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Abstract 
There is a natural partial ordering of defaults in inheritance 

systems that resolves ambiguities in an intuitive way. This is not 
the shortest-path ordering used by most existing inheritance 
reasoners. The flaws of the shortest-path ordering become 
apparent when we consider multiple inheritance. We define the 
correct partial ordering to use in inheritance and show how it 
applies to semantic network systems. Use of this ordering also 
simplifies the representation of inheritance in default logic. 

1. Introduction 
There is a natural partial ordering of defaults in inheritance 

systems that resolves ambiguities in an intuitive way, This 
ordering is defined implicitly by the hierarchical structure of the 
inheritance graph. Surprisingly, it is not the shortest-path 
ordering used by most existing inheritance systems, such as FRL 
[I] or NETL [2]. We define the correct ordering, called inferential 
distance, and show how its use results in more reasonable 
inheritance behavior than that of either FRL or NETL. We go on to 
represent inheritance systems in default logic, following the 
example of Etherington and Reiter [3]. Although exceptions must 
normally be treated explicitly in default logic, use of inferential 
distance allows us to handle them implicitly, which has several 
advantages. 

2. The Inferential Distance Ordering 
The intuition underlying all inheritance systems is that 

subclasses should override superclasses. Where inferential 
distance differs from the shortest-path ordering is in determining 
subclass/superclass relationships. The inferential distance 
ordering says that A is a subclass of B iff there is an inheritance 
path from A to B. In single (as opposed to multiple) inheritance 
systems, the shortest inference path always contains the inference 
from the most specific subclass. But under multiple inheritance, 
there are two cases where the shortest-path ordering disagrees 
with inferential distance. One involves the presence of true but 
redundant statements; the other involves ambiguous networks. 

3. Handling True But Redundant Statements 
Figure 1 illustrates a problem caused by the presence of 

redundant links in an inheritance graph. Let us start with the 
following set of assertions: “elephants are typically gray; royal 
elephants are elephants but are typically not gray; circus 
elephants are royal elephants; Clyde is a circus elephant.” If 
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subclasses override superclasses, then Clyde is not gray. But 
what happens when we add the explicit statement that Clyde is an 
elephant, as shown in figure 1 ? This is a redundant statement 
because Clyde is indisputably an elephant; he was one before we 
added this statement; in fact, this is one of the inferences we 
expect an inheritance reasoner to generate. Yet when we make 
the fact explicit it causes problems. In FRL Clyde will inherit 
properties through both Circus.Elephant and Elephant, so FRL will 
conclude that he both is and is not gray. In NETL, the redundant 
statement that Clyde is an elephant contributes an inference path 
to gray that is shorter than either of the two paths (one to gray, 
one to not-gray) which go through Circus.Elephant. NETL will 
therefore conclude that Clyde is gray, which contradicts the 
(correct) conclusion it would reach without the redundant link 
present. 

Figu 
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*e 1. 

Inferential distance is unaffected by redundant links. Clyde 
could either inherit grayness, a property of Elephant, or non- 
grayness, a property of Royal.Elephant. Since the network 
contains an inheritance path from Royal.Elephant to Elephant, 
according to the inferential distance ordering Royal.Elephant is a 
subclass of Elephant; the direct link from Clyde to Elephant does 
not alter this relationship. Therefore we conclude that Clyde 
should inherit non-grayness from Royal.Elephant rather than 
grayness from Elephant. 

4. Ambiguous Inheritance Networks 
Consider the following set of assertions, shown in NETL notation 

in figure 2. “Quakers are typically pacifists; pro-defense people 
are typically not pacifists; Republicans are typically pro-defense; 
Nixon is both a Quaker and a Republican.” This network is 
ambiguous: it has two valid extensions. (An extension is the 
nonmonotonic or default logic equivalent of a theory [4].) In one 
extension Nixon is a pacifist; in the other he is not. 

Most existing inheritance reasoners would not recognize this 
ambiguity. If pacifism were a slot that could be filled with either 
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“yes” or “no,” FRL would simply return both values, with no 
notice of the inconsistency. NETL would conclude that Nixon was 
a pacifist simply because the inference path to that conclusion is 
shorter than the path to the opposite conclusion. Yet the fact that 
one path is shorter than the other is irrelevant. 

Nixon can inherit either pacifism, a property of Quaker, or non- 
pacifism, a property of Pro.Defense. Since there is no inheritance 
path from Quaker to Pro.Defense, nor vice versa, the inferential 
distance ordering provides no justification for viewing either class 
as a subclass of the other. Thus an inheritance reasoner based on 
inferential distance would be forced to recognize the ambiguity 
with regard to Nixon’s pacifism. 

Quaker 
Pro.Defense 

Republican 

Figure 2. 

5. Inferential Distance in Semantic Networks 
TINA (for Topological Inheritance Architecture) is a recently 

implemented inheritance reasoner based on inferential distance 
[5]. TINA constructs the extensions of unambiguous inheritance 
networks by incrementally generating inheritance paths and 
weeding out those that violate the inferential distance ordering. 
This method also allows TINA to detect and report ambiguities in 
networks with multiple extensions. Since TINA does not use the 
shortest-path approach to inheritance, it is not misled by 
redundant links in the inheritance graph. 

Another part of TINA, called the condifioner, can be used to 
correct certain problems with inheritance in NETL reported in [6]. 
These problems are due to NETL’s implementation as a set of 
parallel marker propagation algorithms based on shortest-path 
reasoning. TINA’s conditioner modifies the topology of a NETL 
network (after the extension has been computed) so as to force 
marker propagation scans to produce results in agreement with 
the correct extension, as defined by inferential distance. This 
technique can also be applied to other semantic network systems 
(incuding parallel systems) to speed up their inheritance search, 
since once a network has been conditioned we can search it using 
a shortest-path inheritance algorithm. Shortest-path algorithms 
are simpler and more effcient than inferential distance algorithms. 
One drawback is that any changes to the network will require at 
least a portion of it to be reconditioned. 

6. Representing Inheritance in Default Logic 
In default logic, a default inference rule is written in the form 
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where a(x), p(x), and y(x) are well-formed formulae called the 
prerequisite, the justification, and the consequent of the default, 
respectively [7]. The interpretation of this rule is: if (r(x) is known, 
and /3(x) is consistent with what is known, then y(x) may be 
concluded. A default is said to be normal if the consequent is the 
entire justification, i.e. p(x) and y(x) are identical. A default is 
said to be semi-normal if it is of form 

Etherington and Reiter use semi-normal defaults to represent 
inheritance systems in default logic [3]. To see why semi-normal 
defaults are necessary, consider the example in figure 3. 

Can -Fly 

Bird 

Ostrich 

b Henry 

Figure 3. 

This figure could be represented as the set of normal defaults 
Dl-D3 below, plus the assertion Ostrich(Henry). We represent 
“ostriches are birds” (rule D2) in this example as a default rather 
than as a strict implication mainly for uniformity; this decision is 
not critical to the example. Another reason, though, is that in 
NETL, which we are trying to model, all statements are defeasible. 

01) Bird(x) : Can.Flv(xl 
Can.Fly(x) 

(W Ostrich(x) : Birciu 
Bird(x) 

(D3) Ostrich(x) : 4Zan.Flv(xl 
%an.Fly(x) 

Ostrich(Henry) 

Using Dl -D3, the assertion Ostrich(Henry) generates not one but 
two extensions. In one extension, Henry can’t fly because he is an 
ostrich. But in the other, Henry can fly because he is a bird. This 
problem of “interacting defaults” was noted by Reiter and 
Criscuolo [8]. To solve it, they would replace the normal default 
Dl with the semi-normal version Dl’: 

(Dl 7 Bird(x) : TOstrich(x) A Can.Flv(xl 
Can.Fly(x) 

In Dl’, the restriction that ostriches should not be inferred to fly 
is incorporated into the default rule that birds fly. If we add two 
more types of non-flying birds, say penguins and dodos, then 01’ 
would have to be replaced by another default that mentions all 
three exceptions. 

There are three problems with handling exceptions explicitly 
using semi-normal defaults. First, as information is added to a 
knowledge base, existing default rules must continually be 
replaced with new ones that take the new exceptions into 

Second, the complexity of each individual default account. 
increases as the knowledge base grows, because more 
exceptions must be mentioned. Third, in any given inheritance 
network, the translation of one link cannot be determined 
independently of that of the others. For example, an IS-A link 
between Bird and Can.Fly might be represented as the normal 
default Dl, yet in some networks the exact same link must be 



represented by Dl’. Syntactically, every link in an inheritance 
network is a normal default, since the network formalism makes n0 
explicit reference to exceptions. The problem with representing 

inheritance assertions as semi-normal defaults can be 
summarized by saying that it lacks what Woods calls “nOtatiOnal 
efficacy,” a term that encompasses such properties aS 
conciseness of representation and ease of modification 191. 

Etherington and Reiter suggest that NETL treats some types of 
exceptions explicitly (i.e. its rules are semi-normal) because two 
types of exception link were proposed in [6]. These links were to 
be added to the network automatically, in a preprocessing step, to 
force NETL’s marker propagation algorithms to produce the 
desired results. In order to add these exception links one must 
have a specification for the correct interpretation of the network. 
When one creates a NETL network, then, the meaning must 
already be determined, whether or not the network is 
subsequently annotated with exception links. The NETL 
formalism itself does not require that exceptions be treated 
explicitly. Exception links were later abandoned as a marker 
propagation device. 

In FRL, an explicit mechanism for noting exceptions has never 
even been proposed. If we wish to translate inheritance networks 
into default logic using semi-normal rules, how are we to derive 
these rules from the syntactically normal ones the inheritance 
system contains? This questlon was left unanswered by earlier 
work on nonmonotonic inheritance. The inferential distance 
ordering provides an answer. 

7. A Formal Analysis of Inferential Distance 
By representing inheritance in default logic, Etherington and 

Reiter were able to give a formal semantics to inheritance systems 
along with a provably correct inference procedure. However, 
since their representation does not include the notion that 
subclasses should override superclasses, it does not fully express 
the meaning of inheritance. In [5] I present a formal analysis of 
inheritance under the inferential distance ordering. Some of the 
major theorems are: 

l Every acyclic inheritance network has a constructible 
extension. (A similar result was proved in [7].) 

l Every extension of an acyclic inheritance network is 
finite. 

l An extension is inconsistent iff the network itself is 
inconsistent. (We use an expanded notion of 
inconsistency in which the rules “typically birds can 
fly” and “typically birds cannot fly” are mutually 
inconsistent. They wou Id not be in default logic.) 

l The union of any two distinct extensions is 
inconsistent. 

l A network is ambiguous (has multiple extensions) iff it 
has an unstable extension. Instability is a property 
defined in [5]. A necessary condition for instability is 
that the network contain a subgraph of the form 
shown in figure 4. 

l Every extension of an ambiguous network is unstable. 
Corollary: we can determine whether a network is 
ambiguous by constructing one of its extensions and 
checking it for stability. 

A : . 6 8 . v 
Figure 4. 

l Every inheritance network is conditionable. That is, 
given a network and one of its extensions, we can 
always adjust the topology of the network so that a 
shortest path reasoner will produce results in 
agreement with the chosen extension. 

l Additive conditioning (i.e. 
subtracting links) is sufficient. 

adding but never 

8. Implementing Inferential Distance in Default Logic 
Consider a subset of default logic corresponding to a family of 

acyclic inheritance graphs. We can represent an IS-A or IS-NOT-A 
link between a class P and a class Q as a normal default in the 
obvious way, viz. : 

P(x) : X?(x) 

lQ(x) 

Let P(x) be the prerequisite of a rule Di and Q(x) the prerequisite 
of a rule Dj. We define Di < Dj to mean that either there exists a 
default with prerequisite P(x) and conclusion Q(x), or there exists 
a default Dk such that Di < Dk and Dk < Dj. Returning to the 
ostrich example, note that 03 < Dl and D2 < Dl by this definition. 
D2 and D3 are unordered with respect to each other since their 
prerequisites are the same. The < relation is clearly a partial 
ordering. 

The equivalent of an inheritance path in default logic is a proof 
sequence. The example involving Henry the ostrich, when 
represented by the normal defaults Dl-D3, generates a pair of 
conflicting proof sequences Sl and S2. The arrows in these 
sequences indicate the defaults that justify each inference. 

61) Ostrich(Henry) --D3--> Xan.Fly(Henry) 

W) Ostrich(Henry) --DZ--> Bird(Henry) 
--Dl--> Can.Fly(Henry) 

Note that if Di precedes Dj in some proof sequence, then Di < Dj. 
If we order proof sequences by comparing the ordering of the 
maximal rules used in each proof, we see that Sl < S2 because 03 
< 01. To apply inferential distance to default logic, we use the 
ordering on proof sequences as a filter over the set of possible 
extensions. (This idea was suggested by David Etherington.) 
Basically, we reject as invalid any extension in which a conclusion 
depends on a proof sequence Si such that there is a contradictory 
sequence Sj < Si. Thus, the extension in which Henry can fly 
would be rejected, since that conclusion depends on proof 
sequence S2 but there is a contradictory proof sequence Sl < S2. 
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10. Conclusions Now let us try expressing figure 2 in default logic: 

(D4) Quaker(x) : Pacifist(x) 
Pacifist(x) 

(D5) Republican(x) : Pro.Defensefxl 
Pro.Defense(x) 

P6) Pro.Defense(x) : -Pacifist(x) 
lPacifist(x) 

Quaker(Nixon) A Republican(Nixon) 

The inference paths we generate about Nixon are: 

(S3) Quaker(Nixon) --D4--> Pacifist(Nixon) 

(S4) Republican(Nixon) --D6--> Pro.Defense(Nixon) 
--D6--> lPacifist(Nixon) 

The only ordering relation among these defaults is D5 < D6. 
Since 04 and D6 are unordered, the proof sequences S3 and S4 
are unordered, so of the two extensions we obtain, one relying on 
53 and one on S4, neither is to be preferred over the other. 

At this point the reader should have no trouble translating figure 
1 into a set of normal defaults and verifying that under the 
inferential distance ordering, only the desired extension is 
produced. 

9. The Significance of Hierarchy 
Brachman, in his discussion of what IS-A is and isn’t, suggests 

that “to the extent inheritance is a useful property, it is strictly 
implementational and bears no weight in any discussion of the 
expressive or communicative superiority of semantic nets” [lo]. 
When an inheritance system is devoid of exceptions he is clearly 
right. But in nonmonotonic inheritance systems, which provide for 
a simple form of default reasoning, the basic assumption that 
classes are structured hierarchically makes implicit handling of 
exceptions possible. In contrast, exceptions must normally be 
handled explicitly in default logic, since default logic contains no 
notion of hierarchy. 

Implicit handling of exceptions is possible when we are 
restricted to hierarchical domains with simple forms of defaults, 
but default logic admits more intricate sorts of theories. 
Unrestricted semi-normal theories cannot be represented by 
normal ones using the ordering defined here. Default logic is 
clearly a more powerful formalism than inheritance for 
representing knowledge, but the latter remains important due to 
its conceptual simplicity and efficient inference algorithms. 

The intuition underlying all inheritance systems is that 
subclasses should override superclasses. Inferential distance is a 
partial ordering on defaults that implements this intuition. The 
inferential distance ordering differs from the shortest-path 
ordering used by most inheritance reasoners in cases where the 
network is ambiguous or contains true but redundant statements. 
In these cases, the shortest-path ordering fails to ensure that 
subclasses (and only subclasses) override superclasses. 

Applying inferential distance to the default logic representation 
of inheritance systems allows us to faithfully represent these 
systems with no loss of notational efficacy. Under inferential 
distance, default rules need not be discarded as more information 
is added to the knowledge base; individual rules do not become 
more complex as exceptions accumulate; and the translation of 
any one link in an inheritance network into a default is 
independent of that of any other. 
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