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Abstract 
Constraint Equations provide a concise declarative language for 
expressing semantic constraints that require consistency among 
several relations. The constraints provide a natural addition to 
semantic networks, as shown by an extension to the 
KL-ONE/NIKL representation language. The Equations have a 
more natural and perspicuous structure than the predicate 
calculus formulas into which they may be translated, and they 
also have an executable interpretation. Both universal and 
existential quantifiers are expressible conveniently in Constraint 
Equations, as are cardinality quantifiers and transitive closure. 
For a subclass of these constraints, a prototype compiler 
automatically generates programs which will enforce these 
constraints and perform the actions needed to reestablish 
consistency. 

1. INTRODUCTION 

Constraini Equalions (CEs) provide a concise declarative 
language for expressing a class of invariant constraints which 
must hold among chains or sequences of relationships. The 
declarative Constraint Equations have an executable 
interpretation, and can be compiled directly into routines for 
automatic maintenance of the Constraints. This is preferable to 
writing procedural code to express and enforce these 
constraints. The prototype implementation has demonstrated 
such automated generation of programs from CE specifications. 

The declarative nature of Constraint Equations and their 
executabie interpretation have an analogy with algebraic 
equations, For example, the equation X q  Y + 2 is a 
declarative statement of an equivalence between the expressions 
on either side. If this is to be treated as a constraint which is to be 
maintained by the system, then there is an executable 
interpretation which may be thought of as two condition-action 
rules: (1) if Y and/or Z change, then revise the value of X 
accordingly, and (2) if X changes, select between the alternatives 
of disallowing the change, revising Y, or Z, or both. 

The following example of a Constraint Equation specifies that the 
Projects which a Manager has a responsibility for are to be the 
same as the set of Projects which his/her Employees work on. 

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT 

‘This research was supported by the Defense Advanced Research Proiects 
Agency (DARPA) contract MDA-903-81 C-0335. Views and conclusions 
contained in this paper are those of the author and should not be interpreted as 
representing the official opinion or policy of DARPA or the U.S. Government. 

Here the dot ‘I. ” may be thought of as standing in for the 
relationship between the objects or entities appearing on either 
side of it. In general, the dot allows a form of ellipsis in which the 
relation name or object type may be omitted. 

Each side of the CE describes a sequence of relations from the 
Anchor object (here MANAGER) on the left to the Target object 
on the right of the path. There may be a set of one or more 
Target instances associated with one Anchor instance by these 
relationships. This CE says that the set of Projects that arise from 
both sides must be equal, and that this must be true for each 
Manager. The concept of Path Quantifiers is defined below to 
provide existential, universal, and cardinality based quantifiers. 

A Constraint Equation represents a structured shorthand for a set 
of condition-action rules -- a fact which is exploited below when 
extending the range of behaviors describable using these 
Equations. The operational semantics of these declarative 
Equations helps address the need for improved facilities to 
declaratively represent knowledge of the data’s semantics. Fikes 
has noted that “such declarative facilities would reduce the 
(knowledge representation) designer’s dependence on frame 
actions, and therefore make the resulting implementation more 
perspicuous and accessible . ...” [Fikes81]. Other studies of 
constraint-based systems include [Bornrng79], [Goldstein80], and 
[SussmanSO]. 

The Information Management system [Balzer83] has provided a 
testbed for prototype implementation of the Constraint Equation 
facility. Non-trivial hand written code for constraint maintenance 
has been replaced by routines that were automatically generated 
from the CEs. Extensions beyond these operational facilities also 
are presented below. 

2. CONSTRAINT SPECIFICATION and CONNECTION PATHS 

Each side of a Constraint Equation is a Path Expression, which is 
an abbreviated representation of a sequence of associations from 
the semantic network model of the application. The nodes of the 
network are typed and represent objects -- also sometimes 
referred to as entities or domains, The attributes of the object are 
treated here as binary relationships to other objects or to literal 
values. The abbreviated path expression is compared with the 
semantic network to determine each elided component, which 
may be either an object or a relation name. The CE is considered 
ill-formed if there is ambiguity in the translation. The fully 
expanded sequence of associations is called a Connection Path. 
For example, consider the following entities: (where “-->>‘I 
denotes a multi-valued attribute) 
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MANAGER Entity 
OVERSEES -->> PROJECT 
MANAG ES -->> EMPLOYEE 

EMPLOYEE Entity 
WORKSON -->> PROJECT 

The abbreviated Path Expressions of a CE are translated into 
complete Connection Paths (second equation) as follows: 

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT 

[ (MANAGER) OVERSEES (PROJECT) ] == 

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)] 

In general, a simple Connection Path is a sequence of the form: 

[ (EO) Rl (El) R2 . . . RN (EN) J , 

where Ei denotes an object (entity) type, and Ri denotes a 
(binary) relation from Eiml to Ei. (Relations are shown in 
parentheses when there may be ambiguity between the names of 
objects and relations.) EO is the Source and En is the Target of 
the Connection Path. In a CE, EO also is referred to as the 
Anchor, since it anchors the CE with a common binding for both 
paths. When an instance is provided for domain EO (or En), the 
Connection Path defines a mapping from the Source (if EO was 
given) to the Target set. 

A Connection Path defines a relation Rcp(E0 En) derived from the 
sequence of component relations Ri by joining them paitwise on 
their common domains, A composition of Connection Paths a!so 
is a derived relation, since each subpath can be treated as a 
relation in the overall path. Thus a Connection Path, or 
composition of subpaths, can be used wherever a relation 
appears in a Constraint Equation. 

3, FORMAL INTERPRETATION of CONSTRAINT 
EQUATIONS 

Constraint Equations can be viewed as a compact shorthand for 
a class of predicate calculus formulae that are useful for 
knowledge representation paradigms. Consider the following 
Constraint Equation and its expansion into Connection Paths: 

EO.El == EO;E2.E3 

[ (EO) Rl (El) ] == [ (EO) R2 (E2) R3 (E3) ] 

Each relation may be viewed as a binary predicate, Ri(Ej, Ek). 
Since each side of the CE is a derived relation, we obtain the 
following expression in predicate calculus with set notation: 

{ (EO El) j Rl(E0 El) } = 

{ (EO E3) j 3 E2 ( R2(EO E2) A R3( E2 E3) ) } 

An alternative formulation emphasizes the fact that a Constraint 
Equation may be thought of as being implicitly iterated over the 

instances of the Anchor EO. This viewpoint is valuable for 
understanding CEs, and is utilized later when expressing the Path 
Quantifiers2 

2 An algebra for symbolic manipulation of CEs is under development -- it is used 
to analyze the consequences of constraints and to derive new related Equations 
from existing ones. 

VEO { El j Rl(E0 El) } 

= { E3 1 3 E2 ( R2( EO E2) A R3(E2 E3) ) } 

Here, each EO instance serves as a common binding for the 
Anchor on both sides. Each Connection Path defines a mapping 
to a set of Target instances -- the Target sets for the left and right 
sides being {El} and (E3). This CE constrains these two Target 
sets to be equal for any such Anchor instance. (In lieu of equality, 
there may be a subset or superset comparator, or a common 
elements (intersection) constraint, denoted =m: n=, requiring that 
the Target sets have from m to n members in common -- with =o= 
denoting no common members, ie. disjointness.) 

The equality based CE also may be expressed without set 
notation as: 

VEO,El ( Rl(E0 El) <==> 

3 E2 ( R2( EO E2) A R3(E2 El) ) ) 

4. UPDATE SEMANTICS and AUTOMATIC CONSTRAINT 
ENFORCEMENT 

When changes occur to the data, one or more Constraint 
Equations may be affected. A compiler-like facility accepts the 
Constraint Equation specifications and automatically generates 
maintenance programs which enforce the constraints (currently 
for existentially quantified constraints). If there is no way of 
reestablishing the constraint, then the initial change will not be 
accepted. Usually however, the maintenance routine can 
execute the consequential changes needed to satisfy the 
constraint(s). 

The system implementation provides triggers or demons which 
are activated when changes occur to specified relationships 
[Goldman82]. The enforcement routines which are generated by 
the CE Compiler are attached to the demons for each of the 
named relations that are involved in the Constraint Equation. 
Thus when an insertion, deletion, or update occurs to any 
instance of these relations, this enforcement routine is 
automatically invoked to take the appropriate action, 

When an object instance is created, deleted, or updated, changes 
occur to relationships which involve that object. Deletion of an 

object causes all its attributes and relationships to be deleted 
also. Updating an object actually involves updating the 
relationships of the object. CEs are activated by these changes 
to relationships. 

When a change occurs to a relationship on one side of a CE, a 
compensating change may be made to a relationship on the other 
side in order to reestablish satisfaction of the constraint. Since 
there may be more than one relation on a side, the one to change 
is indicated by the ” ! ” symbol to the left of or in place of a 
relation name (the ” ! ” is used in lieu of the dot “. “). The 
designated relation can be thought of as a weak bond, since it is 
more readily modified in response to an initial change to the other 
side of the CE. 

As an example, consider the constraint that an Employee’s 
Phone’s Backup (the extension which takes messages when the 
phone is busy or does not answer) is the same as the Employee’s 
Project’s Secretary’s Phone. This may be expressed as a CE: 

EMPLOYEE. PHONE ! BACKUP == 

EMPLOYEE.PROJECT.SECRETARY.PHONE 
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The designation of a weak bond on the left indicates that if any of 
the associations on the right changes (eg. a Project’s Secretary) 
then the Backup extension for the Employee’s Phone is changed. 
The absence of a weak bond on the right indicates that a change 
directly to the relations on the left is not allowed if it would cause 
a violation of the constraint. For example, the Employee’s Phone 
could be changed to any other Phone having the same Backup 
without violating the constraint. Alternative update semantics are 
specifiable as discussed below. 

The update semantics are intuitive when relationships are single 
valued. If an Employee changes to a different Project, and all the 
relationships! except the changed relation and the weak bond 
relation, are single valued, then the Secretary’s Phone is clearly 
defined, and the change of Backup extension for the Employee’s 
Phone is simple. 

The potentially multi-valued relationship between Employees and 
Projects can give rise to a set of changes in other cases. If a 
Secretary’s Phone is changed, then the Backup extension must 
be changed for the Phones of the (potentially) several Employees 
on the associated Project(s) (ie. on Projects served by that 
Secretary, and limited to those Employee Phones having the old 
Backup number). 

Since the activation of a CE can result in additional changes to 
relationships, a chain of activations of several CEs may arise. 
Each such activation serves to propagate the consequences of 
the initial change [Morgenstern88]. Similar issues regarding 

constraint propagation arise in truth maintenance systems 
[ Doyle781. 

As another example, consider the CE presented earlier where a 
Manager oversees those Projects his/her Employees work on: 

MANAGER ! PROJECT == MANAGER ! EMPLOYEE. PROJECT 

The weak bond on each side here indicates that Projects stay 
with the Employee if there are any other changes. Thus if a 
Manager adds a Project, then he adds those Employee(s) who 
work on that Project. 

4.1. Specialized Update Semantics 
The algorithms stated above assume that a change to one side of 
a CE may be responded to by a change to the designated weak 
bond relation on the other side. There are cases when a change 
warrants different responses. We provide this by additional 
annotations which take the form of condition-action rules or 
production rules [HayesRoth83] 

A consistency constraint expressed as a condition-action rule 
would state the change or combination of changes to the data 
which serve as the condition for activating the rule. And it would 
indicate the action to be taken -- typically an expression of how to 
reinstate consistency, Other forms of action might be to disallow 
the change, provide information to the user, or invoke a more 
general procedure to execute an arbitrary action. In fact, the 
Constraint Equation is directly expressible as a set of such 
condition-action rules -- one for each relation that may change in 
the Equation. 

Here we use such rules to express exceptions to the primary 
update algorithms. The condition part indicates the relation 
change which would activate this exception rule, and optionally, 
the type(s) of change (insertion, deletion, update). The action or 

response may be of arbitrary complexity, but primarily is intended 
to indicate a relation of the CE to which the compensating 
change should be made -- thus allowing the weak bond relation 
to be conditional on which change occurred. 

The following CE is similar to the one presented earlier, except 
that here the semantics are that a change of Manager for an 
Employee changes the Projects the Employee works on. The 
additional rule overrides the base semantics of the weak bond on 
the left of the CE. The rule is invoked when the relationship 
implied by MANAGER. EMPLOYEE is changed, and the response is 
to treat the relation EMPLOYEE. PROJECT as the weak bond for 
this case. 

MANAGER ! PROJECT == MANAGER ! EMPLOYEE .PROJECT 
except 
MANAGER.EMPLOYEE = EMPLOYEE. PROJECT 

Another example is repeated below with a new response. Here a 
change to a Project’s Secretary would cause the compensating 
change to be made to the Phone of the old and new Secretaries 
__ in order that the Backup number (and the phone associated 
with the Project) stays the same: 

EMPLOYEE.PHONE !BACKUP == 

EMPLOYEE.PROJECT.SECRETARY.PHONE 

except 
PROJECT.SECRETARY = SECRETARY.PHONE 

5. ENHANCED EXPRESSIVE POWER 

5.1. Path Quantifiers 
The set oriented semantics of Constraint Equations can naturally 
express a spectrum of quantifiers, including existential and 
universal quantifiers. Existential quantifiers are implicit in CEs, as 
shown earlier. All intermediate objects along the Connection 
Path (other than the Anchor and Target) have been existentially 
quantified for the CEs discussed above. This corresponds to the 
fact that the path expression on each side of these CEs produces 
the union of the Target instances for an Anchor. The union 
operation gives rise to the existential quantification over the 
different sequences (paths) of intermediate objects and 
relationships connecting the Anchor with the Target. 

The ability to express the Universal quantifier is needed for a 
constraint such as: the Projects of a Department are those 
Projects on which &I the Employees of that Department work. In 
other words, the Projects of a Department are those which are 
common to every Employee of that Department. This notion of 
commonness to all sets of instances arising from a (possibly 
derived) association is represented as a Path Intersection 
Quantifier ” n/ ” -- which replaces the implicit union for a path 
with an explicit inteisection over the Target sets. This example 
may be represented as: 

DEPARTMENT.PROJECT == 

[DEPARTMENT. EMPLOYEE n/ PROJECT] 

The intersection here is over the sets of Projects associated with 
the Employees of that Department (since each Employee works 
on a set of Projects). The CE requires that the resulting set of 
common Projects is to be equal to the set of Projects which the 
Department directs. We expand this CE into a full Connection 
Path using the previous object definitions together with the 
following Department object: 
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DEPARTMENT entity 
DIRECTS -->> PROJECT 
EMPLOYS -->> EMPLOYEE 

[ (DEPARTMENT) DIRECTS (PROJECT) ] == 

[ (DEPARTMENT) EMPLOYS (EMPLOYEE) 

n/(EMPLOYEE) WORKSON (PROJECT) ] 

Expressing this constraint in terms of sets, we have: 

V DEPARTMENT 

{ PROJECT 1 DIRECTS(DEPARTMENT PROJECT) } 

; PROJECT 1 

3EMPLOYEE ( EMPLOYS(DEPARTMENT EMPLOYEE) ) A 

VEMPLOYEE ( EMPLOYS(DEPARTMENT EMPLOYEE) * 

WORKSON(EMPLOYEE PROJECT) ) } 

In the second set expression above, a Project is included in the 
resulting set if a// Employees of the Department work on that 
Project. Note that the existence of least one Employee in the 
Department is required here to ensure that the predicate calculus 
Universal Quantifier does not become satisfied for each and 
every Project just because there are no Employees in that 
Department ! Such concerns are taken care of by the semantics 
of the Path intersection quantifier. 

More generally, a Path Intersection expression such as 

[ El . E2 fl/ E3 . E4 -J 

expands to a Connection subpath of the form 

[ (El) R2 (E2) r-T/ (E2) R3 (E3) R4 (E4) ] . 

For an El instance, this path yields those E4 instances which are 
common to every E2 -- ie. an E4 instance is related to an El by 
this path if this E4 is related to every E2 associated with this El. 
We may formally express this derived relation Rcp(E1, E4) by the 
following set of pairs. The universal quantifier applies to the 
entity E2 which immediately precedes the Path Intersection 
symbol ( fl/ ) in the expressions above. The scope of the 
universal quantifier is the immediately containing bracketed path 
expression. The other intermediate objects along the path (here 
E3) are existentially quantified as usual. 

{ (El E4) 1 3 E2 ( R2(El E2) ) A 

t/E2 ( R2(El E2) * 

3 E3 ( R3( E2 E3) A R4(E3 E4) )) } 

Since this represents a derived relation Rcp(E1, E4), the above 
Path Intersection (the expression from El to E4) can be used as 
part of a larger Path. Thus quantified expressions can be nested 
within each other. 

5.1 .l. Spectrum of Quantifiers 
The Path Quantifier concept may be extended to provide a 
spectrum of quantification capabilities ranging from existential to 
universal quantifiers. In particular, universal quantification 
required above that E4 be related to every E2, whereas existential 
quantification requires that E4 be related to at least one E2 for an 
Anchor instance. 

We define ,.,,fl/,, to be a Limifed Path Quantifier. If it is used in 

place of the unconditional intersection quantifier fl/ above, it 
means that an E4 instance is included if it is related (for a given 
El) to at least m E2 instances and not more than n E2 
instances, We let 1 E2 1 denote the size of the set of E2’s which 
are related to the given El. The upper bound n defaults to this 
set size 1 E2 I, and may be different for each Anchor instance. 
The lower bound m defaults to the smaller of the upper bound 
and /E21 -- so these defaults are consistent with the 
unsubscripted path intersection symbol fl/ . 

For example, the constraint that a Department is responsible for 
helping to direct a Project if at least three employees of that 
Department are working on the Project, may be written as: 

DEPARTMENT.PROJECT == 

[DEPARTMENT ,fV EMPLOYEE.PROJECT] 

It can be seen that for the previous path from El, I E21 fl/ is 
equivalent to the unconditional Path lntersecfion (universal) 
quantifier f-v , since this explicit lower bound requires that for 
an E4 to be included in the result, it must be related to all E2s of 
an El. Furthermore ,n/ is equivalent to the existential 
quantifier, since for an E4 to qualify, it must be related to just one 
or more E2s. Thus we have a spectrum of quantifiers. 

5.2. Path Operators and Transitive Closure 
The Connection Path on either side of the Constraint Equation 
may be extended to include Set Union, Set Intersection, and/or 
Set Difference of a pair of Connection subpaths. These set 
operators are subject to the restriction that the Source object 
type for each subpath is the same, and the Target object type for 
each subpath is the same. When there is a type hierarchy for 
objects, this restriction is loosened to require just compatibility of 
object types. 

We may view the set operator in either of two ways: as the union 
(or other set operator) of the Target sets arising from each 
subpath for a given Anchor instance, or as the union (or set 
operator) of the relation tuples from each subpath. Since these 
are equivalent, the compound Connection Paths also define a 
derived (binary) relation, just as for simple Connection Paths. 

Constraint Equations now can represent the transitive closure. 
For example, consider a programming environment where the 
system keeps track of potential calling relationships between 
programs (as provided by the Masterscope package of Interlisp 
[Teitelman]). The CALLS relationship exists between function Fl 
and those functions Fj for which a calling form appears in the 
body of Fl, Then the relation REACHABLE for function Fl is the 
transitive closure of the CALLS relation -- ie. all functions called 
directly by Fl or indirectly Reachable from such called functions. 
The Constraint Equation representation is: 

FUNCTION ! REACHABLE == 

FUNCTION.CALLS U FUNCTION.CALLS.REACHABLE 

This recursive definition takes on the expected meaning due to 
the executable interpretation of Constraint Equations. In 
particular, when a new [Fl CALLS F2] relationship is entered, 
the following responses occur: the right side of the CE causes F2 
and all functions Reachable from F2 to be included as Reachable 
from Fl. The resulting change to the REACHABLE relation for Fl 
causes other activations of this CE for those functions which call 
Fl . In turn this may modify REACHABLE again. The cycle 
terminates since the union is over a finite number of elements. 



5.3. Application to the KL-ONE/NIKL Semantic Network 
NIKL is a recently developed knowledge representation system 
[Bobrow83, Moser831, which is a successor to KL-ONE 
[Schmolze83], and incorporates ideas from the KRYPTON system 
[Brachman83]. NIKL also has similarities to the KRL 
representation language, except that KRL also provides for 
operational semantics which are specified by collections of 
attached procedures [Fikes82]. 

The NIKL semantic network is a taxonomy of concepts, 
(intentional objects) which are related by specialization 
._ indicated by a superconcept (is-a) link. The attributes of a 
concept are referred to as roles, and may include restrictions 
such as the number and type of values that may fill the role. Role 
Constraints (role value maps) are intended as a way of mutually 
restricting the values that may fill two or more roles. As an 
example, a Role Constraint for a locally employed person (LE- 
PERSON) is that his/her home is in the same city as the company 
which employs the person. The following NIKL diagram from 

[Moser831 shows this requirement. 

A Constraint Equation which represents this constraint is shown 
in both its abbreviated and complete path forms: 

LE-PERSON.HOME.TOWN == 
LE-PERSON.JOB.COMPANY.LOCATION 

[ (LE-PERSON) HOME (RESIDENCE) TOWN (CITY) ] == 

[(LE-PERSON) JOB (EMPLOYMENT) COMPANY 

(BUSINESS) LOCATION (CITY)] 

Thus far, universal quantifiers have not been expressible in NIKL. 
Some consideration had been given to the use of a separate 
predicate to filter the cross product of values from the several 
roles, and thereby select those combinations which mutually 
satisfy the Role Constraint [Bobrow83]. 

The universal quantifier is captured by Path Intersection in a 
Constraint Equation. So for example, to express the fact that a 
person’s friends are those people who are friends of all his 
brothers, we write the CE: 

PERSON.FRIEND == [PERSON.BROTHER n/FRIEND] 

If the CE did not include the Path Intersection ( fI/ ), then any 
friend of any brother would be one of the person’s friends, rather 
than requiring friendship with all the brothers in order to qualify. 

Thus Constraint Equations overlap with other knowledge 
representation schemes, and they provide a natural extension to 
the already rich KL-ONE semantic network. 

6. CONCLUSION 

Constraint Equations (CEs) provide a concise declarative 
representation for a commonly occurring class of constraints in 

which two differently derived sets of instances, and two different 
chains of relationships, are to be consistent. CEs have a more 
natural and perspicuous structure than the predicate CaMuS 
formulas into which they may be translated. Yet both universal 
and existential quantifiers are expressible conveniently in Cl% as 
are cardinality quantifiers, transitive closure, and disjointness. 
Automatic constraint enforcement is provided in the prototype 
implementation by compilation of a basic CE specification into a 
program which will perform the actions needed to reestablish 
consistency. 
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