
VERY-HIGH-LEVEL PROGRAM-MING OF
KNOWLEDGE REPRESENTATION SCHEMES

Stephen J. Westfold
Stanford University and

Kestrel Institute, Palo Alto, CA 94304

ABSTRACT

This paper proposes building knowledge-based systems
using a programming system based on a very-high-level
language. It gives an overview of such a programming
system, BC, and shows how BC can be used to implement
knowledge representation features, providing as examples,
automatic maintenance of inverse links and property in-
heritance. The specification language of BC can be ex-
tended to include a knowledge representation language
by describing its knowledge representation features. This
permits a knowledge-based program and its knowledge
base to be written in the same very-high-level language
which allows the knowledge to be more efficiently incor-
porated into the program as well as making the system as
a whole easier to understand and extend.

fj 1 Introduction

A knowledge-based system typically consists of a pro-
gram and a knowledge base that the program uses. The
knowledge base is expressed in a special knowledge repre-
sentation language that is essentially a very-high-level lan-
guage that the program interprets. This paper describes
a very-high-level language programming system, BC, and
shows how BC can be used to define knowledge repre-
sentation languages so that they can be efficiently com-
piled. Furthermore, the knowledge-based program itself
can be specified in BC using the same techniques with
the same advantages of ease of comprehension and main-
tainability that are associated with the knowledge base.
This allows the knowledge base to be viewed as part of
the specification of the program, which is the key to its
efficient incorporation into the program. In this way BC
may be viewed as a knowledge compiler, pre-processing
knowledge so that it is used efficiently in the knowledge-
based system.

This research is supported in part by the Defense Advanced Re-
search Projects Agency Contract NOOOld-81-C-0582, monitored by
the Office of Naval Research. The views and conclusions contained
in this paper are those of the author and should not be interpreted
as representing the official policies, either expressed or implied of
KESTREL, DARPA, ONR or the US Government.

BC allows programs to be factored into a descrip-
tion of the problem to be solved and a description of
the implementation of the solution. The implementation
description can include schemes for representing entities
of the problem description or solving particular types of
sub-problem. BC can be used to define implementation
schemes for knowledge representation features such as
property inheritance, inverse link maintenance, and proce-
dural attachment. The definitions of the. first two of these
features are given later in this paper. BC is described
fully in [Westfold, 19841.

The specification language for EC is basically a mathe-
matical language including logic, sets, relations, and func-
tions. This very-high-level language is convenient for
defining new language constructs in terms of existing con-
structs, and t.here is a mechanism for defining syntax for
the new constructs. Thus the system designer can define
a language that is convenient for system users; the parser
converts this language into relations that are defined in
terms of mathematical objects that have properties that
facilitate their manipulation (compilation) by BC. By use
of manipulation such as equivalence transformation BC
can produce an implemented program whose structure is
quite different from that of the problem specification. In
other words, convenient, uniform interfaces can be defined
for the user and to facilitate the description of the different
components of the system, but the implementation can be
non-uniform, crossing interfaces and taking advantage of
different views of the problem domain in order to produce
an efficient program.

The ideas in this paper are being tested by using BC
in building the CHI knowledge-based programming sys-
tem [Green et al., 19811. CHI includes the following com-
ponents, all of which make use of BC in their specification
and implementation: data structure selection, algorithm
design, parallel algorithm derivation, and project manage-
ment, the database manager, program analysis, finite
differencing, and BC itself. Many of these components are
useful in building knowledge-based systems, so CHI as a
whole is better than just RC for building knowledge-based
systems.

344

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

$2 Overview of BC

BC is essentially a compiler that produces Lisp code
from a specification in the form of logic assertions. The
specification consists of three parts: the basic definition
of the problem domain; the definition of auxiliary ob-
jects that are needed in an efficient implementation of the
problem domain; and information about how the defining
assertions are to be used procedurally. It is convenient to
identify and use an intermediate rule language in going
from the logic assertion language to procedural Lisp. A
rule specifies an action (procedure) in terms of its precon-
dition (applicability condition) and postcondition (what is
true after its application). A rule consists of two logical
formulas, written as

P+Q

where P is the precondition and Q is the postcondition.
(Note that ’ -+ ’ is a procedural construct and ‘j’ is the
symbol for implication.)

The part of BC that compiles the logic assertion
specification into rules is called the Logic Assertion
Compiler (LAC). F rom an assertion, which could be used
to make many different inferences, and instructions stat-
ing which particular inference and in what context, LAC
produces a rule that is a specification of that particular
inference. The part of BC that compiles rules into Lisp
is the Rule Compiler (RC). It works by a process of step-
wise refinement similar to other transformational systems
such as PECOS [B arstow, 19791, TI [Balzer, 19811, and
[Burstall and D 1 gt ar in on, 19771. At intermediate stages of
refinement the program contains a mixture of constructs
from very-high-level to low-level, so a wide-spectrum lan-
guage must be used that includes all these constructs in a
unified framework.

LAC

1

Logic Assertion

Figure 1. Structure of BC

Compiler

The language used by BC is called V and it is the
language used throughout CHI. V was initially defined
by Phillips [Phillips, 19821 and has since been refined
and extended by the CHI group. It contains a number
of integrated sub-languages: a first-order predicate logic
language, VLogic, which is the basic specification language
used by BC; a rule language, VRL; a procedural language,
VP;,and the target language Lisp.

2.1 Procedural Use of Assertions

LAC compiles a specification written in VLogic asser-
tions by converting each assertion into an inference pro-
cedure specialized to that assertion. The user specifies
which particular inference procedure should be used. BC
provides three dimensions of choice for the type of in-
ference procedure. The first corresponds to the general
form of the assertion that is used: either an implication

or
of

P=+Q

an equality (with equivalence considered a special case
equality)

p=9-

Each of the general forms may have a precondition which
is written as the antecedent of an implication with the
form as the consequent. For example: r ==+ p=q can be
considered an equality with precondition r. It may also
be treated as an implication.

The second dimension corresponds to the direction of
use of the general form: from left, to right or right to
left. For implication, the former corresponds to forward
or data-driven inference and the latter to backward or,
goal-directed inference. Considering the assertion as a
constraint, the former corresponds to enforcing the con-
straint and the latter to using or taking advantage of
the constraint. An equality is commutative, but typically
there is a directionality associated with each one. For ex-
ample, a function j can be defined using an equality of
the form j(z)=def.

The third dimension is choice of compile-time versus
run-time use of an assertion. Use of an assertion at com-
pile time provides the possibility for circumventing the
clean specification-level interfaces and producing efficient,
tangled code. The result of compiling an assertion for
compile-time use is a procedure that affects the compila-
tion of other code.

An important use of assertions at compile time is to
maintain and use them as constraints. Constraint incor-
poration is done at the stage of compilation where a proce-
dure is expressed as a rule. Rule compilation involves us-
ing the rule to form a statement in logic of the relationship
between the computation states before and after the rule
application, and then producing a procedure that, given
an initial state, will produce a new state that satisfies
the relationship. The intermediate statement in logic is a
convenient form for performing inference to incorporate
constraints stated in logic assertions.

Use of an assertion at run time requires converting
it to the run-time constructs available in the target en-
vironment. Therefore we need to consider two models
of computation: the model of computation as inference
at the specification level and the Lisp model which is
basically a recursive function model. This means that
any run-time inferences have to be put into a functional
form. Goal-directed, run-time inference can be imple-
mented efficiently using Lisp functions. This may involve
adding an extra definition so that the goal is in the form
of a function call.

In order to implement forward-inference procedures we
need some extra machinery in the target environment.
The procedures need to be attached somewhere so that
they are triggered at the appropriate time, and they need
to be able to store the values that they compute so that
the values are found when wanted. This can be done
with a database of [function, argument, value] triples
that are indexed by the function and argument. BC
uses a database that stores objects (the things that may
be function arguments) as mappings from functions to
values. Functions that are treated in this way are called
properties. Storing the value of a property in the database
may trigger attached forward inference procedures which
may store values for other properties. When the value
of a property is needed, the database is examined to see
if there is a stored value, otherwise a Lisp function for
computing the value is called, if there is one.

2.2 Specifying How to Use an Assertion

The ways an assertion is used are specified by attach-
ing simple meta-assertions to the assertion. This section
describes the basic options provided by BC.

Run-time use is encapsulated as a function. For for-
ward use it is necessary to specify the triggering form that
causes the function to be called. For backward use it is
necessary to specify the name of the function whose value
is to be computed:

triggered-by formr, forma, . . .
(the formi are the triggering forms)

computes fni, fna, . . .
(the fn; are the functions

(Closed functions)
to be computed)

Other options are:

memo (Save computes values in database)
check (Give an error if assertion violated)

For compile-time use it is necessary to specify whether
the assertion is to be used as a constraint for optimiza-
tion or as a constraint to be maintained (or both), or for
transforming some forms into equivalent ones.

compile-optimize form (Backward)
(Use the assertion to remove redundant tests)

compile-in-line form (Forward)
(Add in-line code to maintain the constraint)

compile-transform form
(Transform form to an equivalent form)

For convenience the forms may be referred to by their
primary function if this is an unambiguous referent.

These are the basic meta-level annotations. Internally,
they are simply meta-level properties of assertions. New
annotations can be defined in terms of these basic ones
using logic assertions at the meta-level from which BC can
produce demons that, given the new annotation, generate
the equivalent basic annotations.

2.3 The Implementation of BC

BC is written primarily in its own languages-VLogic
and VRL. ,4 basic version of RC was written in Lisp and
then the VRL specification of RC was compiled and this
version replaced the Lisp version. The implementation
of LAC is at the stage where it can compile assertions
given in the exact form needed for the particular use of
it. The part of LAC that preprocesses assertions to get
them into the correct form has been designed and is in the
process of being implemented. BC has been developed in
Interlisp [Teitelman and Masinter, 19811 on a DEC 2060
machine and then in Zetalisp [Weinreb and Moon, 19811
using the Interlisp Compatibility Package on Symbolics
3600 machines.

53 Example Implementations of Knowledge
Representation Features

The examples begin with a simple database that only
provides storage and retrieval of binary-relation triples,
This is used as the basis for defining knowledge repre-
sentation features. The examples presented are for main-
tenance of inverse links and property inheritance. Other
features that have been specified are specialized treatment
of transitivity, attached procedures, and memoing of com-
puted properties.

3.1 Maintaining Inverse Links

The first example is the task of maintaining inverse
links in a database. This requires that whenever f(z)=y
is stored in the database, f-‘(y)=z is also stored. The
language used is introduced informally as necessary. The
basic assertion is:

inverse (f)= g A one-to- one (f) =+
f(z)=y - g(y)=z

By convention, unbound variables are universally
quantified, so f, g, z and y are universally quantified over
this assertion.

346

3.1.1 Maintaining ’ the Constraint with a Run-time
Procedure

One way of maintaining the constraint is to attach
a demon function that is executed to add the inverse
whenever a property is stored. This can be specified as
follows:

inverse (f>=g A one-to-one(f) =+

fb>=y = g(y)=2
triggered-by f(z)=y

where “triggered-by p” is a meta-level annotation that
means whenever p is asserted (stored) the assertion should
be made true.

LAC produces the following demon from this
specification:

trigger f(z)=y
inverse (f)= g A one-to-one(f) A 1 DB(g(y)=z)

+ ~B(g(Y)=4

This uses a generalized demon construct which con-
sists of a triggering event-in this case the assertion that
f(z)=y, and a procedure body-in this case a rule whose
applicability condition (left-hand side) is inverse (f)=g A
one- to-one(f) A 1 DB(g(y)=z) and whose action is to
make its right-hand side DB(g(y)=z) true in the new
state. DB(z) is true if and only if z is stored in the
database. The DB predicate is used to distinguish some-
thing that is true because it is explicitly stored in the
database from something being true because it is im-
plied by the database. Thus the condition 1 DB(g(y)=z)
prevents the rule from applying if its action would be
redundant. This prevents the possibility of infinite and
ineffectual forward chaining.

RC compiles the rule into the following Clisp code:

(if (db-get f ‘one-to-one)
then (let ((g (db-get f ‘inverse)))

(if (NEQ (db-get y g) x)
then (db-put y g x))))

which is executed whenever a property is stored in the
database. (db-get x y) and (db-put x y z) are functions
for retrieving from and storing into the database, respec-
tively. Basically what RC does in this simple example
is decide the order in which conjuncts are used and how
each conjunct is to be used--either tested or used to bind
a variable.

3.1.2 Maintaining the Constraint with In-line Code

An alternative way to maintain the constraint is to add
in-line code, specified as follows:

inverse (f)=g A one-to-one(f) =$

f(z)=y - g(y)=2
compile-in-line j(z)=y

where “compile-in-line p” means that whenever code

347

that makes p true is being compiled, add extra code to
make the assertion true.

procedure The compile-time rule
code is:

for adding this in-line

a=‘Sutisfy (f(z)=y)’
A inverse (f)=g A one-to-one (f)

+ u=‘!htisfy(f(z)=y A g(y)=z)’

which, for example, transforms Sutisfy(Ihs(m)=n)
into Satisfy(lhs(m)=n A lhs-of(n)=m) where
inverse (lhs)= lhs-of. Th e f orms in single bold quotes act
as patterns that on the left-hand side match expressions
and on the right-hand side cause new expressions to be
constructed. Satisfy(p) means change the state to make
p be true. It is used as an intermediate form in compil-
ing rules, that is later transformed into code to make the
desired change of state.

The constraint may also be used to optimize a test of
f(r)=y A f-‘(y)=2 t 0 a test of just f(z)=y. It may
also be used to replace f (z)=y by f -‘(y)=z, which is
useful, for example, when another rule is looking for z as
a function of y.

3.2 Property Inheritance

This section shows how an implementation scheme can
be described by stating a single invariant and the ways
that it is to be maintained and used. BC derives code for
each of the procedures that maintain or use the invariant
from the single specification of the invariant, so all the
procedures are consistent.

The type of property inheritance in this example is all
members of a set having the same value for a property.
For example, if all elephants are the color grey, and Clyde
is an elephant, then we can deduce that Clyde is the color
grey. Using VLogic these statements are:

if z E elephants =+ color (z)=grey
and Clyde E elephants
then the database system should deduce that

color (CIyde)=grey
when asked for color(Clyde).

A scheme for doing this is for each property that has
this inheritance behavior (e.g. color), to introduce a cor-
responding property that applies to the set as a whole
(e.g. color-of-all) and connect these two properties by the
property all-prop (so all-prop (coloT)= color-of-all).

This scheme can be described by the invariant:

(z E s =+ p(z)=p-of-all(S)) z all-prop(p)=p-of-all

In the following, I refer to this as the “scheme
invariant.” We want to use this invariant to

compute p(z) when applicable. For example, the

value of color (Clyde) is color-of-ull(elephants) because
al l-prop (cola?)= color- of-all. To maintain the invariant
we need to update all-prop and the instances of p-of-all.
For example, when x E S=+ color(x)=color-of-all(S) is as-
serted, we need to make all-prop(colo7)=color-of-all, and
later, when z E elephants =+ color(z)=grey is asserted, we
need to make color-of-ull(elephants)=grey. These uses
of the assertion are expressed by saying that it is used
to compute p and used to maintain all-prop and p-of-all.
The complete specification of this in BC is:

(x E s =$ p(x)=p-of-all(S)) - all-prop(p)=p-of-all
computes p
triggered-by z E S * p(z)=~,

x E s =N p(x)=p-of-all(S)

Before looking at how each of the three procedures
is derived from this specification, we mention an alter-
native, similar scheme to emphasize that this constraint
could be used in different ways: instead of computing p
when needed it could be maintained. In this case, when
Clyde E elephants is stored then color (Clyde)=grey is also
stored.

3.2.1 Computing an Inherited Property

The first case is deriving a partial procedure for com-
puting p(z) f rom the scheme invariant, for example com-
puting color (Clyde) as color-of-all (elephants). First LAC
converts the scheme invariant to the form r + p(z)=d by
treating the equivalence as a right-to-left implication and
merging the nested implications into a single implication
with a conjunction as antecedent:

(x E s =+ p(x)=p-of-all(S)) - all-prop(p)=p-of-all

becomes

all-pTop (p)=p-of-all A z E S =+ p(x)=p-of-all(S).

From this, LAC produces the partial function:

function p(x)
all-prop (p)=p-of-all A x E S

+ value (p-of-all(S))

where value (x) means
value of the function.

that z should be returned as the

3.2.2 Maintaining Inheritance Links

The second procedure is necessary to ensure
that all-prop is stored whenever a relevant univer-
sal statement is made. For example, when
x E S + color(z)=color-of-all(S) is asserted, it makes
all-prop (color)= color-of-all.

This involves using the equivalence of the scheme in-
variant as a left-to-right implication, and using the left-
hand side as a triggering condition for the procedure. The

resulting demon is stated:

trigger 2 E S 3 p(x)=p-of-all(S)
true + all-prop (p)=p-of-all.

3.2.3 Maintaining Inheritable Properties

The third procedure is necessary to store p-of-all
when suitable universal statements are made. For
example, when x E elephants + color(x)=grey is as-
serted, it adds color-of-ull(elephants)=grey (assuming
that all-prop (color)=color-of-all).

LAC converts the scheme assertion into the form q =+
p-of-ull(S)=d b y introducing a new variable v whose
value is equal to p(x) and p-of-all(S) in order to split
the equality p(x)=p-of-all(S). This converts the scheme
invariant:

2 E S =$ p(x)=p-of-all(S) E all-prop(p)=p-of-all

into

all-prop(p)=p-of-all A (2: E S =+ p(x)=v)
* p-of-all(S)=v.

Choosing the second conjunct as the trigger gives the
following demon procedure:

trigger x f S =+ p(x)=v
all-prop (p)=p-of-all + p-of-all(S)=v.

3.3 Default Inheritance

In many AI systems a variation of the above scheme is
implemented in which a specific value of property for an
individual may be given which conflicts with the value for
the property given by the sets the individual is a member
of. In other words, the property value stored on the set
is a default value to be used only if a specific value for a
particular individual is not known. We can express the
default scheme in our logic using the DB predicate. The
default inheritance scheme is basically the same as the
direct scheme with an extra condition:

(DB(p(x)=l) A xE S =k p(x)=p-of-most(S)) =
most-prop(p)=p-of-most

where I_ means undefined.

In fact, typically a stronger condition is used so that if
there are two sets with a most-prop value with one set a
subset of the other, then the smaller set is used. This can
be expressed by adding the further condition 13 Si [Si C
S A x E 5’1 A p-of-most (Sl) # _L]. The procedures neces-
sary to carry out this scheme are all derived similarly to
the ones above.

348

$4 Related Work

The specification language for BC is logic, which can
be used to express knowledge. However, the main utility
of BC with respect to knowledge representation, is the
facility with which it allows knowledge representation
schemes to be described and implemented. Knowledge
representation schemes may be defined that have no
relation to logic. However, the ability of BC to use
logic encourages the specifier to relate knowledge repre-
sentation schemes to logic. For example, the formulation
of property inheritance given in section 3.2 is in terms
of sets, quantification, and relations between properties.
A similar scheme inheriting properties from prototypical
elements is a little more difficult to express because the
relation to logic is less direct. Hayes and Nilsson, amongst
others, have argued that knowledge representation lan-
guages should be analyzed using logic in order that they
may be better understood and the different languages
compared more easily [Hayes, 19791, [Nilsson, 19801. BC
allows logic to be used as a tool for synthesis.

Other systems for building knowledge-based systems
are EMYCIN [van Melle, 19801, AGE [Nii and Aiello,
19793, LOOPS [Stefik et al., 19831 and MRS [Genesereth
et al., 19831. These systems supply a set of facilities
that are useful for building knowledge-based systems. BC
t,akes a more programming-oriented view in that it al-
lows useful facilities to be programmed easily. It may
be useful for a system builder to draw on a library of
knowledge representation features specified in BC, but
these may be combined flexibly and modified as needed
for the particular system and tightly integrated because of
their specification in BC. MRS, like BC, aims to decouple
the specification language of the user from the implemen-
tation of the system. This goal is in contrast to knowledge
representations such as semantic networks and frame
systems where the specification language used is more
closely linked to the actual implemented representations.
MRS provides the user with a few implementation choices
whereas BC provides tools for the user to speci.fy how to
compile knowledge.

References

[Balzer, 19811 Robert Balzer “Transformational
Implementation: An Example,” IEEE Transactions on
Software Engineering, January, 1981, pp. 3-14.

[Barstow, 19791 David Barstow. Knowledge-Based
Program Construction. The Computer Science
Library, Programming Language Series. Elsevier-North
Holland Inc. New York. 1979.

[Burstall and Darlington, 19771 Rod M. Burstall and
John Darlington. “A Transformation System for Develo-
ping Recursive Programs J ” in Journal of the ACM. Vol.
24 No. 1. January, 1977. pp. 44-67.

[Genesereth et al., 19831 Michael Genesereth,
Russell Greiner, and Dave Smith. “A Me tu-level
Representation System, IJ Memo HPP-83-28, Computer
Science Department, Stanford University, December 1980.

[Green et al., 19811 Cordell Green, Jorge Phillips,
Stephen Westfold, Tom Pressburger, Susan Angebranndt,
Beverly Kedzierski, Bernard Mont-Reynaud, and Daniel
Chapiro, “Towards a Knowledge-Based Programming
System J ” Kestrel Institute Technical Report KES.U.81.1
March, 1981.

[Green and Westfold, 19821 Cordell Green, Stephen
Westfold. “Knowledge-Based Programming Self Applied,”
in Machine Intelligence 10. Ellis Forward and Halsted
Press (John Wiley). 1982.

[Hayes, 19791 P. J. Hayes. “The Logic of Frames, ” in B.
L. Webber and N. J. Nilsson (eds) Readings in Artificial
Intelligence. Tioga Publishing Company, Palo Alto, Ca.,
1979.

[Nii and Aiello, 19791 1-I. Penny Nii and Nelleke
Aiello. “AGE (Attempt to Generalize): A Knowledge-
Based Program for Building Knowledge-Bused Programs J ”
in Proceedings of the Sixth International Joint
Conference on Artificial Intelligence. Tokyo, Japan,
1979, pp. 645-655.

[Nilsson, 19801 Nils J. Nilsson, Principles of Artificial
Intelligence. Tioga Publishing Company, Palo Alto, Ca.,
1980.

[Phillips, 1982) Jorge Phillips, Self-Described
Programming Environments: -4n Application of a
Theory of Design to Programming Systems. Ph.D
Thesis, Electrical Engineering and Computer Science
Departments, Stanford University, 1983.

[Stefik et al., 19831 Mark J. Stefik, Daniel G.
Bobrow, Sanjay Mittal and Lynn Conway. “Knowledge
Programming in Loops J ” in The AI Magazine Vol. 4
No. 3, 1983, pp. 3-13.

[Teitelman and Masinter, 19811 Warren Teitelman
and Larry Masinter, “The Interlisp Programming
Environment, ” Computer, Vol. 14, 4, April 1981.

[van Melle, 19801 William van Melle, A Domain-
independent system that Aids in Constructing
Knowledge-based Consultation Programs. Ph.D.
Thesis, Computer Science Department, Stanford
University, 1980.

[Weinreb and Moon, 19811 Daniel Weinreb and David
Moon. Lisp Machine Manual. Symbolics, Chatsworth,
Ca., 1981.

[Westfold, 19811 Stephen Westfold “Documentation for
TINTEX,” Internal Report. Kestrel Institute. Palo Alto,
Ca., 1981.

[Westfold, 19841 Steph en Westfold, Logic Specifi-
cations for Compiling. Ph.D. Thesis, Computer
Science Department, Stanford University, 1984.

