
Constraint Equations:
A Concise Compilable Representation for

Quantified Constraints in Semantic Networks

Matthew Morgenstern

Information Sciences Institute’
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

Abstract
Constraint Equations provide a concise declarative language for
expressing semantic constraints that require consistency among
several relations. The constraints provide a natural addition to
semantic networks, as shown by an extension to the
KL-ONE/NIKL representation language. The Equations have a
more natural and perspicuous structure than the predicate
calculus formulas into which they may be translated, and they
also have an executable interpretation. Both universal and
existential quantifiers are expressible conveniently in Constraint
Equations, as are cardinality quantifiers and transitive closure.
For a subclass of these constraints, a prototype compiler
automatically generates programs which will enforce these
constraints and perform the actions needed to reestablish
consistency.

1. INTRODUCTION

Constraini Equalions (CEs) provide a concise declarative
language for expressing a class of invariant constraints which
must hold among chains or sequences of relationships. The
declarative Constraint Equations have an executable
interpretation, and can be compiled directly into routines for
automatic maintenance of the Constraints. This is preferable to
writing procedural code to express and enforce these
constraints. The prototype implementation has demonstrated
such automated generation of programs from CE specifications.

The declarative nature of Constraint Equations and their
executabie interpretation have an analogy with algebraic
equations, For example, the equation X q Y + 2 is a
declarative statement of an equivalence between the expressions
on either side. If this is to be treated as a constraint which is to be
maintained by the system, then there is an executable
interpretation which may be thought of as two condition-action
rules: (1) if Y and/or Z change, then revise the value of X
accordingly, and (2) if X changes, select between the alternatives
of disallowing the change, revising Y, or Z, or both.

The following example of a Constraint Equation specifies that the
Projects which a Manager has a responsibility for are to be the
same as the set of Projects which his/her Employees work on.

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT

‘This research was supported by the Defense Advanced Research Proiects
Agency (DARPA) contract MDA-903-81 C-0335. Views and conclusions
contained in this paper are those of the author and should not be interpreted as
representing the official opinion or policy of DARPA or the U.S. Government.

Here the dot ‘I. ” may be thought of as standing in for the
relationship between the objects or entities appearing on either
side of it. In general, the dot allows a form of ellipsis in which the
relation name or object type may be omitted.

Each side of the CE describes a sequence of relations from the
Anchor object (here MANAGER) on the left to the Target object
on the right of the path. There may be a set of one or more
Target instances associated with one Anchor instance by these
relationships. This CE says that the set of Projects that arise from
both sides must be equal, and that this must be true for each
Manager. The concept of Path Quantifiers is defined below to
provide existential, universal, and cardinality based quantifiers.

A Constraint Equation represents a structured shorthand for a set
of condition-action rules -- a fact which is exploited below when
extending the range of behaviors describable using these
Equations. The operational semantics of these declarative
Equations helps address the need for improved facilities to
declaratively represent knowledge of the data’s semantics. Fikes
has noted that “such declarative facilities would reduce the
(knowledge representation) designer’s dependence on frame
actions, and therefore make the resulting implementation more
perspicuous and accessible” [Fikes81]. Other studies of
constraint-based systems include [Bornrng79], [Goldstein80], and
[SussmanSO].

The Information Management system [Balzer83] has provided a
testbed for prototype implementation of the Constraint Equation
facility. Non-trivial hand written code for constraint maintenance
has been replaced by routines that were automatically generated
from the CEs. Extensions beyond these operational facilities also
are presented below.

2. CONSTRAINT SPECIFICATION and CONNECTION PATHS

Each side of a Constraint Equation is a Path Expression, which is
an abbreviated representation of a sequence of associations from
the semantic network model of the application. The nodes of the
network are typed and represent objects -- also sometimes
referred to as entities or domains, The attributes of the object are
treated here as binary relationships to other objects or to literal
values. The abbreviated path expression is compared with the
semantic network to determine each elided component, which
may be either an object or a relation name. The CE is considered
ill-formed if there is ambiguity in the translation. The fully
expanded sequence of associations is called a Connection Path.
For example, consider the following entities: (where “-->>‘I
denotes a multi-valued attribute)

255

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

MANAGER Entity
OVERSEES -->> PROJECT
MANAG ES -->> EMPLOYEE

EMPLOYEE Entity
WORKSON -->> PROJECT

The abbreviated Path Expressions of a CE are translated into
complete Connection Paths (second equation) as follows:

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT

[(MANAGER) OVERSEES (PROJECT)] ==

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)]

In general, a simple Connection Path is a sequence of the form:

[(EO) Rl (El) R2 . . . RN (EN) J ,

where Ei denotes an object (entity) type, and Ri denotes a
(binary) relation from Eiml to Ei. (Relations are shown in
parentheses when there may be ambiguity between the names of
objects and relations.) EO is the Source and En is the Target of
the Connection Path. In a CE, EO also is referred to as the
Anchor, since it anchors the CE with a common binding for both
paths. When an instance is provided for domain EO (or En), the
Connection Path defines a mapping from the Source (if EO was
given) to the Target set.

A Connection Path defines a relation Rcp(E0 En) derived from the
sequence of component relations Ri by joining them paitwise on
their common domains, A composition of Connection Paths a!so
is a derived relation, since each subpath can be treated as a
relation in the overall path. Thus a Connection Path, or
composition of subpaths, can be used wherever a relation
appears in a Constraint Equation.

3, FORMAL INTERPRETATION of CONSTRAINT
EQUATIONS

Constraint Equations can be viewed as a compact shorthand for
a class of predicate calculus formulae that are useful for
knowledge representation paradigms. Consider the following
Constraint Equation and its expansion into Connection Paths:

EO.El == EO;E2.E3

[(EO) Rl (El)] == [(EO) R2 (E2) R3 (E3)]

Each relation may be viewed as a binary predicate, Ri(Ej, Ek).
Since each side of the CE is a derived relation, we obtain the
following expression in predicate calculus with set notation:

{ (EO El) j Rl(E0 El) } =

{ (EO E3) j 3 E2 (R2(EO E2) A R3(E2 E3)) }

An alternative formulation emphasizes the fact that a Constraint
Equation may be thought of as being implicitly iterated over the

instances of the Anchor EO. This viewpoint is valuable for
understanding CEs, and is utilized later when expressing the Path
Quantifiers2

2 An algebra for symbolic manipulation of CEs is under development -- it is used
to analyze the consequences of constraints and to derive new related Equations
from existing ones.

VEO { El j Rl(E0 El) }

= { E3 1 3 E2 (R2(EO E2) A R3(E2 E3)) }

Here, each EO instance serves as a common binding for the
Anchor on both sides. Each Connection Path defines a mapping
to a set of Target instances -- the Target sets for the left and right
sides being {El} and (E3). This CE constrains these two Target
sets to be equal for any such Anchor instance. (In lieu of equality,
there may be a subset or superset comparator, or a common
elements (intersection) constraint, denoted =m: n=, requiring that
the Target sets have from m to n members in common -- with =o=
denoting no common members, ie. disjointness.)

The equality based CE also may be expressed without set
notation as:

VEO,El (Rl(E0 El) <==>

3 E2 (R2(EO E2) A R3(E2 El)))

4. UPDATE SEMANTICS and AUTOMATIC CONSTRAINT
ENFORCEMENT

When changes occur to the data, one or more Constraint
Equations may be affected. A compiler-like facility accepts the
Constraint Equation specifications and automatically generates
maintenance programs which enforce the constraints (currently
for existentially quantified constraints). If there is no way of
reestablishing the constraint, then the initial change will not be
accepted. Usually however, the maintenance routine can
execute the consequential changes needed to satisfy the
constraint(s).

The system implementation provides triggers or demons which
are activated when changes occur to specified relationships
[Goldman82]. The enforcement routines which are generated by
the CE Compiler are attached to the demons for each of the
named relations that are involved in the Constraint Equation.
Thus when an insertion, deletion, or update occurs to any
instance of these relations, this enforcement routine is
automatically invoked to take the appropriate action,

When an object instance is created, deleted, or updated, changes
occur to relationships which involve that object. Deletion of an

object causes all its attributes and relationships to be deleted
also. Updating an object actually involves updating the
relationships of the object. CEs are activated by these changes
to relationships.

When a change occurs to a relationship on one side of a CE, a
compensating change may be made to a relationship on the other
side in order to reestablish satisfaction of the constraint. Since
there may be more than one relation on a side, the one to change
is indicated by the ” ! ” symbol to the left of or in place of a
relation name (the ” ! ” is used in lieu of the dot “. “). The
designated relation can be thought of as a weak bond, since it is
more readily modified in response to an initial change to the other
side of the CE.

As an example, consider the constraint that an Employee’s
Phone’s Backup (the extension which takes messages when the
phone is busy or does not answer) is the same as the Employee’s
Project’s Secretary’s Phone. This may be expressed as a CE:

EMPLOYEE. PHONE ! BACKUP ==

EMPLOYEE.PROJECT.SECRETARY.PHONE

256

The designation of a weak bond on the left indicates that if any of
the associations on the right changes (eg. a Project’s Secretary)
then the Backup extension for the Employee’s Phone is changed.
The absence of a weak bond on the right indicates that a change
directly to the relations on the left is not allowed if it would cause
a violation of the constraint. For example, the Employee’s Phone
could be changed to any other Phone having the same Backup
without violating the constraint. Alternative update semantics are
specifiable as discussed below.

The update semantics are intuitive when relationships are single
valued. If an Employee changes to a different Project, and all the
relationships! except the changed relation and the weak bond
relation, are single valued, then the Secretary’s Phone is clearly
defined, and the change of Backup extension for the Employee’s
Phone is simple.

The potentially multi-valued relationship between Employees and
Projects can give rise to a set of changes in other cases. If a
Secretary’s Phone is changed, then the Backup extension must
be changed for the Phones of the (potentially) several Employees
on the associated Project(s) (ie. on Projects served by that
Secretary, and limited to those Employee Phones having the old
Backup number).

Since the activation of a CE can result in additional changes to
relationships, a chain of activations of several CEs may arise.
Each such activation serves to propagate the consequences of
the initial change [Morgenstern88]. Similar issues regarding

constraint propagation arise in truth maintenance systems
[Doyle781.

As another example, consider the CE presented earlier where a
Manager oversees those Projects his/her Employees work on:

MANAGER ! PROJECT == MANAGER ! EMPLOYEE. PROJECT

The weak bond on each side here indicates that Projects stay
with the Employee if there are any other changes. Thus if a
Manager adds a Project, then he adds those Employee(s) who
work on that Project.

4.1. Specialized Update Semantics
The algorithms stated above assume that a change to one side of
a CE may be responded to by a change to the designated weak
bond relation on the other side. There are cases when a change
warrants different responses. We provide this by additional
annotations which take the form of condition-action rules or
production rules [HayesRoth83]

A consistency constraint expressed as a condition-action rule
would state the change or combination of changes to the data
which serve as the condition for activating the rule. And it would
indicate the action to be taken -- typically an expression of how to
reinstate consistency, Other forms of action might be to disallow
the change, provide information to the user, or invoke a more
general procedure to execute an arbitrary action. In fact, the
Constraint Equation is directly expressible as a set of such
condition-action rules -- one for each relation that may change in
the Equation.

Here we use such rules to express exceptions to the primary
update algorithms. The condition part indicates the relation
change which would activate this exception rule, and optionally,
the type(s) of change (insertion, deletion, update). The action or

response may be of arbitrary complexity, but primarily is intended
to indicate a relation of the CE to which the compensating
change should be made -- thus allowing the weak bond relation
to be conditional on which change occurred.

The following CE is similar to the one presented earlier, except
that here the semantics are that a change of Manager for an
Employee changes the Projects the Employee works on. The
additional rule overrides the base semantics of the weak bond on
the left of the CE. The rule is invoked when the relationship
implied by MANAGER. EMPLOYEE is changed, and the response is
to treat the relation EMPLOYEE. PROJECT as the weak bond for
this case.

MANAGER ! PROJECT == MANAGER ! EMPLOYEE .PROJECT
except
MANAGER.EMPLOYEE = EMPLOYEE. PROJECT

Another example is repeated below with a new response. Here a
change to a Project’s Secretary would cause the compensating
change to be made to the Phone of the old and new Secretaries
__ in order that the Backup number (and the phone associated
with the Project) stays the same:

EMPLOYEE.PHONE !BACKUP ==

EMPLOYEE.PROJECT.SECRETARY.PHONE

except
PROJECT.SECRETARY = SECRETARY.PHONE

5. ENHANCED EXPRESSIVE POWER

5.1. Path Quantifiers
The set oriented semantics of Constraint Equations can naturally
express a spectrum of quantifiers, including existential and
universal quantifiers. Existential quantifiers are implicit in CEs, as
shown earlier. All intermediate objects along the Connection
Path (other than the Anchor and Target) have been existentially
quantified for the CEs discussed above. This corresponds to the
fact that the path expression on each side of these CEs produces
the union of the Target instances for an Anchor. The union
operation gives rise to the existential quantification over the
different sequences (paths) of intermediate objects and
relationships connecting the Anchor with the Target.

The ability to express the Universal quantifier is needed for a
constraint such as: the Projects of a Department are those
Projects on which &I the Employees of that Department work. In
other words, the Projects of a Department are those which are
common to every Employee of that Department. This notion of
commonness to all sets of instances arising from a (possibly
derived) association is represented as a Path Intersection
Quantifier ” n/ ” -- which replaces the implicit union for a path
with an explicit inteisection over the Target sets. This example
may be represented as:

DEPARTMENT.PROJECT ==

[DEPARTMENT. EMPLOYEE n/ PROJECT]

The intersection here is over the sets of Projects associated with
the Employees of that Department (since each Employee works
on a set of Projects). The CE requires that the resulting set of
common Projects is to be equal to the set of Projects which the
Department directs. We expand this CE into a full Connection
Path using the previous object definitions together with the
following Department object:

257

DEPARTMENT entity
DIRECTS -->> PROJECT
EMPLOYS -->> EMPLOYEE

[(DEPARTMENT) DIRECTS (PROJECT)] ==

[(DEPARTMENT) EMPLOYS (EMPLOYEE)

n/(EMPLOYEE) WORKSON (PROJECT)]

Expressing this constraint in terms of sets, we have:

V DEPARTMENT

{ PROJECT 1 DIRECTS(DEPARTMENT PROJECT) }

; PROJECT 1

3EMPLOYEE (EMPLOYS(DEPARTMENT EMPLOYEE)) A

VEMPLOYEE (EMPLOYS(DEPARTMENT EMPLOYEE) *

WORKSON(EMPLOYEE PROJECT)) }

In the second set expression above, a Project is included in the
resulting set if a// Employees of the Department work on that
Project. Note that the existence of least one Employee in the
Department is required here to ensure that the predicate calculus
Universal Quantifier does not become satisfied for each and
every Project just because there are no Employees in that
Department ! Such concerns are taken care of by the semantics
of the Path intersection quantifier.

More generally, a Path Intersection expression such as

[El . E2 fl/ E3 . E4 -J

expands to a Connection subpath of the form

[(El) R2 (E2) r-T/ (E2) R3 (E3) R4 (E4)] .

For an El instance, this path yields those E4 instances which are
common to every E2 -- ie. an E4 instance is related to an El by
this path if this E4 is related to every E2 associated with this El.
We may formally express this derived relation Rcp(E1, E4) by the
following set of pairs. The universal quantifier applies to the
entity E2 which immediately precedes the Path Intersection
symbol (fl/) in the expressions above. The scope of the
universal quantifier is the immediately containing bracketed path
expression. The other intermediate objects along the path (here
E3) are existentially quantified as usual.

{ (El E4) 1 3 E2 (R2(El E2)) A

t/E2 (R2(El E2) *

3 E3 (R3(E2 E3) A R4(E3 E4))) }

Since this represents a derived relation Rcp(E1, E4), the above
Path Intersection (the expression from El to E4) can be used as
part of a larger Path. Thus quantified expressions can be nested
within each other.

5.1 .l. Spectrum of Quantifiers
The Path Quantifier concept may be extended to provide a
spectrum of quantification capabilities ranging from existential to
universal quantifiers. In particular, universal quantification
required above that E4 be related to every E2, whereas existential
quantification requires that E4 be related to at least one E2 for an
Anchor instance.

We define ,.,,fl/,, to be a Limifed Path Quantifier. If it is used in

place of the unconditional intersection quantifier fl/ above, it
means that an E4 instance is included if it is related (for a given
El) to at least m E2 instances and not more than n E2
instances, We let 1 E2 1 denote the size of the set of E2’s which
are related to the given El. The upper bound n defaults to this
set size 1 E2 I, and may be different for each Anchor instance.
The lower bound m defaults to the smaller of the upper bound
and /E21 -- so these defaults are consistent with the
unsubscripted path intersection symbol fl/ .

For example, the constraint that a Department is responsible for
helping to direct a Project if at least three employees of that
Department are working on the Project, may be written as:

DEPARTMENT.PROJECT ==

[DEPARTMENT ,fV EMPLOYEE.PROJECT]

It can be seen that for the previous path from El, I E21 fl/ is
equivalent to the unconditional Path lntersecfion (universal)
quantifier f-v , since this explicit lower bound requires that for
an E4 to be included in the result, it must be related to all E2s of
an El. Furthermore ,n/ is equivalent to the existential
quantifier, since for an E4 to qualify, it must be related to just one
or more E2s. Thus we have a spectrum of quantifiers.

5.2. Path Operators and Transitive Closure
The Connection Path on either side of the Constraint Equation
may be extended to include Set Union, Set Intersection, and/or
Set Difference of a pair of Connection subpaths. These set
operators are subject to the restriction that the Source object
type for each subpath is the same, and the Target object type for
each subpath is the same. When there is a type hierarchy for
objects, this restriction is loosened to require just compatibility of
object types.

We may view the set operator in either of two ways: as the union
(or other set operator) of the Target sets arising from each
subpath for a given Anchor instance, or as the union (or set
operator) of the relation tuples from each subpath. Since these
are equivalent, the compound Connection Paths also define a
derived (binary) relation, just as for simple Connection Paths.

Constraint Equations now can represent the transitive closure.
For example, consider a programming environment where the
system keeps track of potential calling relationships between
programs (as provided by the Masterscope package of Interlisp
[Teitelman]). The CALLS relationship exists between function Fl
and those functions Fj for which a calling form appears in the
body of Fl, Then the relation REACHABLE for function Fl is the
transitive closure of the CALLS relation -- ie. all functions called
directly by Fl or indirectly Reachable from such called functions.
The Constraint Equation representation is:

FUNCTION ! REACHABLE ==

FUNCTION.CALLS U FUNCTION.CALLS.REACHABLE

This recursive definition takes on the expected meaning due to
the executable interpretation of Constraint Equations. In
particular, when a new [Fl CALLS F2] relationship is entered,
the following responses occur: the right side of the CE causes F2
and all functions Reachable from F2 to be included as Reachable
from Fl. The resulting change to the REACHABLE relation for Fl
causes other activations of this CE for those functions which call
Fl . In turn this may modify REACHABLE again. The cycle
terminates since the union is over a finite number of elements.

5.3. Application to the KL-ONE/NIKL Semantic Network
NIKL is a recently developed knowledge representation system
[Bobrow83, Moser831, which is a successor to KL-ONE
[Schmolze83], and incorporates ideas from the KRYPTON system
[Brachman83]. NIKL also has similarities to the KRL
representation language, except that KRL also provides for
operational semantics which are specified by collections of
attached procedures [Fikes82].

The NIKL semantic network is a taxonomy of concepts,
(intentional objects) which are related by specialization
._ indicated by a superconcept (is-a) link. The attributes of a
concept are referred to as roles, and may include restrictions
such as the number and type of values that may fill the role. Role
Constraints (role value maps) are intended as a way of mutually
restricting the values that may fill two or more roles. As an
example, a Role Constraint for a locally employed person (LE-
PERSON) is that his/her home is in the same city as the company
which employs the person. The following NIKL diagram from

[Moser831 shows this requirement.

A Constraint Equation which represents this constraint is shown
in both its abbreviated and complete path forms:

LE-PERSON.HOME.TOWN ==
LE-PERSON.JOB.COMPANY.LOCATION

[(LE-PERSON) HOME (RESIDENCE) TOWN (CITY)] ==

[(LE-PERSON) JOB (EMPLOYMENT) COMPANY

(BUSINESS) LOCATION (CITY)]

Thus far, universal quantifiers have not been expressible in NIKL.
Some consideration had been given to the use of a separate
predicate to filter the cross product of values from the several
roles, and thereby select those combinations which mutually
satisfy the Role Constraint [Bobrow83].

The universal quantifier is captured by Path Intersection in a
Constraint Equation. So for example, to express the fact that a
person’s friends are those people who are friends of all his
brothers, we write the CE:

PERSON.FRIEND == [PERSON.BROTHER n/FRIEND]

If the CE did not include the Path Intersection (fI/), then any
friend of any brother would be one of the person’s friends, rather
than requiring friendship with all the brothers in order to qualify.

Thus Constraint Equations overlap with other knowledge
representation schemes, and they provide a natural extension to
the already rich KL-ONE semantic network.

6. CONCLUSION

Constraint Equations (CEs) provide a concise declarative
representation for a commonly occurring class of constraints in

which two differently derived sets of instances, and two different
chains of relationships, are to be consistent. CEs have a more
natural and perspicuous structure than the predicate CaMuS
formulas into which they may be translated. Yet both universal
and existential quantifiers are expressible conveniently in Cl% as
are cardinality quantifiers, transitive closure, and disjointness.
Automatic constraint enforcement is provided in the prototype
implementation by compilation of a basic CE specification into a
program which will perform the actions needed to reestablish
consistency.

ACKNOWLEDGEMENTS

I would like to thank Don Cohen, Neil Goldman, Tom Lipkis, and
Jack Mostow for their useful comments: the predicate calculus
formulation benefited from discussions with Don, Jack suggested
the transitive closure example, and Tom offered insight into the
current NIKL/KL-ONE system.

REFERENCES

[Balzer83] Robert Balzer, David Dyer, Matthew Morgenstern,
Robert Neches, Specification-Based Computing
Environments, Proc. National Conf. on Artificial Intelligence
(AAAI-83), Washington, D.C., August 1983, pp.12-16.

[Bobrow83] Rusty Bobrow, NlKL - A New implementation of
KL-ONE, Bolt Beranek and Newman, Cambridge, Mass.,
January 1983, draft.

[Borning79] Alan Borning, Thinglab - A Constraint-Oriented
Simulation Laboratory, Stanford Univ. report STAN-
CS-79-746, July 1979, Ph.D. thesis.

[Brachman83] R.J. Brachman, R.E. Fikes, and H.J. Levesque,
KRYPTON: A Functional Approach to Knowledge
Representation, IEEE Computer, Oct. 1983, pp.67.73.

[Doyle781 Jon Doyle, Truth Maintenance Systems for Problem
Solving, Masters Thesis, M.I.T., January 1978, A.I. TR-419,
97PP.

[Fikes81] Richard E. Fikes, Odyssey: A Know/edge-Based
Assistant, Artificial Intelligence Jour., v.16, 1981, pp.331 -361.

[Fikes82] Richard E. Fikes, Highlights from K/one-Talk, Proc. of
the 1981 KL-ONE Workshop, Fairchild Camera Technical
Report No.618, May 1982, pp.88-103.

[Goldman821 Neil M. Goldman, AP3 Reference Manual, June
1982, USC Information Sciences Institute, Marina del Rey, CA.

[Goldstein801 I.P. Goldstein & D.G. Bobrow, Descriptions for a
Programming Environment, Proc. First Annual Conf. Nat’1
Assn for A.I. (AAAI-80), Stanford, CA, August 1980.

[Hayes-Roth831 Fredrick Hayes-Roth, Donald Waterman, &
Douglas Lenat, eds., Building Expert Systems, Addison-
Wesley Pubs., 1983.

[Morgenstern83] Matthew Morgenstern, Active Databases As A
Paradigm For Enhanced Computing Environments, Ninth Int’l
Conf. on Very Large Data Bases (VLDB-83), Florence, Italy,
Ott 1983, ~~34-42.

[Moser831 M.G. Moser, An Overview of NIKL, the New
implementation of KL-ONE, pp.7-26, in Research in
Knowledge Representation for Natural Language
Representation, October 1983, Bolt Beranek & Newman,
Report No.5421.

[Schmolze83] James G. Schmolze and Thomas A. Lipkis,
Classification in the KL-ONE Knowledge Representation
System, Proc 8th Int’l Joint Conf. on A.I., August 1983,
Germany, pp.330.2.

[Sussman80] Gerald Jay Sussman and Guy Lewis Steele, Jr,’
CONSTRAINTS -- A Language for Expressing Almost-
Hierarchical Descriptions, Artificial Intelligence Journal, v-14,
1980, pp.1 -39.

[Teitelman] Warren Teitelman, Interlisp Reference Manual, Xerox
Palo Alto Research Center, 1978.

259

