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ABSTRACT 

In this paper, a knowledge base is represented by an 
input space, an outpUt space, and a set of mappings that 
associate subsets of the two spaces. Under this represen- 
tation, knowledge propocessing has three major parts: 
(i) The user enters observations of evidence in the input 
space and assigns a degree of certainty to each observa- 
tion (2) A piece of evidence that receives a non-zero cer- 
tainty activates a mapping. This certainty IS multiplied 
by the certainty associated with the mapping, and is thus 
propagated to a proposition in the output space. (3) The 
consensus among all the propositions that have non-zero 
certainties is computed, and a final set of conclusions is 
drawn. A degree of support is associated with each con- 
clusion 

The underlying model of certainty in this processing 
scheme is based on the Dempster-Shafer mathematical 
theory of evidence. The computation of the consensus 
among the propositions uses Dempster’s rule of combina- 
tion The inverse of the rule of combination, which we call 
the rule of decomposition, is derived in this paper. Given 
an’ expected consensus, the inverse rule can generate 
the certainty required for each proposition. Thus, the 
certainties in the mappings can be inferred iteratively 
through alternating use of the rule of combination and 
the rule of decomposition. 

1. INTRODUCTION 

In this paper, we propose a new representation of 
knowledge based on set theory. A knowledge base con- 
sists of three parts: an input space from which evidence 
is drawn, an output space that consists of propositions to 
be proved, and a set of mappings that associate subsets 
of the inout space with subsets of the output space. In 
this representation, two types of certainties are defined. 
The certainty assigned to a piece of evidence expresses 
the degree of confidence that a user has in his observa- 
tion of the evidence. The certainty assigned to a mapping 
expresses the degree of confidence that an expert has in 
his definition of the mapping. These two sources of cer- 
tainty are compounded in proving a proposition. 

The theoretical foundation for handling partial cer- 
tainty under this representation is based on the 
Dempster-Shafer “theory of evidence” [l]. Shafer defines 
certainty to be a function that maps subsets in a space 
on a scale from zero to one, where the total certainty 
over the space is one. The definition also allows one to 
assign a non-zero certainty to the entire space as an 
indication of ignorance. This provision for expressing 

ignorance is one way in which Shafer’s theory differs 
from conventional probability theory, and is a significant 
advantage, since in most applications the available 
knowledge is incomplete and mvolves a large degree of 
uncertainty 

A mapping is activated when the input part of the 
mapping, the user’s observation of evidence, receives a 
non-zero certainty. The product of this certainty with 
the certainty in the mapping is the certainty in the pro- 
position. Dempster’s rule of combination provides a 
mechanism to combine the certainty of several proposi- 
tions, which can be concordant or contradictory. When 
this mechanism is used, reasoning becomes a process of 
seeking consensus among all the propositions that are 
supported by the user’s observations. This approach is 
attractive, since such problems as conflicting observa- 
tions from multiple experts, knowledge updating, and 
ruling-out are resolved automatically by the rule of com- 
bination. The conventional approaches to knowledge pro- 
cessing, which use tightly coupled chains or nets such as 
deductive rules or semantic nets, do not have this advan- 
tage [2,3]. 

The use of the Dempster-Shafer theory of evidence 
to handle uncertainty in knowledge processing was first 
discussed at the Seventh International Conference on 
Artificial Intelligence, 1981. Two papers related to the 
subject were presented [4,5]. Barnett discussed the com- 
putational aspects of applying the theory to knowledge 
processing [4]. Garvey et al. applied the method to 
model the response from a collection of disparate sen- 
sors [5]. The signals from an emitter are parameterized, 
and the likelihood of a range of parameter values is 
expressed by Shafer’s definition of certainty. The 
integration of parameters is computed by using 
Dempster’s rule of combination, 

In this paper, we use the theory of evidence as an 
underlying model for partial certainty in a general 
knowledge-processing scheme. 

2. A SEF-‘EEORJDIC REPRESENTATION 

A knowledge base can be represented by two spaces 
and a set of mappings between the two spaces. Let the 
two spaces be called an input space, labeled I, and an 
output space, labeled 0. A proposition in 1 is 
represented by a subset of elements in I. Its relation to 
a subset of 0, wbch represents a proposition in 0, 
defines a mapping. Let us denote the collection of map- 
pings defined in this way by R. Then R : I -+ 0. The 
input space consists of evidence that can be observed by 
users. The ouput space consists of conclusions that can 
be deduced from the observations. 
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In this representation, we consider two types of cer- 
tainty. One is associated with the user’s observation of 

Definition 2 

evidence in the input space. The second type is the cer- 
tainty that an expert assigns to the mappings. By com- 
bining these two certainties, a knowledge processing 
scheme deduces the most likely hypotheses in the out- 
put space. Among the problems that can be represented 
in this way are those of classification, translation, and 
diagnosis. 

CLASSIFICATION. A typical pattern recognition prob- 
lem can be represented by an input space that is a space 
of independent features, an output space that is a group 
of dlsjolnt classes, and a set of mappings that are 
described by a classifier. 

TRANSLATION. Language translation 1s a typical 
example of a translation process. In a translation 
scheme, the two spaces are the source language and the 
target language. Within each space, elements are genetl- 
tally related and well structured. These relations are 
characterized by syntax, and the mappings can be 
represented by a transformational grammar. 

DlAGKOSIS Medical diagnosis can involve more than 
two spaces. First, there is a symptom space, which is 
composed of features of visible symptoms or laboratory 
measurements. The second space may consist of possible 
diseases, and the third space of treatments to be admm- 
lstered. The ruling-out capabihty is important in this 
case, smce some treatments can be fatal to a patient 
with certain symptoms or diseases. 

3. THEDEXPSIXF-SHAFER THEORY OF EVIDENCE 

Shafer defines certainty to be a function that maps 
subsets in a space on a scale of 0 to 1, where the total 
certainty over the space 1s 1. If a certainty function 
assigns 0.4 to a subset, it means that there is 0.4 cer- 
tainty that the truth is somewhere in this subset. The 
definition also allows one to assIgn a non-zero certainty 
to the entlre space. This is called the degree of 
“ignorance.’ It means that any given subset is no closer 
to contammg the truth than any other subset in the 
space. 

Some definitions that are used throughout the paper 
are given in ths section 

Definition 1 

Let 0 be a space; then a function m:2e -) 
called a certainty function whenever 

(1) m (PC) = 0, where p is an empty set, 
(2) 0 < m(A) < 1, and 

(3) 

[OJ 1 1s 

Cm(A) = 1. 
AC6 

The space “O”, and the certainty function “m”, are 
called the “frame of discernment”, and the “basic proba- 
bility assignment”, respectively, in [ 11. 

A subset A of 0 is called a focal element if m(A) > 0. 
The simplest certainty f-unction is one that has only one 
focal element. 

A certainty function is called a simple certainty 
function when 

(1) m:A) > 0, 
(2) m(O) = 1 - m(A), and 
(3) m(B) = 0, for all other B CO 

The focus of the simple certainty function is A. 

Here, a simpl e certi 
support func tion” in [l]. 

anty function is called a ’ ‘simple 

The quantity m(A) measures the certainty that one 
commits specifically to A as a whole, i.e. to no smaller 
subset of A However, this quantity is not the total belief 
that one commits to A. Shafer defines the total belief 
committed to A to be the sum of certainties that are 
committed to A and all the subsets of A. 

Ikmtion 3 

A function Bel:p -) [0, l] is called a belief function 
over 0 if it is given by 

&1(A) = c m(B). (1) 
BcA 

Dempster defines an operation on certainty func- 
tlor!s that is called “orthogonal sum,” and is denoted by 
.d3. 

Demtion 4 

Let ml and m2 be two certainty functions over the 
same space 0, with focal elements 
81,. . . , @, respectively. Suppose that 

Tnen the function m: 2’ + [0, l] 1s defined by m(p) = 0, 

v-v&A 
m(A)= 1- 

C mlL4pdBj) 

4 nB, =v 

for all non-empty subsets A C 0, 1s a certainty function, 
and m = ml@ m2 Equation (2) is called Dempster’s rule 
of combmatlon 

(2) 

4. KNOWMDGE PROCESSING UNDER PARTIAL CEXTAINTY 

Given this defirutlon of certainty, we can quantify 
our belief m a mapping. We assume that a mapping 
dehnes a simple certainty function over the output 
space. This certainty indicates the degree of assoclatlon 
between elements in I and elements in 0. Therefore, a 
mappLng in R 1s expressed as 

e -+h,v, (3) 

where e c I, h c 0, and 0 g v < 1. This mapping defines 
a simple certainty function, where the focus in 0 is h, 
and v is the degree of association, in the expert’s opin- 
ion. between e and h. That is, v = 1 means complete 
confidence, and 1 - v is the degree to which the expert 
chooses to be noncommittal, or the degree of ignorance. 
Furthermore, a mapping 1s assumed to be an indenpen- 
dent piece of knowledge. 
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The user of a knowledge processor gives his observa- 
tion of evidence in the input space, and also the cer- 
tainty associated with that observation Each observation 
defines a certainty function over the mput space. Let the 
certainty function be denoted by q, g : Z1-+ [O,l]. The 
user is allowed to make multiple observations. Assuming 
that each observation is independent, we can derive a 
combined observation by using the orthogonal sum of 
these observations. That is, q = g,@qz@ r * * (B qn, where 
Ql# . 0 qn are rc independent observations. Then the 
belief function defined by the combination of the obser- 
vations is denoted by Bel,. 

We say that a mapping is activated when the evl- 
dence for that mapping is assigned a non-zero belief in a 
combined observation. That is, the mapping e --) h is 
activated if Be+(e) > 0. When a mapping 1s activated, the 
certainty in the evidence is propagated by the mapping 
to a decision in the output space. As a result, an 
activated mapping defines a certainty function < : 2e+ 
[O,I] over the output space, where t(h) = v x p, and 
C(O) = 1 - v x p. 

In the case where there is more than one mapping 
activated in a run, several certainty functions will be 
defined over the output space. The final certainty func- 
tion is the combined certainty obtained by taking the 
orthogonal sum of all the activated mappings. Finally, 
the total belief for the output space is computed by 
using Eq. (1) in Definition 2. 

In summary, this processing procedure has five 
steps: 

(1) 

(2) 

(3) 

(4) 

(5) 

Query for Observations An observation of evidence, 
and the certainty associated w-lth the observation 
are entered by the user. They define a certanty 
function over the input space. 

Normalize the Certainty in the Input Space. The user 
is allowed to make multiple independent observa- 
tions. The certainty functions defined by these 
observations are combined by using the rule of com- 
bination. 

Activate the Mappings. A mapping is activated when 
the evidence for the mapping receives a non-zero 
belief in the combined observation. 

Propagate the Certainty to the Output Space. The 
certainty of the evidence in an activated mapping is 
multiplied by the certainty in the mappmg. The 
result is a certainty function defined over the output 
space for each activated mapping. 

Normalize the Certainty in the Output Space. By 

means of the rule of combination, all the activated 
certainty functions in the output space are com- 
bined into a single certainty function. From this cer- 
tainty function the total belief for the output space 
is computed. 

This process is illustrated by the following example. 

Example 1 

A knowledge base is schematized in Figure 1: an 
input space that contains subsets A, B, and C, and an 
output space that contains subsets X, Y, and 2. Three 

mappings are given by 
A -+x, 0.8 
B -4 Y, 0.7 
c-4 2, 1. 

Suppose that the user makes two independent 
observations defined by the certamty functions 

q,(A) = 0.8, 
91u> = 0.2, 

and 

g?.(B) = 0.4, 
q2(/) = 0.6. 

Then the combined observation is given by the cer- 
tainty function 

g(A) = 0.48, 

q(B) = 0.08, 

g (A nB)= 0.32, 

q(I) = 0.12. 

From the combined observation, we find that the 
belief in A, B, and C of the input space, I, is given by the 
belief function 

Be14(A) = q (A) + q (A nB> = 0.8, 

Be&(B) = q (B) + q (A nB) = 0.4, and 
BeZq(C) = q(AnB) = 0.32. 

Therefore, for the given observations all three map- 
pings are activated. The three activated certamty func- 
tions m the output space, 0, are cl, {s, and (3: 

cl(X) = 0.6 x 0.8 = 0.64, and cl(O) = 0.36; 
&z(Y) = 0.4 x 0.7 = 0.28, and <e(O) = 0.72; 
r&(Z) = 0.32 x 1 = 0.32, and {s(O) = 0.68. 

Finally, by using the rule of combmation we can 
compute the certamty function <, < = (-+B(-&,: 

C(X) = 0.3133, 
t(r) = 0.0675, 
< (2) = 0.0829, 
((XnY) = 0.1218, 
<(XnZ) = 0.1474, 
{(YnZ) = 0.0322, 
{(XnYnZ) = 0.0573, and 

c(O) = 0.1662. 

The final belief function over the output space is 
Belt(X) = 0.64, 
BeZ&Y) = 0.28, 
Belt(Z) = 0.32, 
BeZ&Xn Y) = 0.1792, 
BeZ[(XnZ) = 0.2048, 
BeZ& YnZ) = 0 0896, 
BeZ&XnYnZ) = 0.0573 

As has been said earlier, the set-theoretic represen- 
tation and the rule of combmatlon are attractive for 
knowledge processing because such problems as multiple 
experts, knowledge updating, and rulmg-out can be 
automatically resolved in the processmg scheme. 
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A mapping represents an opinion. When the rule of 
combination is applied to combine several mappings, the 
result can be interpreted as the consensus among 
several opinions. When some opinions are contradictory, 
they erode each other. On the other hand, concurring 
opinions reinforce each other. The problem of multiple 
experts can be handled by treating them as a knowledge 
base with several sets of mappings, each contributed by 
a different expert. If all experts’ opinions are weighted 
equally, then it makes no difference whom the mappings 
come from. The problem of knowledge updating can be 
handled by simply addmg a new set of mappings to an 
existing knowledge base. The following examples illus- 
trate the handling of conflicting opinions and “ruling-out” 
in this scheme. 

Example 2 

The input and output spaces are the same as in 
Example 1, but the knowledge base now contains the fol- 
lowing mappings: 

A -+ X, 0.8, 

B -+ x, 0.7, 

c ----) z, 1. 

That is, B supports the opposite of what A supports. 
Assume that the user’s observations are the same as in 
Example 1. Then the final belief function in the output 
space is 

BeZ&X) = 0.5614, 

BeZc(X) = 0 1228, 

BeZ((Z) = 0.32, 

BeZ&XnZ) = 0.1796, 

BeZt(XnZ) = 0.0393. 

In comparison with the results in Example 1, the 
belief in X 1s eroded to some extent, but the belief in Z 
remains the same. 

Ruling-out means that if evidence x is observed, 
then proposition y LS false with total certainty (i.e. it is 
ruled out). This is represented as 

x ---) a, 1. 

E&ample 3 

The second mapping in Example 2 is changed to be a 
“ruling-out” mapping for proposition X if B is observed; 
that is, 

are 

B -+x, 1. 

If the same observations as in the previous examples 
ised, the final belief function is 
Belt(X) = 0.4161, 

BeZ&X) = 0.1935, 
BeZ&Z) = 0.32, 

BeZt(XnZ) = O.l65i, 

BeZ((XqZ) = 0.0619. 

Because the belief in B is not fully supported by the 
observations, proposition X 
by the ruling-out mapping. 

comple tely suppressed 

Example 4 

Assume that the user makes the following observa- 
tions : 

&A) = 0.8, 
qm = 0.2, 

and 

9m = 1. 

If the knowledge base in Example 3 is used, the final 
belief function is 

BeZ((X) = 1, 

and the belief in all the other propositions is 0. 

5. THEi DECOMFOSITlON OF CERTAINTY 

One dificulty in this knowledge processing scheme 
is the assignment of certainty to a mapping Even the 
domain expert can provide only a crude approximation, 
since the degree of belief is a relative matter. It is 
difficult for one to be consistent in assigning certainty to 
a mapping on a scale of 0 to 1 when a large number of 
such mappings are involved. Motivated by this difficulty, 
we have derived an inverse to the rule of combination. We 
call it “the rule of decomposition.” With initial certainty 
assignments to the mappings, the expert can use the 
knowledge base by entering evidence and observing the 
final deduced belief function over the output space. If the 
final belief function is inconsistent with the expert’s 
expectation, he can use the rule of decomposition to 
modify the certainty assignment for individual mappings. 
If the expert is consistent, the knowledge base will 
approach consistency after a number of iterations. 

The rule of decomposition decomposes a certainty 
function into a number of simple certainty functions 
However, not all certainty functions can be decomposed 
into simple certainty functions. Shafer defines the class 
of certainty functions that can be decomposed as “separ- 
able” certainty functions. Shafer also proves that the 
decomposition of a separable certainty function is 
unique. 

Before deriving the general rule of decomposition, 
we consider four special cases of combining n simple 
certainty functions. The rule of decomposition is then 
derived for each of the four cases. Finally, we give a pro- 
cedure for decomposing any separable certainty func- 
tlon. 

hmma 1 

n Simple Certainty Functions with Identical Focus 

Let ml, rn2# . , m, be n simple certainty func- 
tions, where A c 0 is the only focus, and 

mi(A) = aa, forlgiln, 

and 0 < ai _( 1. Then the combined certainty function, 
m = ml@m20~ .BDm,, is 

m(A) = 1 - fi(1 -a,). (4) 
i=l 
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bxnma 2 

R Simple Certainty Functions with n Disjoint 
Focuses 

Let ml, rnze , m, be n simple certainty func- 
tions, and Al, AZ, . , & be their n focuses, respec- 
tively. 4: nAj = ~0, for all i, j , i#j, Assume that 
nq(q) = ai, and 0 I a, < 1, for all i. Then the combined 
certainty function is 

aL J&i - aj) 

44) = 
jti 

fJC$fi(? - CXj) + fi(i - Rj) 
(5) 

i=l j=l j=l 
jti 

fori = 1,. . . ,n. 

I.emma 3 

n Simple Certainty Functions with n Focuses Where 
the Intersection of Any Number of Focuses Is Non-Empty 

Let m+, rnz? . . , m, be n simple certainty func- 
tions, and Al, AZ, . , & be their n focuses, respec- 
tively. Also, let tc be a subset of the index set, il, 2, . . , 
nj, and n4 be the intersection of the subsets for wmch 

icx 
the indexes are in K. Assume that n-4 St p, for all possi- 

i&K 

ble K, and n4 # nAj for all K: and L, where both K and L 
icn icr 

are subsets of the index set i:, 2, , n], and K # L. 
Then the combined certainty function is 

m(n4) = j+Jtl - "j)s 
i&K itx jc3 

whereE= f 1, 2,. ,n I-K: 

(6) 

Lemma 4 

n Simple Certainty Functions with Nested Focuses 

Let A,, AZ, . . . , A, be the n focuses of n simple cer- 
tainty functions, ml, m2, . ~ , m,, respectively. Assume 
that A lcAz~ “’ c A,. Then the combined certainty 
function is 

i-l 

m(4) = ai n(1 - CXj), 

j=l 
(7) 

Equation (4) to (7) can be proved by induction From the defimtions of a certainty function, we have 

The inverse of the three special cases described in 
Lemma 2 to 4 are given by equations (8) to (IO), respec- 
tively. 

mt-4) tXi = 
1 - fJm(Aj) 

j.=! 
I+L 

and 

(8) 

(9) 

a, = m(Ai) 
i-l 

l- Cm(&) 
j=l 

(10) 

For the case where the focuses of n simple certamty 
functions are identical, the combined certainty function 
is also a simple certainty function, as shown in Eq. (4). 
For this case, although a simple certainty function can 
be decomposed into several simple certainty functions 
on the same focus, the decomposition is not unique. 

In Eqs. (8) to (10) we have derived the decomposi- 
tion of three special types of separable certainty func- 
tions into simple certainty functions We now show a pro- 
cedure for decomposing any separable certainty function 
into two certainty functions: one simole ccrtaintv 
function and one separable certainty function. By 
repeatedly applying this procedure, one can decompose 
a given separable certainty function into a number of 
simple certainty functions. 

Lemma 5 

The Decomposition of a Separable Certainty Func- 
tion 

Let m be a separable certainty function with focal 
elements A,, -42, . . . , 4. Then m can be decomposed 
into m, and m2. That is, m = m,@mZ, where m, is a sim- 
ple certainty function focused on 4, and m2 is a separ- 
able certamty function. 

Choose 4 such that 4 c & ?A, is not true for all 
l(k,1<n,Let~bethefocusofm,.Let~beasubset 
oftheindexsetfl,2 ,..., i-l,i+l,..., njsuchthat 
j is in IC if and only if Aj f 4 niA, for some 
1, 1 = i, . , n. Assume that A3 ‘s, for all j EK, are focal 
elements of ms. Then using the rule of combination we 
have 

m(A)= 1- 
7-44) x m2(W 

c m&4 > x m&J, > 

and 

m(Aj) = i _ 
ml(@) x m23j) 

1 
z m&4) xm2tA,) 

4 afTAj=V 

for all j &KG. 

02) 

ml(A) + ml(O) = 1, (13) 
and 

xm2(AJ) + m2(0) = 1. w 
jcrc 

From Eqs. (11) through (i4), we can derive 

mm m(A) + mt@) -= 
md@) Cm(Aj) + m(@> 

(15) 
jcz 

Now, from Eqs. (11), (12), and (15) we have 

mlt4) m2w 44) -= -x - 

mz(Aj) mm m(Aj) 

for j s/c. 

(16) 
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Therefore, substituting Eq. (16) for ms in Eq. (14), 
we have 

ml(@) 
m&4) = mx x 

m(4) 
2 m(Aj) + m(O) 

jcc 

and 

Similarly, substituting Eq. (16) for m, in Eq. (13), we 
have 

m2W mz(Aj) = -X 
m(4) 

md@) m(Ai) + mt@> 
08) 

and 

m2w 
m*(o) = -x 

m(O) 
mm 44) + mt@> 

In the case where a certainty function is not separ- 
able, the two certainty functions can still be derived with 
Eqs. (17) and (18). However, their orthogonal sum will not 
be equal to the original certainty function. 

output spaces correspond to intermediate 
hypotheses, or decisions. The normalization that 
takes place at each stage eliminates the problem of 
rapidly diminishing in probabilities during propaga- 
tion in a Bayesian model. 

The Proposition that a mapping in a knowledge base 
defines a simple certainty function is to make the pro- 
cessing scheme tractable. However, the normalization 
that is based on Dempster’s rule of combination assumes 
the independence among mappings. To satisfy both 
requirements, the applicability of the knowledge pro- 
cessing scheme is limited to a small class of knowledge 
Our future work is to expand the representation to larger 
classes of belief functions, namely, separable support 
functions and support functions in Shafer’s definition. In 
the expanded scheme, dependent pieces of knowledge 
will be represented by one belief function. 
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