
Expressiveness of Languages1
Jock Mackinlay

Michael R. Genesereth

Computer Science Department
St anford University
Stanford, California 94305

Abstract

Specialized languages are often a good choice for
expressing a set of facts. However, many specialized
languages are limited in their expressive power. This
paper presents methods for determining when a set of
facts is expressible in a language. Some specialized
languages have the property that when some collec-
tions of facts are stated explicitly, additional facts are
stated implicitly. A set of facts should not be stated
in such a language unless these implicit facts are cor-
rect. This paper presents an algorithm for identifying
implicit facts so that they can be checked for correct-
ness. Criteria are also presented for choosing between
languages that are sufficiently expressible for a set of
facts. This research is being used to build a system
that automatically determines when a specialized lan-
guage is appropriate. It is also relevant to system de-
signers who wish to use specialized languages.

1. Introduction

Specialized languages are used in everyday life as
well as in the development of computer software. Com-
mon examples include maps, geometry diagrams, and
organization charts. General languages, such as predi-
cate calculus, can express a broader range of facts than
more specialized languages. However, specialized lan-
guages have distinct advantages in efficiency, clarity,
or parsimony for certain information.

In an information presentation system [Zdybel
811, it is desirable to use specialized languages for clear,
succinct presentation of information to the user. When
an information presentation system acts as the user in-
terface for a representation system or database system,
it is often expected to present arbitrary collections of
information. In such circumstances, taking advantage
‘This work was supported in part by grant NOOO14-K-0004 from
the Office of Naval Research.

of specialized languages requires that the presentation
system be able to automatically determine when a spe-
cialized language is appropriate.

Many languages have the property that when
some collections of facts are stated explicitly, addi-
tional facts are stated implicitly. We call such lan-
guages implicit languages. For example, in the fol-
lowing diagram, the placement of the engine rectangle
inside the car rectangle states that an engine is part of
a car. Similarly, the placement of the piston rectangle
inside the engine rectangle states that a piston is part
of an engine.

Car

I
“@%iil

The diagram also states implicitly that a piston is part
of a car because the piston rectangle is contained (in-
directly) in the car rectangle.

When choosing an implicit language to express
facts, one must make sure that the implicit facts are
correct. If the nesting of rectangles represents the re-
lation “next to” instead of the relation “part of”, the
following diagram states that Canada is next to the
U.S.A. and the U.S.A. is next to Mexico:

It also states implicitly that Canada is next to Mex-
ico. Although the two explicit facts are correct, this
implicit fact is not. Therefore, this rectangle language
is inappropriate for expressing facts about the adja-
cency of countries.

This paper examines one component involved in
the selection of a language: expressiveness. Section 2
describes how messages and facts are related by the
conventions of a language and when a fact is stated by
a message. Section 3 specifies when a set of facts is

226

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

expressible in a language. Section 4 describes how to
check implicit facts for correctness and presents some
criteria for choosing between languages that are suffi-
ciently expressive for a set of facts.

2. Messages and Facts

A message is an arrangement of the world in-
tended to convey meaning. Stacks of children’s blocks
on a table, puffs of smoke in the sky, and spots of ink
on a page can all be messages. A language is a set of
conventions that a speaker and hearer have for con-
structing and interpreting messages.2 The process of
understanding messages involves identifying them in
the world and determining their meaning. Intuitively,
the first step is the syntactic interpretation of the mes-
sage; the second step is the semantic interpretation.

We describe the world and the messages it con-
tains with predicate calculus formulas. For exam-
ple, the relation Inside can be used to describe the
nesting of the rectangles in the first diagram in this
paper. The formula Inside ([m, IEnffinel) de-
scribes the nesting of two of the rectangles”

We use predicate calculus because it is sufficiently
expressive to describe interesting languages. Any for-
malism with similar characteristics could have been
used. The results in this paper do not depend in
any direct way on this choice. Variables in predicate
calculus formulas are written in lower case. All free
variables are universally quantified. Quotes are used
around predicate calculus formulas to represent them
in propositions.

2.1. Stating Facts in Messages

A language relates facts and messages. For exam-
ple, the fact PartOf (Piston,Engine) is paired with
the message Inside (m, -1). Thus, a fact
f is stated in a language L if the corresponding message
m is satisfied by the world:

Definition 1: Stated(f ,L) u Satisfied(m) .4
2 This definition of L‘languageO is similar to Winograd’s: “a

system intended to communicate ideas from a speaker to a
hearer” [W inograd 711.

3A rectangle around a symbol is used to denote the rectangle
in a diagram that corresponds (given a language) to what that
symbol represents. We use this specialized notation for clarity
only; it can be replaced with a functional notation in accor-
dance with predicate calculus syntax.

4This definition is related in spirit to Pylyshyn’s [Pylyshyn
751 Semantic Interpretation Function (SIF). He correctly observed

Prereq(FundMTC,AdvDB) Qtr(FundCS,Fall)
Prereq(FundCS,DB) Concur (DB, PL)
Prereq(FundCS, PL) Qtr(PL,Winter)
Prereq(DB,AdvDB) Concur(AIProg,AdvDB)
Prereq(PL, OS) Concur (AdvDB, OS>
Prereq(PL,Compiler) Concur (OS, Compiler)
Concur(FundAI,FundMTC) Qtr(Compiler,Spring)

Figure 1: Facts about Classes and Quarters

When a language is defined so that a fact can be stated
by more than one message, the formula m is a dis-
junction of clauses describing the various possible mes-
sages.

Example: Stacks of blocks. A stack of children’s
blocks can be used to express facts. Suppose that a
speaker and hearer agree that the placement of block
q above block q represents the fact NextTo (x, y> .s
Call this language STACK. When block q represents
Canada and block q represents the U.S. A., the fol-
lowing stack states the fact NextTo (Canada, U. S . A. > :

cl C

cl U

In predicate calculus, this message is described by
Above (m, q) .

In most languages the relationship between mes-
sages and facts is fairly stylized; STACK is no exception.
Schema (1) d escribes when facts are stated in STACK:

Stated(“NextTo(x,y) I1 ,STACK) w
Satisfied(“Above(m,B)“)

0)

Example: Layered tree. A diagram consisting of
nodes and arcs can be used to express facts. Figure 1
lists a set of facts that describe constraints on class
scheduling and prerequisite relationships among sev-
eral computer science classes. Prereq means that one
class is a prerequisite for another, Concur means that
two classes may be taken concurrently, and Qtr means
that a class is given in a particular quarter. The dia-
gram in Figure 2 is a message that states these facts
in a layered tree language called LAYERTREE.

that there are many possible interpretations for a collection of
objects in the world. The particular interpretation depends on
the SIF that is being used. However, our approach can be used
in a computer system to reason about a language.

5The placement of a square around a symbol is used to denote
a children’s block. This notation is similar to the rectangle
notion introduced earlier.

227

The messages for this language can be de-
scribed with three predicates: Connected (x, y) , Same-
Layer(x,y) and HorzLabel(x,y). Connected(x,y)
means that node x is connected to node y, Same-
Layer (x, y) means that x and y are on the same layer
of the diagram, and HorzLabel (x, y) means that y la-
bels the layer that contains x. The following schema
describes how LAYERTREE facts are stated:

Stated(“Prereq(x,y)“,LAYERTREE) e
Satisfied(“Connected([x,ml)“)

Stated(“Concur(x, y) ” ,LAYERTREE) _
Satisfied(“SameLayer(~,~I)“)

/3\
\&J

Stated(“Qtr(x,y) “, LAYERTREE) c
Satisfied(“HorzLabel(m,Name(y))“)

Example: Predicate calculus. Strings displayed on
a terminal can be used to express facts. The language
PC (for Predicate Calculus) is an example. If the func-
tion Wf f maps well-formed formulas to strings that
represent them, the following schema describes when
sentences in PC are stated:

Stated(f ,PC) a
Satisf ied(“OnTermina1 (Wf f (f)) “)

Example: The world. The world can be used
as a language. If WORLD denotes this language,
Stated(f ,WORLD) - Satisfied(f) describes when
facts are stated in this language.

2.2. Constraints on Messages

The physical properties of the world constrain
the messages of a given language. For example, it is
not possible for two blocks to be mutually above each
other. The predicates that are used to describe mes-
sages can also be used to construct formal descriptions
of these constraints.

Example: Stacks of blocks. The axioms in (3) de-
scribe the relation Above among blocks. The first three

axioms are anti-reflexivity, anti-symmetry, and transi-
tivity. The last two axioms state that a block is not
above another unless it is directly overhead. Thus,
if two blocks are in the same stack because they are
above (or below) a block, one must be above (or below)
the other.

1 Above(m, q)
Above(m,m) + lAbove(a,l)
CAbove(lliJ,IYl)Above([,~)] +

Above(m, q)
[Above <m, q) A Above (lifJ,

[Above <m, q) V Above
[Above(m, q >A Above(m,

[Above (m, q) V Above

(3)

=5

Example: Layered tree diagrams. The axioms in
(4) describe the predicates SameLayer and Connected.
SameLayer is symmetric and transitive. Connected is
transitive. HorzLabel is unconstrained.

SameLayer (PI, IyI) * SameLayer (lyI, PI)
CSameLayer(m,(YI)A SameLayer(m,],I)] +

SameLayer([x, lzl>
[Connected(l~,~~)AConnected([~I,~])] =+

Connected(m,El)
(4

3. Expressiveness

A fact f is expressible in a language L if it is con-
sistent with the world for f to be stated in L. Two
complications arise when extending this definition to
stating sets of facts. First, it might be impossible to
state two facts simultaneously in L. Second, every mes-
sage that states all the facts might also state additional
incorrect facts. Therefore, we say that a set of facts F
is expressible in L if exactly those facts (and no more)
can be stated simultaneously in L:

Fall

Winter

Spring

Figure 2: Prerequisite and Class Schedule in LAYERTREE

228

Definition 2: Expressible (F, L) e

Consistent([VfEF Stated(f ,L)lA
[Vf@F lStated(f ,L)])

The first clause in Definition 2 might not be sat-
isfied for three reasons: there is no message in the lan-
guage that corresponds to one of the facts, the message
that corresponds to one of the facts cannot be stated
in the world, and two of the messages cannot be stated
simultaneously because they conflict with each other.

Example: No message. A fact is not expressible in
a language when there is no message to represent that
fact. For example, {p V q} is not expressible in STACK
because there is no convention in STACK for represent-
ing disjunctions with a stack of blocks. This means
that Stated (“p V q” , STACK) is false.

Example: Message not possible. Sometimes the
message that represents a fact cannot be achieved. For
example, Stated(“NextTo(Canada, Canada) II, STACK)
is equivalent to Above (m, q) , and the Above relation
is anti-reflexive.

Example: Messages conflict. Sometimes two
or more facts cannot be stated simultaneously be-
cause their messages conflict. For example, it is im-
possible to state both NextTo (Canada, U. S . A.) and
NextTo (U. S . A. , Canada) in STACK because the Above
relation is anti-symmetric.

For some languages, the only messages that state
certain sets of facts also state additional facts implic-
itly. These additional facts are the implicit facts in the
message. The second clause in Definition 2 excludes
implicit facts because they might be incorrect. How-
ever, in some cases these implicit facts are correct. In
Section 4 we present an algorithm that can be used to
identify these implicit facts so that they can be checked
for correctness.

Example: Implicit facts-incorrect. When block
q represents Mexico, the following stack states the set
{NextTo(Canada,U. S.A.) , NextTo(U. S.A. ,Mexico)}.
The incorrect fact NextTo (Canada, Mexico) is also
stated implicitly because block q is above block q .

Cl C

cl U

0 M

Example: Implicit facts-correct. The facts about
classes and quarters listed in Figure 1 are not express-

ible in LAYERTREE because the diagram in Figure 2 in-
cludes many implicit facts. These implicit facts, listed
in Figure 3, are correct. Furthermore, these additional
facts would be useful to someone being presented the
original facts.

Definition 2 is the basis of an algorithm that de-
termines whether a given collection of facts is express-
ible in a language. Given a set of facts, assume that
these facts are stated and all other facts are not stated.
The facts will be expressible if these assumptions are
consistent with a description of the world. An auto-
matic deduction technique such as resolution is used
to determine if these assumptions and the axioms de-
scribing the world are consistent. Although there is no
guarantee that the deduction will terminate, transitive
axioms and other recursive axioms can be handled us-
ing techniques described in [Smith 841. In general, a
depth limit can be used to force termination.

Example: Expressibility algorithm. The proof in
Figure 4 shows that the set {Prereq(FundCS ,DB) ,
Prereq(DB,AdvDB)} is not expressible in LAYERTREE.
The transitive axiom for the relation Connected in (4)
is combined with the two positive assumptions to con-
clude that [FundCSl is connected to -1. However,
the negative assumption that PreReq(FundCS ,AdvDB)
is not stated leads to a contradiction.

4. Choosing a Language

Expressibility (Definition 2) can be used as a cri-
terion for choosing a language in which to state a given
collection of facts: a language should not be used if the
facts are not expressible in that language.

Prereq(FundCS,AdvDB) Qtr (FundAI , Fall)
Prereq(FundCS,OS) Qtr (FundMTC, Fall)
Prereq(FundCS,Compiler) Qtr(DB,Winter)
Concur(FundAI,FundCS) Qtr (AIProg , Spring)
Concur (AIProg , OS) Qtr (AdvDB, Spring)
Concur(AIProg,Compiler) Qtr(OS,Spring)
Concur(AdvDB,Compiler) Concur(FundMTC,FundAI)
Concur(FundCS,FundAI) Concur(FundCS,FundMTC)
Concur (OS, AIProg) Concur(AdvDB,AIProg)
Concur(Compiler,AdvDB) Concur(PL,DB)
Concur(Compiler,AdvDB) Concur(OS,AdvDB)

Concur (Compiler, OS)

Figure 3: Implicit Facts of Figure 2

229

Assumptions
a. Stated(“PreReq(FundCS ,DB) I1 ,LAYERTREE)
b. Stated(llPreReq(DB,AdvDB) ‘I ,LAYERTREE)
c. lStated(llPreReq(FundCS,AdvDB)“,LAYERTREE)

Proof
d. Co~ected(lEiiZEj,~lI) a, (2)
e. Connected(~,I,IAdvDB b? (2)
f. [Connected(~,~I)~Connected(~,~I)I +

Connected(m, El) (4)
g. Connected(lFundCS, -1) d,e,f
h. lComected([FundCS,~Jl) c, (2)
i. Contradiction f, h

Figure 4: Proof that a Set Is Inexpressible

In this section we address two problems with this
criterion. First, Definition 2 excludes languages in
which messages state additional facts. As the class
scheduling example suggests, this restriction can be
relaxed when the additional facts are correct. This is
particularly relevant for implicit languages, in which
the additional facts are stated without any additional
cost. Second, this criterion does not indicate how to
choose between two languages that are sufficiently ex-
pressible for a set of facts.

4. I. Using Implicit Languages

Due to the implicit properties of a language, it is
often necessary to state more facts than are desired.
An implicit closure F* for a set of facts F is a minimal
expressible set of facts that contains F. The set differ-
ence F*-F describes the implicit facts that are stated
when F* is used to state F. If all the implicit facts are
correct, the implicit language can be used to state F.

Definition 3 shows the relation ImpCl between a
set of facts F and an implicit closure P . If F is ex-
pressible, it is its own implicit closure.

Definition 3: VF,F*ImpCl(F,F* ,L) w
FCF*A Expressible (F* , L) A

1 [3X FcXCF*A Expressible(X, L)]
Note that ImpCl may not be a function. For exam-

ple, there are two implicit closures in STACK for the set
{NextTo(Canada,U.S.A.),NextTo(Canada,Mexico)}.
The following stacks describe these two messages:

cl C Cl C

cl U cl M

cl M cl U

The first states the implicit fact NextTo (U. S. A. ,
Mexico), while the second states NextTo (Mexico,
U.S.A.).

An algorithm for generating the implicit closures
is produced by modifying the algorithm used in the
last section to determine if a set of facts is expressible.
In that algorithm, we assumed that the facts in the
set were stated and all the other facts were not stated.
However, the negative assumption does not hold for
implicit facts. When a contradiction is derived while
trying to prove that a set of facts is expressible, we
can reverse any negative assumption that was used
in the derivation by making the corresponding fact
an implicit fact. This will invalidate that particular
derivation. When every contradiction is invalidated
by placing a fact in the implicit closure, the implicit
closure is guaranteed to be expressible because it is
consistent with the world. If there is more than one
negative assumption that can be reversed to invalidate
a contradiction, the alternatives generate different im-
plicit closures. If there are no negative assumptions to
be reversed, the set of facts is not expressible.

Example: Generating an implicit closure. The
proof in Figure 4 can be used to generate the implicit
closure of {Prereq(FundCS, DB) , Prereq(DB, AdvDB)}.
Since we used ~Stated(l~Prereq(FundCS,AdvDB)ll,
LAYERTREE) to derive the contradiction, the implicit
closure is the set {Prereq(FundCS, DB) , Prereq(DB,
AdvDB) , Prereq(FundCS, AdvDB)}.

4.2. Choosing Between Languages

There are many criteria for choosing between lan-
guages that are sufficiently expressive for a set of facts.
For example, one presentation might be more desirable
than another because it is:

0 smaller

l easier to draw

l in the expected style

0 more pleasing

l more dramatic
Developing a precise criterion from each of these ex-
amples is beyond the scope of this paper. However,
the concepts developed in this paper can be used to
suggest how an information presentation system might
choose among languages.

We first consider a criterion based on the cost of
constructing messages, and then we consider one based
on the cost of perceiving messages. Note that the first

230

two examples in the previous list focus on the con-
struction cost, while the rest focus on the perception
cost.

The cost of constructing a message is equivalent
to the cost of stating the corresponding facts. Under
the criterion of construction cost, implicit languages
are preferred over other languages because the implicit
facts are stated without additional cost. The implicit
kernel for a set of facts is the smallest subset that can
be stated so that its implicit closure contains all of
the facts. The cost of stating a set of facts is the cost
of stating the facts in its implicit kernel. Definition 4
shows the relation ImpKer between a set of facts F and
its implicit kernel K.

Definition 4: VF,K; ImpKer(F,K,L) c
KCFcK*A 1 [3X XCK A FsX*]
Example: Comparing layered trees and trees with

labeled arcs. The language ARCTREE, which is based on
labeled arcs, is an alternative to the LAYERTREE lan-
guage for expressing the facts listed in Figures 1 and 3.
The diagram in Figure 5 shows how these facts are
stated in ARCTREE. .

The following schema describes when facts are
stated in ARCTREE. The predicate LabArc (n, m, 1)
means that node n is connected to node m by a se-
quence of arcs that have label 1.

Stated(llPrereq(x,y)ll ,ARCTREE) w
Satisfied(llLabArc([x,~],PreReq)ll)

Stated (I1 Concur (x, y) I’ , ARCTREE) u
Satisfied(‘lLabArc((x(,(Y],Concur)ll) (5)

Stated(“Qtr(x,y)” ,ARCTREE) c
Satisfied(llLabArc(~,IY],Qtr)ll)

LabArc satisfies the following transitivity axiom:

[LabArc(~,~,l)ALabArc(~,~~,l)] +
LabArc (1x1, p]. 1)

Recall that Figure 3 lists the implicit facts in the
LAYERTREE diagram (Figure 2) of the facts listed in
Figure 1. The facts on the left side of Figure 3 are
the implicit facts in the ARCTREE diagram. The facts
listed on the right side are stated explicitly in Figure 5
by the arcs drawn between class nodes and quarter
nodes, and by the arrowheads on the left side of the
concurrent arcs. Therefore, the ARCTREE implicit ker-
nel is larger than the LAYERTREE kernel. Since both
languages are tree languages, it is reasonable to as-
sume that the cost of stating facts in them is identical.
Thus the LAYERTREE language is more economical.

The cost of perceiving messages can also be used
as a criterion for choosing between languages. The cost
of perceiving messages in the world depends on the
nature of the messages. The LAYERTREE and ARCTREE
diagrams are described with different predicates. Be-
cause a person looking at these diagrams must ascer-
tain that these predicates are true, the cost of perceiv-
ing facts in these diagrams is directly proportional to
the cost of determining the truth value of these pred-
icates. By inspection, it is clear that the predicate
LabArc is more difficult to perceive than Connected,
SameLayer, or HorzLabel because the label must be
read. This means that the cost of perceiving facts in
the LAYERTREE diagram is lower than the cost of per-
ceiving the same facts in the ARCTREE diagram.

5. Related Work

Genesereth has proposed a representation system
that allows and even encourages the use of multi-
ple specialized representation languages [Genesereth
801. Any criterion for choosing presentation languages
can also be used to evaluate specialized representation
languages. Implicit languages, in particular, are de-
sirable representation languages because the implicit
facts need not be stated explicitly.

Implicit languages are related to the intuitive con-

Figure 5 : Prerequisite and Class Schedule in ARCTREE

231

cept of direct or analogical representations [Barr 811.
An analogical representation, such as a map, has a
structure that directly reflects the world it represents.
Sloman has argued for the importance of analogical
representations, which he contrasts with ‘LFregean”
represent at ions like predicate calculus [Sloman 7 I].
His definition of analogical representation consists of
an informal collection of examples and a philosophi-
cal discussion. We believe that Sloman is incorrect
in asserting that analogical representations are dra-
matically different from the more formal representa-
tions used in artificial intelligence. Critiquing Sloman,
Hayes has argued for the unity of analogical represen-
tations and formal logic languages [Hayes 741. This
paper is a step toward this unity.

Implicit languages have been used in the design of
many software systems. One of the earliest uses of an
implicit language was Gelernter’s Geometry-Theorem
Proving Machine [Gelernter 631. It used a diagram of
the problem to help control the search for a proof. The
diagram implicitly stated many common facts about
geometry. Of course, Gelernter had to be careful that
the diagram did not state incorrect facts:

“If a calculated effort is made to
avoid spurious coincidences in the
figure, one is usually safe in gener-
alizing any statement in the formal
system that correctly describes the
diagram.”

6. Conclusion

This paper has presented a collection of axioms
for describing the expressiveness of languages. These
axioms can be used to compute whether a given set
of facts is expressible in a language. The paper has
also extended these results to implicit languages, in
which additional facts may be stated implicitly, in-
cluding an algorithm for generating implicit closures.
Finally, the paper has discussed ways to use these ax-
ioms to choose a language in which to express some
facts. This research is currently being used to con-
struct an information presentation system that can au-
tomatically choose specialized languages for presenting
information [Mackinlay 831.

Acknowledgements

We wish to thank David Smith and Polle Zellweger
for their incisive comments on drafts of this paper.

References

Barr, A. and E. Feigenbaum, editors. The Handbook of
Artificial Intelligence, Volume 1. William Kaufmann Inc.,
1981, 200-206.

Gelernter, H. “Realization of a Geometry-Theorem Prov-
ing Machine.” In E. Feigenbaum and J. Feldman, editors.
Computers and Thought. McGraw-Hill, 1963, 134-152.

Genesereth, M. R. “Metaphors and Models.” Proc. AAAI
80. Stanford University, August 1980, 208-211.

Hayes, P. J. “Some Problems and Non-Problems in Rep-
resention Theory.” Proc. AISB Summer Conference, 1974,
63-79.

Mackinlay, J. “Intelligent Presentation: The Generation
Problem for User Interfaces.” Report HPP-83-34, Com-
puter SC&-ice Department, Stanford University, 1983.

Pylyshyn, Z. W. “Representation of Knowledge: Non-
linguistic Forms. Do We Need Images and Analogues?”
Proc. TINLAP 75. Massachusetts, June 1975, 174-177.

Sloman, A. “Interactions Between Philosophy and Artifi-
cial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2 (1971)
209-225.

Smith, D. E. and M. R. Genesereth, “Controlling Recursive
Inference.” Report HPP-84-6, Computer Science Depart-
ment, Stanford University, 1984.

Winograd, T. “Procedures as a Representation for Data in a
Computer Program for Understanding Natural Language.”
PhD Thesis, MIT, 1971.

Zdybel, F., N. Greenfeld, M. Yonke, and J. Gibbons. “An
Information Presentation System.” Proc. IJCAI 81. Van-
couver, August 198 1, 978-984.

232

