h 
represent ation can be used to further the efficiency of the 
aliorithm for a data base of graphs. 

The query can be a[iswered by finding where the query 
structure should fit in the partial ordering, whether it is 
already in the ordering or not, Then Yart 1 can be 
answered. Then parts Z-4 of the query can be answered 
by simply following pointers (chaining) in the partial 
ordering. 1Ve will see that. most of the pointer chasing is 

already accomplished in the process of finding the 
immediate predecessors and successors of the query object 
in the partial ordering. We accomplish this in two phases: 

Let 1r(y) denote the set of immediate predecessors of 
the data element y. In Phase 1 we determine IF’(Q) 
where Q is the query object: 

S := c3 
While there is an unmarked element J of 
the data base such that each member of IP(y) is 
marked T or IP(y) = 0 do 

If y 5 Cl (* comparieon needed *) then 
mark y as T 
S := [s - IP(y)I u fy3 

Else 
mark y as F. 

This process terminates with S = II’(Q). 
Note that when Phase I begins, all objects at the bottom 

of the partial ordering are compared to Q since they have 
no immediate predecessors. This process can be 
accomplished quickly if we require t#hat the bottom of the 
partial orderin, q contain real primitives (such as single 
nodes) for Fvhich the comparison operation is trivial. 

An informal description of Phase 2 shows what takes 
place: The goal of Phase 2 is to calculate IS(&) - the 
immediate successors of Q: 

Chain up from each member of IP(Q) in breadth 
first or depth first fashion (the chaining from 
the last member of IP(Q) must be breadth first) 
When these upward chains meet (i.e. there is a 
data item y on each of these chains) check if 
Q -( y. If so, y is in IS(Q), else continue to 
chain up from y. 

Now let’s go over how Phase I and Phase 3 help to 
answer parts l-4 of the query: 

1. Exact match: Q already exists in the data base, if IF’(Q) 
= IS(Q). If so, then Q is the single element contained in 
these sets. 

2. Subgraphs: The subgraphs are simply all nodes that 
were marked T in Phase 1. 

3. Supergraphs: (This is the only place where additional 
chaining is required). The supergraphs are t,he union of 
the upward chains from each member of IS(Q) 

4. Close ma.tches: The close matches are the union of the 
upward chains from each member of E’(Q). In the most 
obvious implementation of Phase 2, a hash table is used 
to manage t,he breadth first search. It contains 
information about which nodes have been visited and 
which upward chains they are on. The desired union 
can be found simply by collecting elements of the hash 
table. (In our inlplcmentation of the graph system we 
use these nodes a.s candidates for comparison to Q, and 
we use an heuristic-based maximal common subgraph 
algorithm to extract larger close matches.) 

How can the universal graph improve the efficiency of 
the algorithm when applied to a data base of graphs? 
Since we try to construct the universal graph t,o be as 
small as possible, many of its nodes will be shared by 
many graphs. This overlap and the fact that the graphs of 
the system are represented as sets means that some 
exponential graph operations may be improved or 
they may be replaced by linear set operations. 

Where in the algorithm do these savings take place? 



1. If we find a supergraph in Phase 2 we can use the 
location of Q in this supergraph to find a proper 
occurrence of graph Q in the universal graph itself. 
Now that Q has been reduced to a set, we can infer 
that all graphs that are represented by sets that are 
supersets of this set are supergraphs, wit,hout doing a 
node-by-node search. In practice, the universal graph 
helps to eliminate about 20? of the node-by-node 
searches required in phase 3. 

2. If we know the placement of Q in the universal graph 
and we \vish to dc~tcrminc common subgrnphs often we 
can do this 1)~ taking intcrscctions of Q’s set with the 
sets representing other graphs. 

4. The system applied to organic chemistry 
In this section we show how the system is being used as 

a knoislcdgc ~JsSe for organic chemistry. The chemical 
data base represents chemical reactions reported in the 
chemical literature as labeled graphs. Primitives (see 
Section 2) are written in the form “X-Ylr” meaning that 
atoms X and Y arc connected with bond t,ype 1 on the 
left-hand-side of the reaction and bond r on the right- 
hand-side of the reaction. (The atom names represent’ed 
bv X and J’ are in lexicographic order.) If a molecule is 
b;ing represented, 1 will equal r. For example, C-C21 
represents a double-bond between two carbon(C) atoms 
that is changed to a single bond. C-002 likewise 
represents a newly created double bond between 
carbon(C) and oxygen(O). Finally, these labels are given 
concept numbers, since all primitives must also be 
concepts. Complete molecules and reactions also become 
concepts. In addition, intermediate concepts such as the 
functional groups arene and ester are added (either by 
hand or by the system) to provide additional structure t,o 
the part ial ordering. The data base currently has nbout 
GO0 concepts for complete structures, 50 intermediate 
concepts, and 100 primitives. Soon 500 reactions with the 
associated molecules will be added. Preliminary 
experinlcnts confirm that the use of well-chosen 
intermediate concepts to structure the partial ordering 
does in fact significantly limit the number of graphs that 
must be examined to answer a query. 

To be useful, the chemistry data base (or most any 
other data base, for that matter) must contain more than 
just graph structures. Other knowledge is associated with 
each structure. For example, each reaction concept has 
associated with it, pointers to the two graphs representing 
the left-hand-side and right-hand-side of the reaction. 
This association allows us to view reactions as graph-to- 
graph production rules. Further information about. the 
chemical reactions such as yields, reaction conditions and 
literature references are stored in auxiliary files that are 
associated with the standard graph system. This will help 
the system to serve as an aid to the organic chemist who 
is trying to synthesize an organic moltlculc. 

The major difference between our syst,em and other 
chemical substructure search systems is our ability to 
organize multi-fezjels of search screens tiynamirally. See 
also (Adamson, 1973), (Bnwden, 1983), (Dittmar, 1983), 
(Feldman and IIod(>s, 1975), (Fugmann, 1979), (O’Korn, 
1977) and (!Villett, 1980). The major difference between 
our systrm and other systems designed to do organic 
synthehis is our ability to organize n.nd employ a large 
body of real ujorld daft. Anot her important difference is 
the explanatory power that can be gleaned from the 
grneralization arcs in the partial ordering. See also 

(Gelertner, 1973), (Sridharan, 1973), (Willett, 1980) and 
(Wipke, 1977) 

5. The system applied to organic chemistry 
In this section we discuss features that in addition to the 

retrieval capacity make the graph system a useful design 
for an Artificial Intelligence knowledge base. Examples 
are taken from the Orgaiic Chemistry application. 
l The universal graph is an efficient way to store 

a large number of graphs since adjacency lists need 
only be stored once as part of the universal graph. 

l The universal graph and the partial ordering 
are excellent aids to concept discovery. We have 
seen that in the Organic Chemistry domain useful 
concepts to the chemist can be found by finding 
common subgraphs among the elements in the data 
base. These common subgraphs may be recognized as 
overlaps of sets of nodes in the universal graph. For 
instance the set {1,2,8} in Figure 1. By finding places 
in the partial ordering where further differentiation 
among concepts is required we can see where additional 
graphs should 1,~ added. See Figure 3. The added 
concepts make the ordering more balanced. These 
local techniques are important on large data bases 
where global statistical techniques like cluster analysis 
are co~llputationally infeasible. Examples of common 
chemical st rue t ures discovered by our system include 
the functional groups arene, ether, - phenol, and 
carbosylic acid as well as some useful generalizations of 
real-world react ions. 

Before After 
------ ----- 

v 
(points to 10 graphs) 

Figure 3: Adding concepts 
(pointo to 4 graphs) 

o The partial ordering represents a useful 
characterization of the data in the data base. As 
we move down the partial ordering we move to 
conrepts of greatclr and grca.tcr grnerality. Likewise, as 
we move up, we move to more and more specific 
concepts. A theory of such generaliznfion hierarchies 
is given in (Sowa, 1983). An important feature of our 
system is its ability to derive generalizations from its 
reaction data bilqc. These generalizations become 
import ant M.~IPII they are applied to suggesting 
precursors to a molecule not. yet known by the data 
base. ldnother unique feature of the Organic Chemistry 
domain is that gineralizations can be written down 
simply as substructures of larger graphs. See Figure 4. 

205 



The Reaction: 

Br 

The Generalization: 

( : + II 0 I 
Figure 4: A Reaction and Its Generalization 

l Retrieval is fastest for graphs that already exist 
or are quite similar to stored graphs. This allows 
the system. by storing query structures and finding 
common patterns jvith them, to adapt its retrieval 
capabilities to the needs of an individual user who may 
often ask queries that are similar or identical to 
previous queries. 

l The system has the capability for relaxed- 
matching. This is made possible by allowing an 
individual label in the query structure to match any of 
a set of labels. The retrieval algorithm no longer works 
the same as before since the partial ordering does not 
contain the pointers associa.ted with the “relaxed” 
structures. Subgraphs are discovered as before but 
often we must wait until the close match stage to 
determine the supergraphs. This is because IP( Q) for a 
“relaxed’ Q usually contains more elements than IP(Q) 
otherwise. An example of relaxed matching in the 
chemistry domain is allowing the primitives C-CL11 
and C-BRll and C-F11 to be equivalent since halogens 
(Cl, Br, and F) often function similarly. These 
equivalence classes currently must be defined by the 
user who has the option of invoking one or more of 
them at query initiation time. We are exploring 
whether the system can discover some of these 
equivalence classes on its own. 

0. Conclusion 
The capabilities of our system mny seem at first glance 

to be surprising when taken with the result, that weak, 
syntactic method s are usually not enough to support 
intelligent, behavior. However, there seems to be a more 
powerful principle at work here: An ideal representation 
is one that hus a form analogous to what it represents. 
1Ve exploit this principle twice: 
1. We use chemical structural diagrams. These are 

known to be useful analogies of the real world. 
?. The universal graph and partial ordering make 

explicit the relationships between individual data 
items. Graphs that have much in common are 
physically and logically close together. 

This principle is not new. For example, Doug Lenat cites 
this principle as the major reason for success of his ,Wl 
program and C:elertncr’s geometry theorem prover (Lcnat 
and BroAvn, 108.3) and (Gelertner, 1063). The Handbook 
of Artificial Intelligence (Barr, 1081) calls such ideal 
representations direct or analogical representations. 
Recently, (Pentland and E’ischler, 1083) called these 
rc>prescntations isomorphic reyreserztntions . 

i+.l’ithout a good deal of commonality between the 
individual data items. the power acquired from the second 

application of the principle would be lost. However, a 
data base of more or less unrelated data items probably 
would not be useful for complex reasoning. 
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