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ABSTRACT 

This paper proposes building knowledge-based systems 
using a programming system based on a very-high-level 
language. It gives an overview of such a programming 
system, BC, and shows how BC can be used to implement 
knowledge representation features, providing as examples, 
automatic maintenance of inverse links and property in- 
heritance. The specification language of BC can be ex- 
tended to include a knowledge representation language 
by describing its knowledge representation features. This 
permits a knowledge-based program and its knowledge 
base to be written in the same very-high-level language 
which allows the knowledge to be more efficiently incor- 
porated into the program as well as making the system as 
a whole easier to understand and extend. 

fj 1 Introduction 

A knowledge-based system typically consists of a pro- 
gram and a knowledge base that the program uses. The 
knowledge base is expressed in a special knowledge repre- 
sentation language that is essentially a very-high-level lan- 
guage that the program interprets. This paper describes 
a very-high-level language programming system, BC, and 
shows how BC can be used to define knowledge repre- 
sentation languages so that they can be efficiently com- 
piled. Furthermore, the knowledge-based program itself 
can be specified in BC using the same techniques with 
the same advantages of ease of comprehension and main- 
tainability that are associated with the knowledge base. 
This allows the knowledge base to be viewed as part of 
the specification of the program, which is the key to its 
efficient incorporation into the program. In this way BC 
may be viewed as a knowledge compiler, pre-processing 
knowledge so that it is used efficiently in the knowledge- 
based system. 
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search Projects Agency Contract NOOOld-81-C-0582, monitored by 
the Office of Naval Research. The views and conclusions contained 
in this paper are those of the author and should not be interpreted 
as representing the official policies, either expressed or implied of 
KESTREL, DARPA, ONR or the US Government. 

BC allows programs to be factored into a descrip- 
tion of the problem to be solved and a description of 
the implementation of the solution. The implementation 
description can include schemes for representing entities 
of the problem description or solving particular types of 
sub-problem. BC can be used to define implementation 
schemes for knowledge representation features such as 
property inheritance, inverse link maintenance, and proce- 
dural attachment. The definitions of the. first two of these 
features are given later in this paper. BC is described 
fully in [Westfold, 19841. 

The specification language for EC is basically a mathe- 
matical language including logic, sets, relations, and func- 
tions. This very-high-level language is convenient for 
defining new language constructs in terms of existing con- 
structs, and t.here is a mechanism for defining syntax for 
the new constructs. Thus the system designer can define 
a language that is convenient for system users; the parser 
converts this language into relations that are defined in 
terms of mathematical objects that have properties that 
facilitate their manipulation (compilation) by BC. By use 
of manipulation such as equivalence transformation BC 
can produce an implemented program whose structure is 
quite different from that of the problem specification. In 
other words, convenient, uniform interfaces can be defined 
for the user and to facilitate the description of the different 
components of the system, but the implementation can be 
non-uniform, crossing interfaces and taking advantage of 
different views of the problem domain in order to produce 
an efficient program. 

The ideas in this paper are being tested by using BC 
in building the CHI knowledge-based programming sys- 
tem [Green et al., 19811. CHI includes the following com- 
ponents, all of which make use of BC in their specification 
and implementation: data structure selection, algorithm 
design, parallel algorithm derivation, and project manage- 
ment, the database manager, program analysis, finite 
differencing, and BC itself. Many of these components are 
useful in building knowledge-based systems, so CHI as a 
whole is better than just RC for building knowledge-based 
systems. 
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$2 Overview of BC 

BC is essentially a compiler that produces Lisp code 
from a specification in the form of logic assertions. The 
specification consists of three parts: the basic definition 
of the problem domain; the definition of auxiliary ob- 
jects that are needed in an efficient implementation of the 
problem domain; and information about how the defining 
assertions are to be used procedurally. It is convenient to 
identify and use an intermediate rule language in going 
from the logic assertion language to procedural Lisp. A 
rule specifies an action (procedure) in terms of its precon- 
dition (applicability condition) and postcondition (what is 
true after its application). A rule consists of two logical 
formulas, written as 

P+Q 

where P is the precondition and Q is the postcondition. 
(Note that ’ -+ ’ is a procedural construct and ‘j’ is the 
symbol for implication.) 

The part of BC that compiles the logic assertion 
specification into rules is called the Logic Assertion 
Compiler (LAC). F rom an assertion, which could be used 
to make many different inferences, and instructions stat- 
ing which particular inference and in what context, LAC 
produces a rule that is a specification of that particular 
inference. The part of BC that compiles rules into Lisp 
is the Rule Compiler (RC). It works by a process of step- 
wise refinement similar to other transformational systems 
such as PECOS [B arstow, 19791, TI [Balzer, 19811, and 
[Burstall and D 1 gt ar in on, 19771. At intermediate stages of 
refinement the program contains a mixture of constructs 
from very-high-level to low-level, so a wide-spectrum lan- 
guage must be used that includes all these constructs in a 
unified framework. 

LAC 

1 

Logic Assertion 

Figure 1. Structure of BC 

Compiler 

The language used by BC is called V and it is the 
language used throughout CHI. V was initially defined 
by Phillips [Phillips, 19821 and has since been refined 
and extended by the CHI group. It contains a number 
of integrated sub-languages: a first-order predicate logic 
language, VLogic, which is the basic specification language 
used by BC; a rule language, VRL; a procedural language, 
VP;,and the target language Lisp. 

2.1 Procedural Use of Assertions 

LAC compiles a specification written in VLogic asser- 
tions by converting each assertion into an inference pro- 
cedure specialized to that assertion. The user specifies 
which particular inference procedure should be used. BC 
provides three dimensions of choice for the type of in- 
ference procedure. The first corresponds to the general 
form of the assertion that is used: either an implication 

or 
of 

P=+Q 

an equality (with equivalence considered a special case 
equality) 

p=9- 

Each of the general forms may have a precondition which 
is written as the antecedent of an implication with the 
form as the consequent. For example: r ==+ p=q can be 
considered an equality with precondition r. It may also 
be treated as an implication. 

The second dimension corresponds to the direction of 
use of the general form: from left, to right or right to 
left. For implication, the former corresponds to forward 
or data-driven inference and the latter to backward or, 
goal-directed inference. Considering the assertion as a 
constraint, the former corresponds to enforcing the con- 
straint and the latter to using or taking advantage of 
the constraint. An equality is commutative, but typically 
there is a directionality associated with each one. For ex- 
ample, a function j can be defined using an equality of 
the form j(z)=def. 

The third dimension is choice of compile-time versus 
run-time use of an assertion. Use of an assertion at com- 
pile time provides the possibility for circumventing the 
clean specification-level interfaces and producing efficient, 
tangled code. The result of compiling an assertion for 
compile-time use is a procedure that affects the compila- 
tion of other code. 

An important use of assertions at compile time is to 
maintain and use them as constraints. Constraint incor- 
poration is done at the stage of compilation where a proce- 
dure is expressed as a rule. Rule compilation involves us- 
ing the rule to form a statement in logic of the relationship 
between the computation states before and after the rule 
application, and then producing a procedure that, given 
an initial state, will produce a new state that satisfies 
the relationship. The intermediate statement in logic is a 
convenient form for performing inference to incorporate 
constraints stated in logic assertions. 



Use of an assertion at run time requires converting 
it to the run-time constructs available in the target en- 
vironment. Therefore we need to consider two models 
of computation: the model of computation as inference 
at the specification level and the Lisp model which is 
basically a recursive function model. This means that 
any run-time inferences have to be put into a functional 
form. Goal-directed, run-time inference can be imple- 
mented efficiently using Lisp functions. This may involve 
adding an extra definition so that the goal is in the form 
of a function call. 

In order to implement forward-inference procedures we 
need some extra machinery in the target environment. 
The procedures need to be attached somewhere so that 
they are triggered at the appropriate time, and they need 
to be able to store the values that they compute so that 
the values are found when wanted. This can be done 
with a database of [function, argument, value] triples 
that are indexed by the function and argument. BC 
uses a database that stores objects (the things that may 
be function arguments) as mappings from functions to 
values. Functions that are treated in this way are called 
properties. Storing the value of a property in the database 
may trigger attached forward inference procedures which 
may store values for other properties. When the value 
of a property is needed, the database is examined to see 
if there is a stored value, otherwise a Lisp function for 
computing the value is called, if there is one. 

2.2 Specifying How to Use an Assertion 

The ways an assertion is used are specified by attach- 
ing simple meta-assertions to the assertion. This section 
describes the basic options provided by BC. 

Run-time use is encapsulated as a function. For for- 
ward use it is necessary to specify the triggering form that 
causes the function to be called. For backward use it is 
necessary to specify the name of the function whose value 
is to be computed: 

triggered-by formr, forma, . . . 
(the formi are the triggering forms) 

computes fni, fna, . . . 
(the fn; are the functions 

(Closed functions) 
to be computed) 

Other options are: 

memo (Save computes values in database) 
check (Give an error if assertion violated) 

For compile-time use it is necessary to specify whether 
the assertion is to be used as a constraint for optimiza- 
tion or as a constraint to be maintained (or both), or for 
transforming some forms into equivalent ones. 

compile-optimize form (Backward) 
(Use the assertion to remove redundant tests) 

compile-in-line form (Forward) 
(Add in-line code to maintain the constraint) 

compile-transform form 
(Transform form to an equivalent form) 

For convenience the forms may be referred to by their 
primary function if this is an unambiguous referent. 

These are the basic meta-level annotations. Internally, 
they are simply meta-level properties of assertions. New 
annotations can be defined in terms of these basic ones 
using logic assertions at the meta-level from which BC can 
produce demons that, given the new annotation, generate 
the equivalent basic annotations. 

2.3 The Implementation of BC 

BC is written primarily in its own languages-VLogic 
and VRL. ,4 basic version of RC was written in Lisp and 
then the VRL specification of RC was compiled and this 
version replaced the Lisp version. The implementation 
of LAC is at the stage where it can compile assertions 
given in the exact form needed for the particular use of 
it. The part of LAC that preprocesses assertions to get 
them into the correct form has been designed and is in the 
process of being implemented. BC has been developed in 
Interlisp [Teitelman and Masinter, 19811 on a DEC 2060 
machine and then in Zetalisp [Weinreb and Moon, 19811 
using the Interlisp Compatibility Package on Symbolics 
3600 machines. 

53 Example Implementations of Knowledge 
Representation Features 

The examples begin with a simple database that only 
provides storage and retrieval of binary-relation triples, 
This is used as the basis for defining knowledge repre- 
sentation features. The examples presented are for main- 
tenance of inverse links and property inheritance. Other 
features that have been specified are specialized treatment 
of transitivity, attached procedures, and memoing of com- 
puted properties. 

3.1 Maintaining Inverse Links 

The first example is the task of maintaining inverse 
links in a database. This requires that whenever f(z)=y 
is stored in the database, f-‘(y)=z is also stored. The 
language used is introduced informally as necessary. The 
basic assertion is: 

inverse (f)= g A one-to- one (f) =+ 
f(z)=y - g(y)=z 

By convention, unbound variables are universally 
quantified, so f, g, z and y are universally quantified over 
this assertion. 
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3.1.1 Maintaining ’ the Constraint with a Run-time 
Procedure 

One way of maintaining the constraint is to attach 
a demon function that is executed to add the inverse 
whenever a property is stored. This can be specified as 
follows: 

inverse (f>=g A one-to-one(f) =+ 

fb>=y = g(y)=2 
triggered-by f(z)=y 

where “triggered-by p” is a meta-level annotation that 
means whenever p is asserted (stored) the assertion should 
be made true. 

LAC produces the following demon from this 
specification: 

trigger f( z)=y 
inverse (f)= g A one-to-one(f) A 1 DB(g(y)=z) 

+ ~B(g(Y)=4 

This uses a generalized demon construct which con- 
sists of a triggering event-in this case the assertion that 
f(z)=y, and a procedure body-in this case a rule whose 
applicability condition (left-hand side) is inverse (f)=g A 
one- to-one(f) A 1 DB( g(y)=z) and whose action is to 
make its right-hand side DB( g( y)=z) true in the new 
state. DB( z) is true if and only if z is stored in the 
database. The DB predicate is used to distinguish some- 
thing that is true because it is explicitly stored in the 
database from something being true because it is im- 
plied by the database. Thus the condition 1 DB( g( y)=z) 
prevents the rule from applying if its action would be 
redundant. This prevents the possibility of infinite and 
ineffectual forward chaining. 

RC compiles the rule into the following Clisp code: 

(if (db-get f ‘one-to-one) 
then (let ((g (db-get f ‘inverse))) 

(if (NEQ (db-get y g) x) 
then (db-put y g x)))) 

which is executed whenever a property is stored in the 
database. (db-get x y) and (db-put x y z) are functions 
for retrieving from and storing into the database, respec- 
tively. Basically what RC does in this simple example 
is decide the order in which conjuncts are used and how 
each conjunct is to be used--either tested or used to bind 
a variable. 

3.1.2 Maintaining the Constraint with In-line Code 

An alternative way to maintain the constraint is to add 
in-line code, specified as follows: 

inverse (f)=g A one-to-one(f) =$ 

f(z)=y - g(y)=2 
compile-in-line j(z)=y 

where “compile-in-line p” means that whenever code 
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that makes p true is being compiled, add extra code to 
make the assertion true. 

procedure The compile-time rule 
code is: 

for adding this in-line 

a=‘Sutisfy (f(z)=y)’ 
A inverse (f)=g A one-to-one (f) 

+ u=‘!htisfy(f(z)=y A g(y)=z)’ 

which, for example, transforms Sutisfy(Ihs(m)=n) 
into Satisfy(lhs(m)=n A lhs-of(n)=m) where 
inverse (lhs)= lhs-of. Th e f orms in single bold quotes act 
as patterns that on the left-hand side match expressions 
and on the right-hand side cause new expressions to be 
constructed. Satisfy(p) means change the state to make 
p be true. It is used as an intermediate form in compil- 
ing rules, that is later transformed into code to make the 
desired change of state. 

The constraint may also be used to optimize a test of 
f(r)=y A f-‘(y)=2 t 0 a test of just f(z)=y. It may 
also be used to replace f (z)=y by f -‘(y)=z, which is 
useful, for example, when another rule is looking for z as 
a function of y. 

3.2 Property Inheritance 

This section shows how an implementation scheme can 
be described by stating a single invariant and the ways 
that it is to be maintained and used. BC derives code for 
each of the procedures that maintain or use the invariant 
from the single specification of the invariant, so all the 
procedures are consistent. 

The type of property inheritance in this example is all 
members of a set having the same value for a property. 
For example, if all elephants are the color grey, and Clyde 
is an elephant, then we can deduce that Clyde is the color 
grey. Using VLogic these statements are: 

if z E elephants =+ color (z)=grey 
and Clyde E elephants 
then the database system should deduce that 

color (CIyde)=grey 
when asked for color(Clyde). 

A scheme for doing this is for each property that has 
this inheritance behavior (e.g. color), to introduce a cor- 
responding property that applies to the set as a whole 
(e.g. color-of-all) and connect these two properties by the 
property all-prop (so all-prop ( coloT )= color-of-all). 

This scheme can be described by the invariant: 

(z E s =+ p(z)=p-of-all(S)) z all-prop(p)=p-of-all 

In the following, I refer to this as the “scheme 
invariant.” We want to use this invariant to 



compute p(z) when applicable. For example, the 

value of color (Clyde) is color-of-ull(elephants) because 
al l-prop (cola? )= color- of-all. To maintain the invariant 
we need to update all-prop and the instances of p-of-all. 
For example, when x E S=+ color(x)=color-of-all(S) is as- 
serted, we need to make all-prop(colo7)=color-of-all, and 
later, when z E elephants =+ color(z)=grey is asserted, we 
need to make color-of-ull(elephants)=grey. These uses 
of the assertion are expressed by saying that it is used 
to compute p and used to maintain all-prop and p-of-all. 
The complete specification of this in BC is: 

(x E s =$ p(x)=p-of-all(S)) - all-prop(p)=p-of-all 
computes p 
triggered-by z E S * p(z)=~, 

x E s =N p(x)=p-of-all(S) 

Before looking at how each of the three procedures 
is derived from this specification, we mention an alter- 
native, similar scheme to emphasize that this constraint 
could be used in different ways: instead of computing p 
when needed it could be maintained. In this case, when 
Clyde E elephants is stored then color (Clyde)=grey is also 
stored. 

3.2.1 Computing an Inherited Property 

The first case is deriving a partial procedure for com- 
puting p(z) f rom the scheme invariant, for example com- 
puting color (Clyde) as color-of-all (elephants). First LAC 
converts the scheme invariant to the form r + p(z)=d by 
treating the equivalence as a right-to-left implication and 
merging the nested implications into a single implication 
with a conjunction as antecedent: 

(x E s =+ p(x)=p-of-all(S)) - all-prop(p)=p-of-all 

becomes 

all-pTop (p)=p-of-all A z E S =+ p(x)=p-of-all(S). 

From this, LAC produces the partial function: 

function p(x) 
all-prop (p)=p-of-all A x E S 

+ value (p-of-all(S)) 

where value (x) means 
value of the function. 

that z should be returned as the 

3.2.2 Maintaining Inheritance Links 

The second procedure is necessary to ensure 
that all-prop is stored whenever a relevant univer- 
sal statement is made. For example, when 
x E S + color(z)=color-of-all(S) is asserted, it makes 
all-prop (color)= color-of-all. 

This involves using the equivalence of the scheme in- 
variant as a left-to-right implication, and using the left- 
hand side as a triggering condition for the procedure. The 

resulting demon is stated: 

trigger 2 E S 3 p(x)=p-of-all(S) 
true + all-prop (p)=p-of-all. 

3.2.3 Maintaining Inheritable Properties 

The third procedure is necessary to store p-of-all 
when suitable universal statements are made. For 
example, when x E elephants + color( x)=grey is as- 
serted, it adds color-of-ull(elephants)=grey (assuming 
that all-prop (color )=color-of-all). 

LAC converts the scheme assertion into the form q =+ 
p-of-ull(S)=d b y introducing a new variable v whose 
value is equal to p(x) and p-of-all(S) in order to split 
the equality p(x)=p-of-all(S). This converts the scheme 
invariant: 

2 E S =$ p(x)=p-of-all(S) E all-prop(p)=p-of-all 

into 

all-prop(p)=p-of-all A (2: E S =+ p(x)=v) 
* p-of-all(S)=v. 

Choosing the second conjunct as the trigger gives the 
following demon procedure: 

trigger x f S =+ p(x)=v 
all-prop (p)=p-of-all + p-of-all(S)=v. 

3.3 Default Inheritance 

In many AI systems a variation of the above scheme is 
implemented in which a specific value of property for an 
individual may be given which conflicts with the value for 
the property given by the sets the individual is a member 
of. In other words, the property value stored on the set 
is a default value to be used only if a specific value for a 
particular individual is not known. We can express the 
default scheme in our logic using the DB predicate. The 
default inheritance scheme is basically the same as the 
direct scheme with an extra condition: 

(DB(p(x)=l) A xE S =k p(x)=p-of-most(S)) = 
most-prop(p)=p-of-most 

where I_ means undefined. 

In fact, typically a stronger condition is used so that if 
there are two sets with a most-prop value with one set a 
subset of the other, then the smaller set is used. This can 
be expressed by adding the further condition 13 Si [Si C 
S A x E 5’1 A p-of-most (Sl) # _L]. The procedures neces- 
sary to carry out this scheme are all derived similarly to 
the ones above. 
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$4 Related Work 

The specification language for BC is logic, which can 
be used to express knowledge. However, the main utility 
of BC with respect to knowledge representation, is the 
facility with which it allows knowledge representation 
schemes to be described and implemented. Knowledge 
representation schemes may be defined that have no 
relation to logic. However, the ability of BC to use 
logic encourages the specifier to relate knowledge repre- 
sentation schemes to logic. For example, the formulation 
of property inheritance given in section 3.2 is in terms 
of sets, quantification, and relations between properties. 
A similar scheme inheriting properties from prototypical 
elements is a little more difficult to express because the 
relation to logic is less direct. Hayes and Nilsson, amongst 
others, have argued that knowledge representation lan- 
guages should be analyzed using logic in order that they 
may be better understood and the different languages 
compared more easily [Hayes, 19791, [Nilsson, 19801. BC 
allows logic to be used as a tool for synthesis. 

Other systems for building knowledge-based systems 
are EMYCIN [van Melle, 19801, AGE [Nii and Aiello, 
19793, LOOPS [Stefik et al., 19831 and MRS [Genesereth 
et al., 19831. These systems supply a set of facilities 
that are useful for building knowledge-based systems. BC 
t,akes a more programming-oriented view in that it al- 
lows useful facilities to be programmed easily. It may 
be useful for a system builder to draw on a library of 
knowledge representation features specified in BC, but 
these may be combined flexibly and modified as needed 
for the particular system and tightly integrated because of 
their specification in BC. MRS, like BC, aims to decouple 
the specification language of the user from the implemen- 
tation of the system. This goal is in contrast to knowledge 
representations such as semantic networks and frame 
systems where the specification language used is more 
closely linked to the actual implemented representations. 
MRS provides the user with a few implementation choices 
whereas BC provides tools for the user to speci.fy how to 
compile knowledge. 
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