
Constraint Limited Generalization: 

Acquiring Procedures From Examples 

Peter M. Andreae 

M.I.T. Artificial Intelligence Laboratory 

545 Technology Sq., Cambridge, MA 02139 

Abstract 
Generallzatlon IS an essential part of any system that can acquire 

knowledge from exanIples. l argue that generallzatlon must be limited 
by a variety of constraints tn order to be useful This paper gives three 
pnnclples on how generallzatron processes should be constramed. It 
also describes a system for acquiring procedures from examples which 
IS based on these pnnclples and IS used to illustrate them. 

2. Acquiring Procedures from Examples. 
In the standard concept acqulsttlon task. a teacher provldcs the 

learner with a series of examples (and possibly non-examples) of a 
concept. The learner must generalize these examples to obtain a 
descnptlon of the concept from which the examples were derived. 

The procedure acquisition task IS s1mIIar. a teacher provides the 
learner wrath a senes of traces of the execution of a procedure. Each 
trace wtll show the operation of the procedure in one partrcular Set 
of circumstances. The learner must generalize the traces to obtain a 

__-- 
‘This paper reports bvolk done at the Altlflclal lntelllgence Laboratory of the 
Massachusetts lnstrlute 01 Technology .%p[JOrt for ihe laboratory’s altlf!cEil 
Ili!elllgence research IS provided In part by the Advanced Research Profccts 
Agency of the Department of Defense under OffIce of Naval Research contract 
NO014-8&C-0505 
“Procedure Matcher and Acquirer 

descrlptlon of the procedure that will apply under all circumstances-the 
procedure that the teacher was using to generate the traces. 

For example, the teacher may snow a robot how to assemble a 
device In several different cases: perhaps the normal case. the case 
when the parts are not found rn the usual position, the case when the 
washer sticks during assembly. and the case when the screw holes are 
not aligned correctly. For each case. the teacher will lead the robot 
through the entire assembly task. and each trace WIII consist of the 
sequence of actions and the feedback paiterns after each action. From 
this, the robot should acquire the complete assembly procedure. 

Several people (e g., Mltchelt [19X3], Langley [1983] arid Anderson 
[1983]) have approached related problems using a prodlrctlon system 
representation of the procedure being acquired. Here, we wash to ac- 
quire procedures with explicrt control structure. This control structure- 
sequencing. branching, loops. and variable reference-is not present in 
the example traces and must be Inferred. Therefore. we cannot use the 
generalization methods used in in either concept or production system 
acquisition In a straightforward manner. 

Acqulsltion of procedures with exptlclt control structure has also 
been studied by Van Lehn [1983] (a multi-column subtractlcn procedure) 
and Latombe [1983] (a robot “peg-m-hole” procedure). The Induction of 
finite stale automata from regular strings. and the induction of functions 
from Input/output pairs (see Anglum and Smith [1982]) IS related to 
procedure acquisition, but the goals and methods in these tasks are 
sufficiently different that they will not be discussed here. 

2.1 Domain. 
PMA embodtes a procedure acqulsltlon algorithm that IS intended 

t0 apply to a wide variety of dnrnalns. For each domain. there is a set 
of legal acf~ons that can be performed In the domain and the feedback 
patterns thdt will result from the actions. PMA IS deslyned to acquire 
procedures in any dornam In which the actlons are specified by an 
actlon type and a set of parameters, (not necessarily numertcal), and 
the patterns consist of a set of pattern components. each component 
being speclfled by a pattern type and a list of parameters 

All the examples glven below wtll be tal\r?n from a simple two drmen- 
slona! robot world which meets these crlterla. The pnmnltlve actions of 
this robot domain Include IlOVE. ~IOVE-U~ITiL.-C(II~TACT, ROTATE, GRASP 
and UNGRASP. The pararneters of the HOVE and KOVE-UNTIL-CONTACT 
actions consist of a vector specif;,lr-,g the distance and dlrcction of the 
move. the parameter of the ROTATE actlon IS an angle, and the other 
two actions have an empty parameter list. 

The pafterr? that the robot world returns In response to an action 
has three components: the new POSITION of the robot, given In x-y 
coordinates; its ORIENTATION, specified by an angle: and the CONTACT, 
if any, between the robot and an obstacle, specified by direction of the 
obstacle. 

2.2 Representation. 
The traces (or examples) gtven to FMA by the teacher are se- 

quences uf alternating nct/or?s and pafler~s starting with a STAKT action 
and endlng with a STOP actlon They WIII be represcnled by a sequence 
of eve/Its. each event containing a pattern and the following action. 
Figure 1 shows two traces the teacher might provide to teach a Simple 
turtle procedure for clrcumnavlgatlng obstacles. 7 he turtle procedure 
IS “Move towards goal; if you hit something, move perpendic- 
ularly away from the obstacle 1 step, move to the side 1 step, 
and try again.” The first trace results from the application of the 
procedure when no obstacles are present. and the second, when one 
small obstacle is present. 

6 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



/_I START 

at: (0, -3.5) L-J MOVE 1 @O” 

Figure 1. Two Turtle Traces. 

7 he procedures that PMA must Infer from the traces may have 
condItional branchmg, lteratlon (loops). vanables, and generaltzed ac- 
tlons that may specify a class of primttlve actlons. We will represent 
these procedures by a directed graph rather lake the usual graphlcal 
representation of a finite state automata. Each node of the graph is 
marked with an event which specifies the condition under which control 
can pass to the event trom the previous event, and an act/on to perform 
If control does reach the event. The conditions are generalizations of 
the patterns In the traces. The condltlon may also assign variables to 
parameters of the pattern for use In later actions. One event, which 
has no links into tt. is dlstlngurshed as the sfart event and contains a 
ilull condition and a START action. Conditional branchmg is represented 
by multiple edges or I&s proccedmg from one event, and iteration or 
loopmg IS represented as a cycle In In the graph. Generalrzed actions 
are represented in the same way as the pnmltive actlons, i.e., by an 
actlon type and associated parameters. 

Figure 2 shows the representatton for the turtle prpcedure. The 
MOVE-WTIL-CONTACT-TOWARD (0. I)) actlon IS an example of a gen- 
eralized action--lt IS not one of the pnmltlve actions of the domain. 
It specifies whatever HOVE-UNTIL-CONTACT actlon will move from the 
current posItton toward the posltlon (0.0). The event containing this 
actton IS followed by a conditional branch: If the positton after the MOVE- 
UNTIL-CONTACT-TOWARD action is [at: (O.(J)] then the left branch will 
be taken and the START action performed. If the position is anywhere 
other than (0. O), and there IS a contact at some angle [contact: (any- 
angle)], then the actual angle of contact will be stored In the variable 0 
and the right branch WIII be taken, entenng the loop. If neither condition 
IS met, the procedure fails. The directions of two MOVE actions in the 
loop are specified In terms of functions of the angle 0. 

- 
START 

1 

at : (anywhere) 

MOVE-UNTIL-CONTACT-TOWARD (0,O) 

at: (0,O) 
STOP 

at: (anywhere) contact: (any.angle)(8] I, 

MOVE .5 @(0 - 180”) 
L 

at : (anywhere) 
MOVE 1 a(0 - 90”) 

Figure 2. Turtle Procedure 

PMA can infer procedures like that of figure 2 from traces like 
those of figure 1. The following sections outline the matching and 
generalization methods that it uses. 

2.3 Matching and Generalizing. 
PMA operates incrementally on two levels. Like WInston’s [1970] 

concept learner. PMA builds its descnptlon of the goal procedure in- 
crementally. taking one new trace at a time and gcnerallzlng Its current 

descnptlon of the procedure to incorporate the new trace. Its initial 
description of the procedure will just be the first trace. 

PMA also processes each new trace Incrementally. To incorporate 
a new trace, PMA matches the current procedure and the new trace 
to find a pairing between the procedure events and the trace events. 
It notes any differences and generalizes the procedure to eliminate the 
differences. However, the matching and generalizing IS done in several 
stages. The in&al stage of matching the procedure and the trace does 
no generalization of the mdlvldual events In the procedure and finds 
only a skeleton match that pairs procedure and trace events that match 
exactly. This provides the context for the second matching stage that 
does generalize procedure events, If necessary, to find a more complete 
pairing of procedure and trace events. This, in turn, provides the context 
for further stages which can perform more powerful generalizations in 
:he appropriate circumstances. Tlus Incremental generalization is based 
on the principle of context limited generalization-the more powerful 
generalization methods are only applied In the context of the match 
produced by the less powerful methods. Since the later stages depend 
upon the correctness of the earlier stages, It IS Important that the earlier 
stages do not fmd any spurious patnngs of events. Therefore, PMA 
must only attempt to match two events when there is good justification 
for doing so. 

To avoid spurious pairings in the skeleton match, PMA only searches 
for pairings mvolvmg the events of the procedure for which reliable 
matches can be found-the key events. The START and STOP events 
are obvious candidates for the key events Figure 3 shows the skeleton 
match of the traces of figure 1 using these key events. In more complex 
procedures, the key events may also include cJnque events (events of 
which the action type occurs only once in the procedure), and bottle- 
neck events (sequences of events at the merging of several branches 
through which control always flows). 

1 1 
b 

at: (O,-6) at: (O,-6) 
MOVE 6 @So’ MOVE 3 890° P 

1 1 

c at: (0,O) 

STOP 

Figure 3. Skeleton Match 

2.4 Second Stage-Propagation and Event Generalization. 
The second stage builds on the skeleton match by pairing pro- 

cedure and trace events found by propagating through the procedure 
and trace startmg from the pairs found in the skeleton match. The 
propagation exploits the sequential structure of procedures In order to 
fmd justlflable pairs m much the same way as WInston’s analogy pro- 
gram [Winston 19841 exploits the causal structure of stones. Figure 4 
Illustrates this. building on the skeleton match of figure 3 The pair a-ct 
was found In the skeleton match. Smce b and 3 were the rcspectlve 
successors of a and u, PMA paired b and ,f?. Propagating from b-,9. 
PMA attempted to pair c and 5. PMA also propagated backwards from 
c-; to find the pair b--E, and attempted to pair a and n. 

For this stage, if the procedure and trace events being paired only 
match partially, PMA attempts to find a generalization of the two events 
to place In the new procedure. If no generalrzatlon can be found, then 
the pair IS abandoned. In figure 4, b and fl did not match exactly, 
but PMA found a generalization of them. as shown at the bottom of 
the figure. When it attempted to pair c and 7, not only were they not 
equal. but there was no possible generallzatlon of the two events, so 
the pairing was abandoned. Stmllarly, In propagating backwards, PMA 
found a generalization of b and E but not for a and d. 



Figure 4. Propagation and Event Generalization 

lhe propagatron stage IS compicted by several bookkeepmg steps. 
Parrs that involve the same events are grouped and generalized, and 
events from the procedure and the trace that have not been paired are 
collected. In the example of figure 4, the event h IS Involved In two pairs, 
(b-/3 and b-f), which are then matched and generalized. The events y 
and Cs were not parred with any other events, so they are srmply mstalled 
Into the new procedure along with b-(i-r and the skeleton pairs a-u 
and c-c. The new procedure IS shown In figure 5. 

- 
a-u START I I 

b-R- 6 

& L 
at (anywhere) 

1 MOVE-UNTIL CONTACT TOWARD (0. (1) 

c- !I 
at (0. 0) at. (O-3) contact: 00 

STOP MOVE .5 r~-!Xl 
T 

I ’ II 

Figure 5. New Procedure 

The matching and generalrzrng of events IS done wrth reference 
to the action and condition hierarchies. These hierarchies are partiaily 
oraered graphs where each node dt =scrrbes a generalized actron or 
condrtron. Each actron hrerarchy corresponds to one of the classes 
of action specrfred by the domain, and the base of the hre:archy is 
the prrmrtive action of that class. Srmllarly, each condrtron hierarchy 
corresponds to one component of the pattern specified by the domain, 
and tne base of a condrtion hierarchy is a pnmitrve pattern that occurs in 
the traces. Every higher node of a hrerarchy IS a generalized action type 
or condition. Figure 6 shows part of the MOVE action hrerarchy. Each 
node describes the type of the action or conditron and the parameters 
associated with it. For example. the HOVE-TO node in figure 6 has a 
position parameter (z. 71). Also attached to each node, but not shown 
in figure 6, are procedures for determining whether an instance of the 
node is a generalizatron of an instance of a lower node and constructor 

procedures for creating generalizations of two instances of lower nodes. 

MOVE-UNTIL-CONTACT-TOWARD (z, y) 

Figure 6. EYIOVE Action Hierarchy Figure 8. Procedure with Parallel Segments 

If PMA IS given two actions to match, It will first determlne If they 
are of the same class. If not, the match rmmedlately falls. Otherwise, 
it will determme therr types, and the relative positron of the nodes of 
those types in the appropriate action hierarchy. If the actions are both 
instances of the same node (i.e.. they are of the same type), it simply 
tests equa!rtv of the parameters. !f one node IS a direct supenor of the 
other, it ~11 invoke the appropriate procedure attached to the higher 
node to determme whether the first action is a direct generalrzatton of the 
second. If ether of these tests fall, or neither node IS a drrect superior 
of the other, rt will search for a node that is a d,rect superior of both 
nodes and :nvoke the constructor procedure to create a generalization 
of the two actrons. Often the constructor procedure will not return a 
generaltzatron, in which case the match fails. The same process is 
followed in matching patterns and/or condrtions. 

Each new domain in which PMA IS to be used will requtre a different 
set of action and condrtron hlerarchles. snce they are obviously domain 
dependent. However, the structure of the hlerarctires and the way they 
are used in matching and generalizing events remarns tne same across 
domarns. Furthermore. the hrcrarchrcs thenlselves could be acqurred 
from the traces provided by the teacher. How thrs might be done WIII 

be discussed bnefly in a later sectron. The same mechanrsm could also 
be used to extend hierarchies whrch have been prcvlousty specified to 
incorporate new generalized actions or conditions that are needed for 
particular classes of procedures. 

2.5 Third Stage-Function Induction. 
The third stage of matching and generalrzlng searches for a partrc- 

ular configuration-parallci segmenrs--in the description of the proce- 
dure produced by tne first two stages. There are no parallel segments 
in the procedure of figure 5,. but there are in the procedure of figure 8 
which was generated by applymy the first two stages to the procedure of 
figure 5 and the new trace shown In figure 7 A segment IS a sequence 
of connected events with no branching. Two segments of a procedure 
are parallel If they start and end at the same events. they contain the 
same number of events. the corresponding conditions match. and the 
corresponorng actions are of the same type. Paral!el segments rep- 
rescn! events that the second stage attempted to pair but abandoned 
because It could find no generalizations of the actions usng the action 

goal. (0.0) ( 

at: (0.4) 

MOVE 3 090” 

1 

at: (O,-3) contact: -135” 

Figure 7. Third Turtle Trace 

at: (0, -3.5) 
Parallel 

at : (.35, -3.35) 

MOVE 1 BO” 
Segments 

MOVE 1@45” 

s, s, / 



hterarchy. The corresponding IJOVE actlons In the parallel segments of 
ftgure 8 cannot be merged wlthout reference to the contact angle in 
an earlier pattern upon whtch the dIrectIons of the MOVE’s depend. No 
generalization in the action hierarchy could express this dependency. 

The identical context of the parallel segments suggests that they 
play the same role in the procedure. Wtth this justlftcatlon, the third 
Stage applies a more powerful generalizatton method which attempts to 
match the events by searching for functional dependencies of actions 
upon earl:er patterns. in the example of figure 8. the two pairs of MOVE 
actions should be generalized to HOVE’s whose direction is given by 
the earlier contact angle menus 180 and g0 respectively, as shown in 
the procedure of figure 2. These functional expressions are simple and 
are found readily When the parallel segments are merged by this third 
stage, the resulting procedure IS exactly the goal procedure of figure 2. 

FIndIng the functlonal dependenctes involves a double search to 
find both an earlier pattern component on which the actions may depend 
and also the function relating the pattern component to the action. To 
avord finding spurious functional relatlonshlps, PMA searches for the 
condltlon closest to the actions for which It can tmd a functional relation. 

For each candidate condition component that the first search con- 
slders. PMA searches the space of possible functions that fit the past 
values of the condition components and the correspondmg values of 
the actions bemg merged. (Note that this requires that PMA retain a 
certain amount of InformatIon about the past values of the patterns and 
actlons from which the generalized conditions and actions were con- 
structed). 1 he space of functtons IS searched by incrementally building 
expressions from a known set of operators. The choice of operators is 
constrained bv the type of the input and output values (posltlons, angles, 
numbers, Ilsts, etc.). which requires that the types of the arguments and 
ranges of every operator must be known. 

The algorithm Initially considers expressions containing a single 
operator applied to the domain values (from the condition) which returns 
the range values (from the action). If none are found, It WIII recursively 
apply any appropriate operators to the domam and range values, and 
search tor an “connecting” operator which returns the new range values 
when applied to the new domain values. The resulting expresslon will 
be the composition of the inverses of the operators applied to the 
range values, the connecting operator. and the operators applied to 
the domain values. The search falls when it cannot find an expresslon 
within some complexity limit. 

Functions lnvolvtng constants pose a problem for function induc- 
tion. snce It IS not possible to search the space of all possible values 
of constants rf the space IS Infinite. as In a domain Involving real-valued 
parameters such as the robot domatn. PMA’s algorithm solves this prob- 
lem by only considering one new constant for each expression. Such a 
constant can be found If applying an operator to each pair of the domain 
and range values produces a constant value. For example, when the 
difference operator IS applied to the pairs of angles (00 . -00”) and 
(135 . -45-). the result IS 180 for both pairs. The required expression 
can be found by inverting the difference operator and using the con- 
stant 180 I to obtain the expression: mowedrecfion = ( - contact-angle 
180 ). If there are any constants with predetermmed values which may 
be relevant to the functional dependency, these can also be included 
In the candidate expressions. One source for such known constants 
IS the condition immediately preceding the actions being merged. The 
possible relevance of the parameters of this condition IS justified by the 
fact that this condition represents information about the state of the 
world m which the action is to be performed. 

The algorithm for searching through the space of functions relies 
only on bemg provided with a set of Invertible operators whose domain 
and range types are specified. The operators need not be numeric 
(although they are for the robot domain) and the algorithm is therefore 
quite domain independent. 

The generalization 6f the third stage is more powerful than that of 
the second stage, both because it involves two events simultaneously 
and because the space of possible functions is very large. In fact, if the 
space IS unconstrained, it will be possible to find a functlonal relation 
t!etween almost any pattern and action. For this reason, the functional 
generalization is only applied in the context of parallel segments and the 
Complexity of the expressIons that are considered must be const:ained 
by the number of data points available. 

At this pomt we note that some of the generalized actions (e.g., 
MOVE-TO (z. y)) are actually primitive actions whose parameters are 
a function of the immediately preceding pattern. These nodes in the 
action hierarchy are essentially memolzed forms of these “local” func- 
tional relationships. The action hierarchy can be augmented by noting 

reoccurring actions wltn the same local functions and constructing the 
memo;zed form of the function. This has not ye: been Implemented in 
PMA. 

2.6 Final Stage-Consistency checking. 
The final stage of PMA checks that the description produced by the 

first three stages satlsfles the constraint that valid procedures must be 
determmlstlc, i e , at every step, the procedure must specify exactly one 
action. This constraint may be violated If the condltlons at a conditional 
branch are not sufficiently distinct. If there are no possible patterns 
that would match more than one of the branching condltlons, then the 
branch satisfies the constraint. It there IS a pattern which matches 
two condltlons. then the branch may be Indeterminate. We adopt the 
convention that It one of the conditions IS a strict generalization of 
the other, then control passes to the most speclflc. This conventlon 
eliminates the need for condltlons with complex exception clauses. If 
this IS not the case-either the two condttrons are are identical or part 
of one condition IS a generalization and part IS a speclaltzatlon of the 
other condltlon-then the branch violates the constramt, and must be 
rectified. 

There are several ways a non-detcrrnlnistlc branch could arise, 
each representing a dltferent way of resolving the non-determmlsm. One 
source IS that the second stage was not able to find a generalization 
of the two actions of the events involving the conflicting condrtions. 
PMA therefore attempts to generalize the actions by searching for a 
funcilonal dependency as in the third stage. If this IS successful, the 
events can be combmed, and the indeterminacy removed. If this IS not 
successful, it will attempt to specialize the conditions on the assurnption 
that the second stage may have over-generalized them. This is done 
by searchmg In Ihe condition hierarchy for a node lower than the 
current condition. For example. it might be that some action should be 
performed only when the posltlon IS within some circular region. If the 
mrtlal traces contain the action occurring In several posl!ions, PMA will 
generalize the condition to [at: (anywhere)]. When later traces show a 
different action occurring at other positions, PMA will have to specialize 
the ongmal condition to [inside: (circle-l)]. 

If no speclallzatlon node IS found in the con&Ion hierarchy, it may 
be possible to create a new node using standard concept acquisition 
techniques. For example, if there were no circle node, one could 
be created, using the positions associated with the tlrst action as the 
positive examples of the new concept and the posl:lons associated with 
the other action as the near misses. In a domain like the robot world 
involvmg numerical and geometric parameters, it may be possible to 
use an algorithm similar to the function induction algorithm to create 
the expressions representing the new concepts. This has not been 
implemented in PMA. 

If neither of these methods eliminates the indeterminate branch, 
the pairrng that created the branch event will be “undone”. This may 
have to be repeated until all indeterminate branches are removed. 

3. Discussion. 
The need for constraints on generalization IS not a new Idea. 

Winston [1970] constrained his concept learner to always choose the 
most speclfrc generallzatlon consistent with the examples. Furthermore, 
It was constrained to Ignore negative examples unless there was exactly 
one difference from the current concept, indicating an unarnblguous 
change to the current concept. These constraints reduced the search by 
avoiding the need for backtracking, which IS very expensive. MItchelI’s 
119821 version space algorithm relaxed these constraints by provldmg an 
efficient characterization of an entire set of generalizations consistent 
with the examples. This falls, however. If dIsjunctions are allowed in tne 
descnptlons, and further constramts are necessary. 

Efficiency IS not the only reason for constraints. In some cases, 
the generalization task IS so under-specified that addItional constraints 
must be found in order to perform the task at all. A good example is 
Berwlck’s language learner [1982] which acquires grarnmar rules when 
given only grammatical sentences and no negative examples. It was 
only by adopting a particular parser and the very strict constraints on 
the form of its rules that It was possible to learn any grammar rules 
stnctly from posltlve examples. 

The three principles stated In the Introduction describe three classes 
of constraints on generalization which apply to any generalization task. 

3.1 Domain Constrained Generalization. 
Exploiting the constramts of the domain IS an important and es- 

tnbllshed technique for all areas of Al. Domain constramts may reduce 
the search space by ellmmatmg descriptions that can vaildly be gen- 

9 



erated by the representation language, but descnbe situations that are 
Illegal in the domatn. PMA exploits the constraint that procedures must 
be determtnlstlc to eliminate any descnptions with non-deterministic 
branches. This determtnacy constraint also reduces the space of legal 
generalized actrons. Although the action [MOVE-TO (0, O)] represents 
many possible primitive MOVES, In any particular situation (i e., from any 
particular position) it specifies exactly one. However, the action [MOVE 
1 @(any-angle)] is indetermmate in that it never speciftes a particular 
prlmltlve action and the determlnacy constraint therefore eliminates it 
from consideration. 

Domain constraints may also be used to guide the generalization 
process in ways other than simply reducing the search space. For 
example, it is a particular property of the robot domam that MOVES and 
MOVE-UNTIL-CONTACTSs are very closely related. though they are ac- 
tually different primitive actions. PMA exploits this relation by treating 
ROVE-UNTIL-CONTACT as a generalization of IItOVE, and is able to deter- 
mine when a particular MOVE made by the teacher was intended to be a 
HOVE-UNTIL-CONTACT. This type of generalization is very domain spe- 
cific, but illustrates the way in which particular properties of a domain 
can be used to Increase the power of the generalizer. 

3.2 Undesirability Ordering. 
In order to guide the generalization processes, some ordering must 

be placed on the space of possible descriptions. Generally, out of a set 
of descriptions that are all valid generalizations of a set of examples, one 
chooses the descrrptlon that IS lowest In the ordering. This IS particularly 
important for acquisition tasks In which no negative examples are given. 
In most concept acqulsltlon programs, this ordering has been based 
on either generality or complextty-the more general (or complex) the 
descnptlon, the more undesirable it is. 

This IS sufflclent for restricted domains, such as those in which all 
the concepts that need to be considered can be described in terms of 
a conjunctive list of properties of. and relations between objects. In 
domains involvmg descnptlons based on a more powerful description 
language, however, this undesirability orderrng must involve more than 
just generality or complexity. For example, if the description language 
allows disjunction, there will always be a generalization of any two 
examples consisting of the disjunctIon of the descrlpttons of the two 
examples. This is the most specific generaltzation possible, but it is 
seldom a useful or desirable generalization. Similarly, there is always an 
(1~ - 1) degree polynomial that fats n points on the plane, but it is seldom 
a useful generalization of the points. Neither of these generalizations is 
useful because the existence of such a generalization was a foregone 
conclusion, whether the relation between the examples was significant 
or entirely random. If, however, there were a conjunctive description, 
or a low degree polynomial, this would describe a relation between the 
examples which would not be true of a random set of examples. Both 
dlsjunctlve descriptions and high order polynomials are necessary at 
times, and cannot be eliminated from the search space entirely, but 
should be placed high on the undesirability ordering. 

The common element of these two undesirable gei\eralizations is 
that they use representation constructs that are very “powerful” in the 
sense that they allow one to construct descriptions of any set of items, 
whereas conjunctive descriptions or 2nd degree polynomials can only 
describe some sets of items. In other words, the space of possible de- 
scriptions IS very much wider if dIsjunctIons, or other powerful constructs 
are allowed than if they are prohibited. The undesirability ordering must 
therefore take into account the descriptive power of the components 
of the representation language, and place descriptions using the more 
powerful constructs higher than those with more restrictive constructs. 

PMA must be able to acquire procedures that involve conditional 
branching, which is a forrn of disjunction. However, following this prin- 
ciple of undesirability ordering, it always chooses a procedure without 
branches over one with branches even at the cost of more general 
events or actions containing functional expressions. Similarly, although 
an explicit functional expression in an action is not any more more 
general than an action from the action hierarchy, PMA always prefers 
an action from the hierarchy, if one exists, because the description lan- 
guage for actions in the action hierarchies is less powerful than that for 
arbitrary functions, and therefore lower in the undesirability ordering. 

3.3 Context Limited Generalization. 

10 

However, it is not sufficient to simply order the generalizations by 
undesirability and choose the least undesirable. Matching two descrip. 
tlons involves finding a pairing between the elements of the descriptions. 
With a sufficiently powerful descrlptlon language, a generalization can 

be found for any pair of the elements. But most of these pairings will 
be spurious. We need to place some limit on the degree of undesir- 
ability to which we are prepared to go, but this limit must not eliminate 
undesirable generalizations that really are part of the match. The so- 
lution is to use a limit that varies with the justification for believing 
that a generalization exists. If a teacher has asserted that two situations 
match, then there is good justification for resorting to a very undesirable 
generalization of the two situations. On the other hand, when search- 
ing a data base for possibly relevant siiuations to a problem at hand, 
then only generalizations low in the order should be considered. When 
matching two structures, the partially completed match consisting of 
pairings of very similar components may provide a context that justifies 
considering a very undesirable generalization of two components that 
fill corresponding positions according to the pairings found so far. In 
general, the generalization must be limited to a level of undesirability 
consistent with the context in which the generalization takes place. 

The several stages of PMA illustrate this principle well. In the first 
stage, there is no context to suggest what pairings should be made, and 
therefore no event generalization at all is allowed. In the second stage, 
the context of the perfectly matched pairs gives more justification to the 
pairs found by propagation, so generalized events are considered. The 
function induction is only considered in the highly restricted contexts 
of parallel segments or indeterminate branches. If function induction 
were allowed in the second stage it would be very likely !o fmd spurious 
generalizations. But with this context limited generalization, PMA is 
able to use powerful generalization methods without producing spurious 
matches. 

References. 
Anderson, JR [1983]; Acquisition of Proof Skills in Geometry; in 

“Machine Learning”, eds. Michalski, Carbonelt, Mitchell, Tioga Pub 
Co., Palo Alto, California. 

Angluin, D. and C.H. Smith [1982]; A Brief Survey of inductive Inference; 
Technical Report 250, Dept. Comp. Sci., Yale University. 

Berwick, RR. [1982]; Locality Principles and the Acquisition of Syntactic 
Knowledge; PhD thesis, M.I.T.. 

Langley, P, [1983]; Learning Effective Search Heuristics; Proceedings 
of IJCAI-83, Vol 1, 419-421. 

Latombe, J-C. and Dufay, B. [1983]; An Approach to Automatic Robot 
Programming Based on Inductive Learning; Robotics Workshop, 
M.I.T.. 

Mitchell, T.M. [1982]; Generalization as Search; Artificial Intelligence, 
Vol. 18, 203-226. 

Mitchell, T.M. [l983]; Learning and Problem Solving; Proceedings of 
IJCAI-83, Vol 2, 1139-1151. 

Michalski, R.S. [1983]; A Theory and Methodology of inductive Learning; 
in “Machine Learning” eds. Mlchalski, Carbonell, Mitchell, Tioga Pub. 
Co., Palo Alto, California. 

Winston, P.H. [1970]; Learning Structural Descriptions From Examples; 
PhD Thesis, M.I.T.. 

Winston, P.H. [1984]; Artificial Intelligence; Ch 12, Addison Wesley, 
Reading, Massachusetts. 

Van Lehn, Kurt 119831; Felicity Condition for Human Skill Acquisition; 
Validating an A/-based Theory; PhD Thesis, M.I.T.. 


