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Abstract 

Specialized languages are often a good choice for 
expressing a set of facts. However, many specialized 
languages are limited in their expressive power. This 
paper presents methods for determining when a set of 
facts is expressible in a language. Some specialized 
languages have the property that when some collec- 
tions of facts are stated explicitly, additional facts are 
stated implicitly. A set of facts should not be stated 
in such a language unless these implicit facts are cor- 
rect. This paper presents an algorithm for identifying 
implicit facts so that they can be checked for correct- 
ness. Criteria are also presented for choosing between 
languages that are sufficiently expressible for a set of 
facts. This research is being used to build a system 
that automatically determines when a specialized lan- 
guage is appropriate. It is also relevant to system de- 
signers who wish to use specialized languages. 

1. Introduction 

Specialized languages are used in everyday life as 
well as in the development of computer software. Com- 
mon examples include maps, geometry diagrams, and 
organization charts. General languages, such as predi- 
cate calculus, can express a broader range of facts than 
more specialized languages. However, specialized lan- 
guages have distinct advantages in efficiency, clarity, 
or parsimony for certain information. 

In an information presentation system [Zdybel 
811, it is desirable to use specialized languages for clear, 
succinct presentation of information to the user. When 
an information presentation system acts as the user in- 
terface for a representation system or database system, 
it is often expected to present arbitrary collections of 
information. In such circumstances, taking advantage 
‘This work was supported in part by grant NOOO14-K-0004 from 
the Office of Naval Research. 

of specialized languages requires that the presentation 
system be able to automatically determine when a spe- 
cialized language is appropriate. 

Many languages have the property that when 
some collections of facts are stated explicitly, addi- 
tional facts are stated implicitly. We call such lan- 
guages implicit languages. For example, in the fol- 
lowing diagram, the placement of the engine rectangle 
inside the car rectangle states that an engine is part of 
a car. Similarly, the placement of the piston rectangle 
inside the engine rectangle states that a piston is part 
of an engine. 

Car 

I 
“@%iil 

The diagram also states implicitly that a piston is part 
of a car because the piston rectangle is contained (in- 
directly) in the car rectangle. 

When choosing an implicit language to express 
facts, one must make sure that the implicit facts are 
correct. If the nesting of rectangles represents the re- 
lation “next to” instead of the relation “part of”, the 
following diagram states that Canada is next to the 
U.S.A. and the U.S.A. is next to Mexico: 

It also states implicitly that Canada is next to Mex- 
ico. Although the two explicit facts are correct, this 
implicit fact is not. Therefore, this rectangle language 
is inappropriate for expressing facts about the adja- 
cency of countries. 

This paper examines one component involved in 
the selection of a language: expressiveness. Section 2 
describes how messages and facts are related by the 
conventions of a language and when a fact is stated by 
a message. Section 3 specifies when a set of facts is 
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expressible in a language. Section 4 describes how to 
check implicit facts for correctness and presents some 
criteria for choosing between languages that are suffi- 
ciently expressive for a set of facts. 

2. Messages and Facts 

A message is an arrangement of the world in- 
tended to convey meaning. Stacks of children’s blocks 
on a table, puffs of smoke in the sky, and spots of ink 
on a page can all be messages. A language is a set of 
conventions that a speaker and hearer have for con- 
structing and interpreting messages.2 The process of 
understanding messages involves identifying them in 
the world and determining their meaning. Intuitively, 
the first step is the syntactic interpretation of the mes- 
sage; the second step is the semantic interpretation. 

We describe the world and the messages it con- 
tains with predicate calculus formulas. For exam- 
ple, the relation Inside can be used to describe the 
nesting of the rectangles in the first diagram in this 
paper. The formula Inside ([m, IEnffinel) de- 
scribes the nesting of two of the rectangles” 

We use predicate calculus because it is sufficiently 
expressive to describe interesting languages. Any for- 
malism with similar characteristics could have been 
used. The results in this paper do not depend in 
any direct way on this choice. Variables in predicate 
calculus formulas are written in lower case. All free 
variables are universally quantified. Quotes are used 
around predicate calculus formulas to represent them 
in propositions. 

2.1. Stating Facts in Messages 

A language relates facts and messages. For exam- 
ple, the fact PartOf (Piston,Engine) is paired with 
the message Inside (m, -1). Thus, a fact 
f is stated in a language L if the corresponding message 
m is satisfied by the world: 

Definition 1: Stated(f ,L) u Satisfied(m) .4 
2 This definition of L‘languageO is similar to Winograd’s: “a 

system intended to communicate ideas from a speaker to a 
hearer” [W inograd 711. 

3A rectangle around a symbol is used to denote the rectangle 
in a diagram that corresponds (given a language) to what that 
symbol represents. We use this specialized notation for clarity 
only; it can be replaced with a functional notation in accor- 
dance with predicate calculus syntax. 

4This definition is related in spirit to Pylyshyn’s [Pylyshyn 
751 Semantic Interpretation Function (SIF). He correctly observed 

Prereq(FundMTC,AdvDB) Qtr(FundCS,Fall) 
Prereq(FundCS,DB) Concur (DB, PL) 
Prereq(FundCS, PL) Qtr(PL,Winter) 
Prereq(DB,AdvDB) Concur(AIProg,AdvDB) 
Prereq(PL, OS) Concur (AdvDB, OS> 
Prereq(PL,Compiler) Concur (OS, Compiler) 
Concur(FundAI,FundMTC) Qtr(Compiler,Spring) 

Figure 1: Facts about Classes and Quarters 

When a language is defined so that a fact can be stated 
by more than one message, the formula m is a dis- 
junction of clauses describing the various possible mes- 
sages. 

Example: Stacks of blocks. A stack of children’s 
blocks can be used to express facts. Suppose that a 
speaker and hearer agree that the placement of block 
q  above block q  represents the fact NextTo (x, y> .s 
Call this language STACK. When block q  represents 
Canada and block q  represents the U.S. A., the fol- 
lowing stack states the fact NextTo (Canada, U. S . A. > : 

cl C 

cl U 

In predicate calculus, this message is described by 
Above (m, q  ) . 

In most languages the relationship between mes- 
sages and facts is fairly stylized; STACK is no exception. 
Schema (1) d escribes when facts are stated in STACK: 

Stated(“NextTo(x,y) I1 ,STACK) w 
Satisfied(“Above(m,B)“) 

0) 

Example: Layered tree. A diagram consisting of 
nodes and arcs can be used to express facts. Figure 1 
lists a set of facts that describe constraints on class 
scheduling and prerequisite relationships among sev- 
eral computer science classes. Prereq means that one 
class is a prerequisite for another, Concur means that 
two classes may be taken concurrently, and Qtr means 
that a class is given in a particular quarter. The dia- 
gram in Figure 2 is a message that states these facts 
in a layered tree language called LAYERTREE. 

that there are many possible interpretations for a collection of 
objects in the world. The particular interpretation depends on 
the SIF that is being used. However, our approach can be used 
in a computer system to reason about a language. 

5The placement of a square around a symbol is used to denote 
a children’s block. This notation is similar to the rectangle 
notion introduced earlier. 
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The messages for this language can be de- 
scribed with three predicates: Connected (x, y) , Same- 
Layer(x,y) and HorzLabel(x,y). Connected(x,y) 
means that node x is connected to node y, Same- 
Layer (x, y) means that x and y are on the same layer 
of the diagram, and HorzLabel (x, y) means that y la- 
bels the layer that contains x. The following schema 
describes how LAYERTREE facts are stated: 

Stated(“Prereq(x,y)“,LAYERTREE) e 
Satisfied(“Connected([x,ml)“) 

Stated(“Concur(x, y) ” ,LAYERTREE) _ 
Satisfied(“SameLayer(~,~I)“) 

/3\ 
\&J 

Stated(“Qtr(x,y) “, LAYERTREE) c 
Satisfied(“HorzLabel(m,Name(y))“) 

Example: Predicate calculus. Strings displayed on 
a terminal can be used to express facts. The language 
PC (for Predicate Calculus) is an example. If the func- 
tion Wf f maps well-formed formulas to strings that 
represent them, the following schema describes when 
sentences in PC are stated: 

Stated(f ,PC) a 
Satisf ied(“OnTermina1 (Wf f (f )) “) 

Example: The world. The world can be used 
as a language. If WORLD denotes this language, 
Stated(f ,WORLD) - Satisfied(f) describes when 
facts are stated in this language. 

2.2. Constraints on Messages 

The physical properties of the world constrain 
the messages of a given language. For example, it is 
not possible for two blocks to be mutually above each 
other. The predicates that are used to describe mes- 
sages can also be used to construct formal descriptions 
of these constraints. 

Example: Stacks of blocks. The axioms in (3) de- 
scribe the relation Above among blocks. The first three 

axioms are anti-reflexivity, anti-symmetry, and transi- 
tivity. The last two axioms state that a block is not 
above another unless it is directly overhead. Thus, 
if two blocks are in the same stack because they are 
above (or below) a block, one must be above (or below) 
the other. 

1 Above(m, q  ) 
Above(m,m) + lAbove(a,l) 
CAbove(lliJ,IYl)Above([,~)] + 

Above(m, q  ) 
[Above <m, q  ) A Above (lifJ, 

[Above <m, q  ) V Above 
[Above(m, q  >A Above(m, 

[Above (m, q  ) V Above 

(3) 

=5 

Example: Layered tree diagrams. The axioms in 
(4) describe the predicates SameLayer and Connected. 
SameLayer is symmetric and transitive. Connected is 
transitive. HorzLabel is unconstrained. 

SameLayer (PI, IyI) * SameLayer (lyI, PI) 
CSameLayer(m,(YI)A SameLayer(m,],I)] + 

SameLayer([x, lzl> 
[Connected(l~,~~)AConnected([~I,~])] =+ 

Connected(m,El) 
(4 

3. Expressiveness 

A fact f is expressible in a language L if it is con- 
sistent with the world for f to be stated in L. Two 
complications arise when extending this definition to 
stating sets of facts. First, it might be impossible to 
state two facts simultaneously in L. Second, every mes- 
sage that states all the facts might also state additional 
incorrect facts. Therefore, we say that a set of facts F 
is expressible in L if exactly those facts (and no more) 
can be stated simultaneously in L: 

Fall 

Winter 

Spring 

Figure 2: Prerequisite and Class Schedule in LAYERTREE 
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Definition 2: Expressible (F, L) e 

Consistent([VfEF Stated(f ,L)lA 
[Vf@F lStated(f ,L)]) 

The first clause in Definition 2 might not be sat- 
isfied for three reasons: there is no message in the lan- 
guage that corresponds to one of the facts, the message 
that corresponds to one of the facts cannot be stated 
in the world, and two of the messages cannot be stated 
simultaneously because they conflict with each other. 

Example: No message. A fact is not expressible in 
a language when there is no message to represent that 
fact. For example, {p V q} is not expressible in STACK 
because there is no convention in STACK for represent- 
ing disjunctions with a stack of blocks. This means 
that Stated (“p V q” , STACK) is false. 

Example: Message not possible. Sometimes the 
message that represents a fact cannot be achieved. For 
example, Stated(“NextTo(Canada, Canada) II, STACK) 
is equivalent to Above (m, q  ) , and the Above relation 
is anti-reflexive. 

Example: Messages conflict. Sometimes two 
or more facts cannot be stated simultaneously be- 
cause their messages conflict. For example, it is im- 
possible to state both NextTo (Canada, U. S . A. ) and 
NextTo (U. S . A. , Canada) in STACK because the Above 
relation is anti-symmetric. 

For some languages, the only messages that state 
certain sets of facts also state additional facts implic- 
itly. These additional facts are the implicit facts in the 
message. The second clause in Definition 2 excludes 
implicit facts because they might be incorrect. How- 
ever, in some cases these implicit facts are correct. In 
Section 4 we present an algorithm that can be used to 
identify these implicit facts so that they can be checked 
for correctness. 

Example: Implicit facts-incorrect. When block 
q  represents Mexico, the following stack states the set 
{NextTo(Canada,U. S.A. ) , NextTo(U. S.A. ,Mexico)}. 
The incorrect fact NextTo (Canada, Mexico) is also 
stated implicitly because block q  is above block q  . 

Cl C 

cl U 

0 M 

Example: Implicit facts-correct. The facts about 
classes and quarters listed in Figure 1 are not express- 

ible in LAYERTREE because the diagram in Figure 2 in- 
cludes many implicit facts. These implicit facts, listed 
in Figure 3, are correct. Furthermore, these additional 
facts would be useful to someone being presented the 
original facts. 

Definition 2 is the basis of an algorithm that de- 
termines whether a given collection of facts is express- 
ible in a language. Given a set of facts, assume that 
these facts are stated and all other facts are not stated. 
The facts will be expressible if these assumptions are 
consistent with a description of the world. An auto- 
matic deduction technique such as resolution is used 
to determine if these assumptions and the axioms de- 
scribing the world are consistent. Although there is no 
guarantee that the deduction will terminate, transitive 
axioms and other recursive axioms can be handled us- 
ing techniques described in [Smith 841. In general, a 
depth limit can be used to force termination. 

Example: Expressibility algorithm. The proof in 
Figure 4 shows that the set {Prereq(FundCS ,DB) , 
Prereq(DB,AdvDB)} is not expressible in LAYERTREE. 
The transitive axiom for the relation Connected in (4) 
is combined with the two positive assumptions to con- 
clude that [FundCSl is connected to -1. However, 
the negative assumption that PreReq(FundCS ,AdvDB) 
is not stated leads to a contradiction. 

4. Choosing a Language 

Expressibility (Definition 2) can be used as a cri- 
terion for choosing a language in which to state a given 
collection of facts: a language should not be used if the 
facts are not expressible in that language. 

Prereq(FundCS,AdvDB) Qtr (FundAI , Fall) 
Prereq(FundCS,OS) Qtr (FundMTC, Fall) 
Prereq(FundCS,Compiler) Qtr(DB,Winter) 
Concur(FundAI,FundCS) Qtr (AIProg , Spring) 
Concur (AIProg , OS) Qtr (AdvDB, Spring) 
Concur(AIProg,Compiler) Qtr(OS,Spring) 
Concur(AdvDB,Compiler) Concur(FundMTC,FundAI) 
Concur(FundCS,FundAI) Concur(FundCS,FundMTC) 
Concur (OS, AIProg) Concur(AdvDB,AIProg) 
Concur(Compiler,AdvDB) Concur(PL,DB) 
Concur(Compiler,AdvDB) Concur(OS,AdvDB) 

Concur (Compiler, OS) 

Figure 3: Implicit Facts of Figure 2 
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Assumptions 
a. Stated(“PreReq(FundCS ,DB) I1 ,LAYERTREE) 
b. Stated(llPreReq(DB,AdvDB) ‘I ,LAYERTREE) 
c. lStated(llPreReq(FundCS,AdvDB)“,LAYERTREE) 

Proof 
d. Co~ected(lEiiZEj,~lI) a, (2) 
e. Connected(~,I,IAdvDB b? (2) 
f. [Connected(~,~I)~Connected(~,~I)I + 

Connected(m, El) (4) 
g. Connected(lFundCS, -1) d,e,f 
h. lComected([FundCS,~Jl) c, (2) 
i. Contradiction f, h 

Figure 4: Proof that a Set Is Inexpressible 

In this section we address two problems with this 
criterion. First, Definition 2 excludes languages in 
which messages state additional facts. As the class 
scheduling example suggests, this restriction can be 
relaxed when the additional facts are correct. This is 
particularly relevant for implicit languages, in which 
the additional facts are stated without any additional 
cost. Second, this criterion does not indicate how to 
choose between two languages that are sufficiently ex- 
pressible for a set of facts. 

4. I. Using Implicit Languages 

Due to the implicit properties of a language, it is 
often necessary to state more facts than are desired. 
An implicit closure F* for a set of facts F is a minimal 
expressible set of facts that contains F. The set differ- 
ence F*-F describes the implicit facts that are stated 
when F* is used to state F. If all the implicit facts are 
correct, the implicit language can be used to state F. 

Definition 3 shows the relation ImpCl between a 
set of facts F and an implicit closure P . If F is ex- 
pressible, it is its own implicit closure. 

Definition 3: VF,F*ImpCl(F,F* ,L) w 
FCF*A Expressible (F* , L) A 

1 [3X FcXCF*A Expressible(X, L)] 
Note that ImpCl may not be a function. For exam- 

ple, there are two implicit closures in STACK for the set 
{NextTo(Canada,U.S.A.),NextTo(Canada,Mexico)}. 
The following stacks describe these two messages: 

cl C Cl C 

cl U cl M 

cl M cl U 

The first states the implicit fact NextTo (U. S. A. , 
Mexico), while the second states NextTo (Mexico, 
U.S.A.). 

An algorithm for generating the implicit closures 
is produced by modifying the algorithm used in the 
last section to determine if a set of facts is expressible. 
In that algorithm, we assumed that the facts in the 
set were stated and all the other facts were not stated. 
However, the negative assumption does not hold for 
implicit facts. When a contradiction is derived while 
trying to prove that a set of facts is expressible, we 
can reverse any negative assumption that was used 
in the derivation by making the corresponding fact 
an implicit fact. This will invalidate that particular 
derivation. When every contradiction is invalidated 
by placing a fact in the implicit closure, the implicit 
closure is guaranteed to be expressible because it is 
consistent with the world. If there is more than one 
negative assumption that can be reversed to invalidate 
a contradiction, the alternatives generate different im- 
plicit closures. If there are no negative assumptions to 
be reversed, the set of facts is not expressible. 

Example: Generating an implicit closure. The 
proof in Figure 4 can be used to generate the implicit 
closure of {Prereq(FundCS, DB) , Prereq(DB, AdvDB)}. 
Since we used ~Stated(l~Prereq(FundCS,AdvDB)ll, 
LAYERTREE) to derive the contradiction, the implicit 
closure is the set {Prereq(FundCS, DB) , Prereq(DB, 
AdvDB) , Prereq(FundCS, AdvDB)}. 

4.2. Choosing Between Languages 

There are many criteria for choosing between lan- 
guages that are sufficiently expressive for a set of facts. 
For example, one presentation might be more desirable 
than another because it is: 

0 smaller 

l easier to draw 

l in the expected style 

0 more pleasing 

l more dramatic 
Developing a precise criterion from each of these ex- 
amples is beyond the scope of this paper. However, 
the concepts developed in this paper can be used to 
suggest how an information presentation system might 
choose among languages. 

We first consider a criterion based on the cost of 
constructing messages, and then we consider one based 
on the cost of perceiving messages. Note that the first 
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two examples in the previous list focus on the con- 
struction cost, while the rest focus on the perception 
cost. 

The cost of constructing a message is equivalent 
to the cost of stating the corresponding facts. Under 
the criterion of construction cost, implicit languages 
are preferred over other languages because the implicit 
facts are stated without additional cost. The implicit 
kernel for a set of facts is the smallest subset that can 
be stated so that its implicit closure contains all of 
the facts. The cost of stating a set of facts is the cost 
of stating the facts in its implicit kernel. Definition 4 
shows the relation ImpKer between a set of facts F and 
its implicit kernel K. 

Definition 4: VF,K; ImpKer(F,K,L) c 
KCFcK*A 1 [3X XCK A FsX*] 
Example: Comparing layered trees and trees with 

labeled arcs. The language ARCTREE, which is based on 
labeled arcs, is an alternative to the LAYERTREE lan- 
guage for expressing the facts listed in Figures 1 and 3. 
The diagram in Figure 5 shows how these facts are 
stated in ARCTREE. . 

The following schema describes when facts are 
stated in ARCTREE. The predicate LabArc (n, m, 1) 
means that node n is connected to node m by a se- 
quence of arcs that have label 1. 

Stated(llPrereq(x,y)ll ,ARCTREE) w 
Satisfied(llLabArc([x,~],PreReq)ll) 

Stated ( I1 Concur (x, y) I’ , ARCTREE) u 
Satisfied(‘lLabArc((x(,(Y],Concur)ll) (5) 

Stated(“Qtr(x,y)” ,ARCTREE) c 
Satisfied(llLabArc(~,IY],Qtr)ll) 

LabArc satisfies the following transitivity axiom: 

[LabArc(~,~,l)ALabArc(~,~~,l)] + 
LabArc (1x1, p]. 1) 

Recall that Figure 3 lists the implicit facts in the 
LAYERTREE diagram (Figure 2) of the facts listed in 
Figure 1. The facts on the left side of Figure 3 are 
the implicit facts in the ARCTREE diagram. The facts 
listed on the right side are stated explicitly in Figure 5 
by the arcs drawn between class nodes and quarter 
nodes, and by the arrowheads on the left side of the 
concurrent arcs. Therefore, the ARCTREE implicit ker- 
nel is larger than the LAYERTREE kernel. Since both 
languages are tree languages, it is reasonable to as- 
sume that the cost of stating facts in them is identical. 
Thus the LAYERTREE language is more economical. 

The cost of perceiving messages can also be used 
as a criterion for choosing between languages. The cost 
of perceiving messages in the world depends on the 
nature of the messages. The LAYERTREE and ARCTREE 
diagrams are described with different predicates. Be- 
cause a person looking at these diagrams must ascer- 
tain that these predicates are true, the cost of perceiv- 
ing facts in these diagrams is directly proportional to 
the cost of determining the truth value of these pred- 
icates. By inspection, it is clear that the predicate 
LabArc is more difficult to perceive than Connected, 
SameLayer, or HorzLabel because the label must be 
read. This means that the cost of perceiving facts in 
the LAYERTREE diagram is lower than the cost of per- 
ceiving the same facts in the ARCTREE diagram. 

5. Related Work 

Genesereth has proposed a representation system 
that allows and even encourages the use of multi- 
ple specialized representation languages [Genesereth 
801. Any criterion for choosing presentation languages 
can also be used to evaluate specialized representation 
languages. Implicit languages, in particular, are de- 
sirable representation languages because the implicit 
facts need not be stated explicitly. 

Implicit languages are related to the intuitive con- 

Figure 5 : Prerequisite and Class Schedule in ARCTREE 
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cept of direct or analogical representations [Barr 811. 
An analogical representation, such as a map, has a 
structure that directly reflects the world it represents. 
Sloman has argued for the importance of analogical 
representations, which he contrasts with ‘LFregean” 
represent at ions like predicate calculus [Sloman 7 I]. 
His definition of analogical representation consists of 
an informal collection of examples and a philosophi- 
cal discussion. We believe that Sloman is incorrect 
in asserting that analogical representations are dra- 
matically different from the more formal representa- 
tions used in artificial intelligence. Critiquing Sloman, 
Hayes has argued for the unity of analogical represen- 
tations and formal logic languages [Hayes 741. This 
paper is a step toward this unity. 

Implicit languages have been used in the design of 
many software systems. One of the earliest uses of an 
implicit language was Gelernter’s Geometry-Theorem 
Proving Machine [Gelernter 631. It used a diagram of 
the problem to help control the search for a proof. The 
diagram implicitly stated many common facts about 
geometry. Of course, Gelernter had to be careful that 
the diagram did not state incorrect facts: 

“If a calculated effort is made to 
avoid spurious coincidences in the 
figure, one is usually safe in gener- 
alizing any statement in the formal 
system that correctly describes the 
diagram.” 

6. Conclusion 

This paper has presented a collection of axioms 
for describing the expressiveness of languages. These 
axioms can be used to compute whether a given set 
of facts is expressible in a language. The paper has 
also extended these results to implicit languages, in 
which additional facts may be stated implicitly, in- 
cluding an algorithm for generating implicit closures. 
Finally, the paper has discussed ways to use these ax- 
ioms to choose a language in which to express some 
facts. This research is currently being used to con- 
struct an information presentation system that can au- 
tomatically choose specialized languages for presenting 
information [Mackinlay 831. 
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