From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

Constraint Limited Generalization:

Acquiring Procedures From Examples

Peter M. Andreae

M.L.T. Artificial Intelligence Laboratory
545 Technology Sq., Cambridge, MA 02139

Abstract

Generalization is an essential part of any system that can acquire
knowledge from exanples. | argue that generalization must be limited
by a variety of constraints in order to be usefui. This paper gives three
principles on how generalization processes should be constrained. It
also describes a system for acquiring procedutes from examples which
is based on these principles and is used to iliustrate them.

1. Introduction.

Much of the work on learning in Al can be viewed as an attempt
to understand the problem of generalization m a varety of domains.
Much of it has been concept learning—acquiring descriptions of some
concept from descriptions of particular examples of the concept. A set
of standard heurstics for concept acquisition which are applicable in
a wide range of domains are given in Winston [1970] and Michalski
[1983].

Finding a generalization of a set of examples is an unconstrained
problem—there are usually many descriptions which are valid gener-
alizations of the examples. in any interesting domain. the number of
possible generalizations is too great to consider them all. Many gen-
eralization systems have conslrained the search space by ordering it
according to generality, and choosing the most specific generalization
that is consistent with the examples. For many interesting domains, this
constraint is not sufficient to make generalization tractable, and further
constraints on the generalization process must be found.

This paper provides three principles to help determine these con-
straints:
¢ Domain Constrained Generalization: All possible constraints
from the domain should be used to eliminate possible generalizations
and reduce the search space.

e Undesirability Ordering: There must be some ordering on the
space of possible descriptions that represents their relative desirability,
based not only upon generality, but also upon the shape of the search
space and the expressive power of the representation language.

¢ Context Limited Generalization: Given an undesirability ordering,
the context of two items being generalized must constrain the set of
generalizations that should be considered. Consideration of more unde-
sirable generalizations requires stronger justification from the context.

These principles are best discussed in the context of a particular
generalization task. Therefore section 2 will describe a system called
PMA"", for acquiring procedures by generalizing from examples, which
is based on these principles. Section 3 will discuss the principles in
more detail using examples from the system.

2. Acquiring Procedures from Examples.

In the standard concept acquisition task. a teacher provides the
learner with a series of examples (and possibly non-examples) of a
concept. The learner must generalize these examples to obtain a
description of the concept from which the examples were derived.

The procedure acquisition task is similar. a teacher provides the
learner with a series of traces of the execution of a procedure. Each
trace will show the operation of the procedure in one particular set
of circumstances. The learner must generalize the traces to obtain a

"This paper reports work done at the Artificial Inteligence Laboratory of the
Massachusetts Institute Ot Technology. Support tor the laboratory’'s artificial
intelligence research is provided in part by the Advanced Research Projects
Agency of the Department ot Detense under Oftice of Naval Research contract
NOC14-80-C-0505

"" Procedure Matcher and Acquirer.

description of the procedure that will apply under all circumstances—the
procedure that the teacher was using to generate the traces.

For example, the teacher may siiow a robot how to assemble a
device in several different cases: perhaps the normal case, the case
when the parts are not found in the usual position, the case when the
washer sticks during assembly. and the case when the screw holes are
not aligned correctly. For each case, the teacher will lead the robot
through the entire assembly task. and each trace will consist of the
sequence of actions and the feedback paiterns after each action. From
this, the robot should acquire the complete assembly procedure.

Several people {e.g., Mitchelt [1983], Langley [1983] and Anderson
[1983]) have approached related problems using a production system
representation of the procedure being acquired. Here, we wish to ac-
quire procedures with explicit controt structure. This control structure—
sequencing. branching, loops. and variable reference—is not present in
the example traces and must be inferred. Therefore. we cannot use the
generalization methods used in in either concept or production system
acquisition in a straightiorward manner.

Acquisition of procedures with explicit control structure has also
been studied by Van L ebin [1983] (a multi-column subtracticn procedure)
and Latombe [1983] (a robot “peg-in-hole’” procedure). The induction of
finite state automata from regular strings. and the induction of functions
from input/output pairs (see Angluin and Smith [1982]) 1s related to
procedure acquisition, but the goals and methods in these tasks are
sufficiently different that they will not be discussed here.

2.1 Domain.

PMA embodies a procedure acquisition algorithm that is intended
o apply to a wide variety of domains. For each domain. there is a set
of legal actions that can be performed in the domain and the feedback
patterns that will result from the actions. PMA is designed to acquire
procedures in any domain in which the actions are specified by an
action type and a set of parameters, (not necessarily numerical), and
the patterns consist of a set of pattern components. each component
being specitied by a pattern type and a list of parameters.

All the examples given below will be taken from a simple two dimen-
siona! robot world which mects these criteria. The primitive actions of
this robot domain include MOVE, MOVE-UNTIL-CONTACT, ROTATE, GRASP
and UNGRASP. The parameters of the MOVE and MOVE-UNTIL-CONTACT
actions consist of a vector specifying the distance and direction of the
move. the parameter of the ROTATE action i1s an angle, and the other
two actions have an empty parameter list.

The pattern that the robot world returns in response to an action
has three components: the new POSITION of the robot, given in z-y
coordinates; its ORIENTATION, specified by an angle; and the CONTACT,
it any, between the robot and an obstacle, specified by direction of the
obstacle.

2.2 Representation.

The traces (or examples) given to PMA by the teacher are se-
quences of alternating actions and patterns starting with a START action
and ending with a STOP action. They will be represented by a sequence
of events. each event containing a pattern and the following action.
Figure 1 shows two traces the teacher might provide to teach a simple
turtle procedure for circumnavigating obstacles. The turtle procedure
is: “Move towards goal; if you hit something, move perpendic-
ularly away from the obstacle l step, move to the side 1 step,
and try again.’’ The first trace resulls from the application of the
procedure when no obstacles are present. and the second, when one

small cbstacle is present.



goal: (0,0) goal: (0.0}
at: (0,-6)
MOVE 3 890°
at: (0.-6) at: (0,-3) contact: 180°
MOVE G490~ MOVE .5 @-90°
start: (-6,0) start: (-6,0)

at: (1,-3.5)
MOVE 3.64 @106°

Figure 1. Two Turtle Traces.

The procedures that PMA must infer from the traces may have
conditional branching, iteration (loops), variables, and generalized ac-
tions that may specify a class of primitive actions. We will represent
these procedures by a directed graph rather like the usual graphical
representation of a finite state automata. Each node of the graph is
marked with an event which specifies the condition under which control
can pass to the event trom the previous event, and an action to perform
if control does reach the event. The conditions are generalizations of
the patterns in the traces. The condition may also assign variables to
parameters of the pattern for use in later actions. One event, which
has no links into it, is distinguished as the start event and contains a
null condition and a START action. Conditional branching is represented
by multiple edges or links proceeding from one event, and iteration or
looping s represented as a cycle in in the graph. Generalized actions
are represented in the same way as the primitive actions, ie., by an
action type and associated parameters.

Figure 2 shows the representation for the turtle procedure. The
MOVE-UNTIL-CONTACT-TOWARD (0.0) action is an example of a gen-
eralized action—it is not one of the primitive actions of the domain.
It specifies whatever MOVE-UNTIL-CONTACT action will move from the
current position toward the position (0.0). The event containing this
action is followed by a conditional branch: if the position after the MOVE-
UNTIL-CONTACT-TOWARD aclion is [at: (0.0)] then the left branch will
be taken and the START action performed. If the position is anywhere
other than (0.0), and there is a contact at some angle [contact: {any-
angle}], then the actual angle of contact will be stored in the variable 6
and the right branch will be taken, entering the loop. If neither condition
is met, the procedure fails. The directions of two MOVE actions in the
loop are specified in terms of functions of the angle 6.

START

I d )
at: (anywhere)
MOVE -UNTIL-CONTACT-TOWARD (0, 0)

\

at: (anywhere) contact: (any-angle)f] Y
MOVE .5 @(¢ — 180°)

at: (0,0)
STOP

at: (anywhere)
MOVE 1 @(6 ~ 90°

Figure 2. Turtle Procedure

PMA can infer procedures like that of figure 2 from traces like
those of figure 1. The following sections outline the matching and
generalization methods that it uses.

2.3 Matching and Generalizing.

PMA operates incrementally on two levels. Like Winston's [1970]
concept learner. PMA builds its description of the goal procedure in-
crementally. taking one new trace at a time and generalizing its current

description of the procedure to incorporate the new trace. Its initial
description of the procedure will just be the first trace.

PMA also processes each new trace incrementally. To incorporate
a new trace, PMA matches the current procedure and the new trace
to find a pairing between the procedure events and the trace events.
It notes any ditferences and generalizes the procedure to eliminate the
differences. However, the matching and generalizing is done in several
stages. The initial stage of matching the procedure and the trace does
no generatization of the individual events in the procedure and finds
only a skeleton match that pairs procedure and trace events that match
exactly. This provides the context for the second matching stage that
does generalize procedure events, it necessary, to find a more complete
pairing of procedure and trace events. This, in turn, provides the context
for further stages which can perform more powerfu! generalizations in
the appropriate circumstances. This incremental generalization is based
on the principle of context limited generalization—the more powerful
generalization methods are only applied in the context of the match
produced by the less powerful methods. Since the later stages depend
upon the correctness of the earlier stages, it is important that the earlier
stages do not find any spurious pairings of events. Therefore, PMA
must only attempt to match two events when there is good justification
for doing so0.

To avoid spurious pairings in the skeleton match, PMA only searches
for pairings involving the events of the procedure for which reliable
matches can be found—the key events. The START and STOP events
are obvious candidates for the key events. Figure 3 shows the skeleton
match of the traces of figure 1 using these key events. In more complex
procedures, the key events may also include unique events (events of
which the action type occurs only once in the procedure), and bottle-
neck events (sequences of events at the merging of several branches
through which control always flows).

a =

at: (0,-6)
MOVE 6 @90°

at: {0,—3) contact: 180° y
MOVE .5 @-90°

at: (1,-3.5)
MOVE 3.64 @106°

Figure 3. Skeleton Match

2.4 Second Stage—Propagation and Event Generalization.

The second stage builds on the skeleton match by pairing pro-
cedure and trace events found by propagating through the procedure
and trace starting from the pairs found in the skeleton match. The
propagation exploits the sequential structure of procedures in order to
find justifiable pairs in much the same way as Winston's analogy pro-
gram [Winston 1984] exploits the causal structure of stories. Figure 4
illustrates this. building on the skeleton match of figure 3. The pair a—«
was found in the skeleton match. Since b and 3 were the respective
successors of a and o, PMA paired b and 8. Propagating from b-;3,
PMA attempted to pair ¢ and y. PMA also propagated backwards from
c~¢ to find the pair b—e, and attempted to pair a and é.

For this stage, if the procedure and trace events being paired only
match partially, PMA attempts to find a generalization of the two events
to place in the new procedure. If no generalization can be found, then
the pair is abandoned. In figure 4, b and A3 did not match exactly,
but PMA found a generalization of them, as shown at the bottom of
the figure. When it attempted to pair ¢ and vy, not only were they not
equal, but there was no possible generalization of the two events, so
the pairing was abandoned. Similarly, in propagating backwards, PMA
found a generalization of b and ¢ but not for a and é.



b at: (0.-06) 3 at: (0.-6) B
MOVE 6 €00 N MOVE 3 ¢190°
______ _ at: (0.-3) contact: 180" r
¢ Ny MOVE .5 6-90°

at: (0,-3.5)
MOVE 1@0°

at: (1,-3.5)
MQOVE 3.64 @106°

b s at: (0.-6)
=7 | MOVE-UNTIL-CONTACT 6 6:90°

at: (0,0)
STOP

Figure 4. Propagation and Event Generalization

The propagation stage is completed by several bookkeeping steps.
Pairs that involve the same events are grouped and generalized, and
events from the procedure and the trace that have not been paired are
collected. In the example of figure 4, the event b is involved in two pairs,
{b-4 and b-¢), which are then matched and generalized. The events 5
and 4 were not paired with any other events, so they are simply installed
into the new procedure along with b-f1-¢ and the skeleton pairs a-a
and c~¢. The new procedure is shown in figure 5.

4= START

b-Bac | at: (anywhere)
| MOVE-UNTIL-CONTACT-TOWARD (0.0}

at: (0.0) at: {.-3) contact: 90° ¥
sTOP MOVE .5 ¢:—90°

at: (0.-3.5)
MOVE 1 @0°

- ¢

Figure 5. New Procedure

The matching and generalizing of events is done with reference
to the action and condition hierarchies. These hierarchies are partiaily
ordered graphs where each node describes a generalized action or
condition. Each action hierarchy corresponds to one of the classes
of action specified by the domain, and the base of the hierarchy is
the primitive action of that class. Similarly, each condition hierarchy
corresponds to one component of the pattern specified by the domain,
and the base of a condition hierarchy is a primitive pattern that occurs in
the traces. Every higher node of a hierarchy is a generalized action type
or condition. Figure 6 shows part of the MOVE action hierarchy. Each
node describes the type of the action or condition and the parameters
associated with it. For example, the MOVE-TO node in figure 6 has a
position parameter (z.y). Also attached to each node, but not shown
in figure 6, are procedures for determining whether an instance of the
node is a generalization of an instance of a lower node and constructor
procedures for creating generalizations of two instances of lower nodes.

[MOVE-UNTIL-CONTACT-TOWARD (z,3) |

MOVE-TO (z.y) [MOVE-UNTIL-CONTACT r @6° |

MOVE r @¢°

Figure 6. MOVE Action Hierarchy

If PMA is given two actions to match, it will first determine if they
are of the same class. If not, the match immediately fails. Otherwise,
it will determine their types, and the relative position of the nodes of
those types in the appropriate action hierarchy. If the actions are both
instances of the same node (i.e.. they are of the same type), it simply
tests equalitv of the parameters. !f one node is a direct superior of the
other, it will invoke the appropriate procedure attached to the higher
node to determine whether the first action is a direct generalization of the
second. If either of these tests fail, or neither node is a direct superior
of the other, it will search for a node that is a direct superior of bath
nodes and invoke the constructor procedure to create a generalization
of the two actions. Often the constructor procedure will not return a
generalization, in which case the match fails. The same process is
followed in matching patterns and/or conditions.

Each new domain in which PMA is to be used will require a different
set of action and condition hierarchies, since they are obviously domain
dependent. However, the structure of the hierarchies and the way they
are used in matching and generalizing cvents remains the same across
domains. Furthermore. the hierarchies themselves could be acquired
from the traces provided by the teacher. How this might be done will
be discussed briefly in a later section. The same mechanism could also
be used to extend hierarchies which have been previously specified to
incorporate new generalized actions or conditions that are needed for
particular classes of procedures.

2.5 Third Stage—Function Induction.

The third stage of matching and generalizing searches for a partic-
ular configuration—parallei segments—in the description of the proce-
dure produced by the first two stages. There are ro paraliel segments
in the procedure of figure 5. but there are in the procedure of tigure 8
which was generated by applying the first two stages to the procedure of
figure 5 and the new trace shown in figure 7. A segment 1$ a sequence
of connected events with no branching. Two segments of a procedure
are parallei if they start and end at the same events. they contain the
same nuimber of events, the corresponding conditions malch. and the
corresponding actions are of the same type. Parallel segments rep-
resent events that the second stage attempted to pair but abandoned
because it could find no generalizations of the actions using the action

goal: (0,0)

at: (0.-6)
MOVE 3 @90°

at: (0,-3) contact: —135°
MOVE .5 @-45°

at: (.35,-3.35)
MOVE 1 @45°

start: (-6,0)

at: (1.06,-2.65)
MOVE 2.87 @102°

Figure 7. Third Turtle Trace

i .

at: (anywhere)
MOVE-UNTIL-CONTACT-TOWARD (0, 0)

at: (0,0) at: (0,—3) contact: 90° at: (0,—-3) contact: 135° |
STOP MOVE .5 @—90° MOVE .5 @-45°

at: (.35,-3.35)
MOVE 1 @45°

at: {0,-3.5)
MOVE 1 @0°

Parallel
Segments

Figure 8. Procedure with Parailel Segments



hierarchy. The corresponding MOVE actions in the parallel segments of
figure 8 cannot be merged without reference to the contact angle in
an earlier pattern upon which the directions of the MOVE's depend. No
generalization in the action hierarchy could express this dependency.

The identical context of the parallel segments suggests that they
play the same role in the procedure. With this justification, the third
stage applies a more powerful generalization method which attempts to
match the events by searching for functional dependencies of actions
upon earlier patterns. in the example of figure 8. the two pairs of MOVE
actions should be generalized to MOVE's whose direction is given by
the earlier contact angle minus 180 and 900 respectively, as shown in
the procedure of figure 2. These functional expressions are simple and
are found readily. When the parallel segments are merged by this third
stage, the resulting procedure is exactly the goal procedure of figure 2.

Finding the functional dependencies involves a double search to
find both an earlier pattern component on which the actions may depend
and also the function relating the pattern component to the action. To
avoid finding spurious tunctional relationships, PMA searches for the
condition closest to the actions for which it can find a functional relation.

For each candidate condition component that the first search con-
siders. PMA searches the space of possible functions that fit the past
values of the condition components and the corresponding values of
the actions being merged. (Note that this requires that PMA retain a
certain amount of information about the past values of the patterns and
actions from which the generalized conditions and actions were con-
structed). The space of functions is searched by incrementally building
expressions from a known set of operators. The choice of operators is
constrained by the type of the input and output values (positions, angles,
numbers, lists, etc.), which requires that the types of the arguments and
ranges of every operator must be known.

The algorithm initially considers expressions containing a single
operator applied to the domain values (from the condition) which returns
the range values (from the action). If none are found, it will recursively
apply any appropriate operators to the domain and range values, and
search for an “‘connecting” operator which returns the new range values
when applied to the new domain values. The resulting expression will
be the composition of the inverses of the operators applied to the
range values, the connecting operator, and the operators applied to
the domain values. The search fails when it cannot find an expression
within some complexity limit.

Functions involving constants pose a problem for function induc-
tion. since it is not possible to search the space of all possible values
of constants if the space is infinite, as in a domain involving real-valued
parameters such as the robot domain. PMA's algorithm solves this prob-
lem by only considering one new constant for each expression. Such a
constant can be found if applying an operator to each pair of the domain
and range values produces a constant value. For example, when the
ditference operator is applied to the pairs of angles (907, ~90°) and
(135 ,~45"), the result is 1807 for both pairs. The required expression
can be found by inveriing the difference operator and using the con-
stant 180~ to obtain the expression: move-direction = (- contact-angle
180" ). If there are any constants with predetermined values which may
be relevant to the functional dependency, these can also be included
in the candidate expressions. One source for such known constants
is the condition immediately preceding the actions being merged. The
possible relevance of the parameters of this condition is justified by the
fact that this condition represents information about the state of the
world in which the action is to be performed.

The algorithm for searching through the space of functions relies
only on being provided with a set of invertible operators whose domain
and range types are specified. The operators need not be numeric
(although they are for the robot domain) and the algorithm is therefore
quite domain independent.

The generalization of the third stage is more powerful than that of
the second stage, both because it involves two events simultaneously
and because the space of possible functions is very large. In fact, if the
space is unconstrained, it will be possible to find a functional relation
petween almost any pattern and action. For this reason, the functional
generalization is only applied in the context of parallel segments and the
complexity of the expressions that are considered must be constrained
by the number of data points available.

At this point we note that some of the generalized actions (e.g.,
MOVE-TO (z.y)) are actually primitive actions whose parameters are
a function of the immediately preceding pattern. These nodes in the
action hierarchy are essentially memoized forms of these ‘'local” func-
tional relationships. The action hierarchy can be augmented by noting

reoccurring actions with the same locai functions and constructing the
memoized form of the function. This has not yet been implemented in
PMA.

2.6 Final Stage—Consistency checking.

The final stage of PMA checks that the description produced by the
first three stages satisfies the constraint that valid procedures must be
deterministic, i.e., at every step, the procedure must specify exactly one
action. This constraint may be violated if the conditions at a conditional
branch are not sufficiently distinct. If there are no possible patterns
that would match more than one of the branching conditions, then the
branch satisfies the constraint. It there is a pattern which matches
two conditions. then the branch may be indeterminate. We adopt the
convention that if one of the conditions is a strict generalization of
the other, then control passes to the most specific. This convention
eliminates the need for conditions with complex exception clauses. if
this is not the case—either the two conditions are are identical or part
of one condition is a generalization and part is a specialization of the
other condition—then the branch violates the constraint, and must be
rectified.

There are several ways a non-deterministic branch could arise,
each representing a ditferent way of resolving the non-determinism. One
source is that the second stage was not able to find a generalization
of the two actions of the events involving the conflicting conditions.
PMA therefore attempts to generalize the actions by searching for a
functional dependency as in the third stage. It this is successful, the
events can be combined, and the indeterminacy removed. If this is not
successful, it will attempt to specialize the conditions on the assumption
that the second stage may have over-generalized them. This is done
by searching in the condition hierarchy for a node lower than the
current condition. For example, it might be that some action should be
performed only when the position is within some circular region. If the
initial traces contain the action occurring in several positions, PMA will
generalize the condition to [at: {anywhere}]. When later traces show a
different action occurring at other positions, PMA wili have to specialize
the original condition to [inside: (circle-1)].

If no specialization node is found in the condition hierarchy, it may
be possible to create a new node using standard concept acquisition
techniques. For example, if there were no circle node, one could
be created, using the positions associated with the first action as the
positive examples of the new concept and the positions associated with
the other action as the near misses. In a domain like the robot world
involving numerical and geometric parameters, it may be possible to
use an algorithm similar to the function induction algorithm to create
the expressions representing the new concepts. This has not been
implemented in PMA.

If neither of these methods eliminates the indeterminate branch,
the pairing that created the branch event will be “undone'. This may
have to be repeated until all indeterminate branches are removed.

3. Discussion.

The need for constraints on generalization is not a new idea.
Winston {1970} constrained his concept learner to always choose the
most specific generalization consistent with the examples. Furthermore,
it was constrained to ignore negative examples unless there was exactly
one difference from the current concept, indicating an unambiguous
change to the current concept. These constraints reduced the search by
avoiding the need for backtracking, which is very expensive. Mitchell's
[1982] version space algorithm relaxed these constraints by providing an
efficient characterization of an entire set ot generalizations consistent
with the examples. This fails, however, if disjunctions are aflowed in the
descriptions, and further constraints are necessary.

Etficiency is not the only reason for constraints. In some cases,
the generalization task is so under-specified that additional constraints
must be found in order to perform the task at ali. A good example is
Berwick's language learner [1982] which acquires grammar rules when
aven only grammatical sentences and no negative examples. It was
only by adopting a particular parser and the very strict constraints on
the form of its rules that it was possible to learn any grammar rules
strictly from positive examples.

The three principles stated in the introduction describe three classes
of constraints on generalization which apply to any generalization task.

3.1 Domain Constrained Generalization.

Exploiting the constraints of the domain is an important and es-
tablished technique for all areas of Al. Domain constraints may reduce
the search space by eliminating descriptions that can validly be gen-



erated by the representation language, but describe situations that are
illegal in the domain. PMA exploits the constraint that procedures must
be deterministic to eliminate any descriptions with non-deterministic
branches. This determinacy constraint also reduces the space of legal
generalized actions. Although the action [MOVE-TO (0,0)] represents
many possible primitive MOVEs, in any particular situation (i.e., from any
particular position) it specifies exactly one. However, the action [MOVE
1@ (any-angle)] is indeterminate in that it never specifies a particular
primitive action and the determinacy constraint therefore eliminates it
from consideration.

Domain constraints may also be used to guide the generalization
process in ways other than simply reducing the search space. For
example, it is a particular property of the robot domain that MOVEs and
MOVE-UNTIL-CONTACTSs are very closely related, though they are ac-
tually different primitive actions. PMA exploits this relation by treating
MOVE-UNTIL-CONTACT as a generalization of MOVE, and is able to deter-
mine when a particular MOVE made by the teacher was intended to be a
MOVE-UNTIL-CONTACT. This type of generalization is very domain spe-
cific, but illustrates the way in which particular properties of a domain
can be used to increase the power of the generalizer.

3.2 Undesirabitity Ordering.

in order to guide the generalization processes, some ordering must
be placed on the space of possible descriptions. Generally, out of a set
of descriptions that are all valid generalizations of a set of examples, one
chooses the description that is lowest in the ordering. This is particularly
important for acquisition tasks in which no negative examples are given.
In most concept acquisition programs, this ordering has been based
on either generality or complexity—the more general (or complex) the
description, the more undesirable it is.

This is sufficient for restricted domains, such as those in which all
the concepts that need to be considered can be described in terms of
a conjunctive list of properties of, and relations between obijects. In
domains involving descriptions based on a more powerful description
language, however, this undesirability ordering must involve more than
just generality or complexity. For example, if the description language
allows disjunction, there will always be a generalization of any two
examples consisting of the disjunction of the déscriptions of the two
examples. This is the most specific generalization possible, but it is
seldom a useful or desirable generalization. Similarly, there is always an
(re — 1) degree polynomial that fits » points on the plane, but it is seldom
a useful generalization of the points. Neither of these generalizations is
useful because the existence of such a generalization was a foregone
conclusion, whether the relation between the examples was significant
or entirely random. If, however, there were a conjunctive description,
or a low degree polynomial, this would describe a relation between the
examples which would not be true of a random set of examples. Both
disjunctive descriptions and high order polynomials are necessary at
times, and cannot be eliminated from the search space entirely, but
should be placed high on the undesirability ordering.

The common element of these two undesirable generalizations is
that they use representation constructs that are very "“powerful” in the
sense that they allow one to construct descriptions of any set of items,
whereas conjunctive descriptions or 2nd degree polynomials can only
describe some sets of items. In other words, the space of possible de-
scriptions is very much wider if disjunctions, or other powerful constructs
are allowed than if they are prohibited. The undesirability ordering must
therefore take into account the descriptive power of the components
of the representation language, and pltace descriptions using the more
powerful constructs higher than those with more restrictive constructs.

PMA must be able to acquire procedures that involve conditional
branching, which is a form of disjunction. However, following this prin-
ciple of undesirability ordering, it always chooses a procedure without
branches over one with branches even at the cost of more general
events or actions containing functional expressions. Similarly, although
an explicit functional expression in an action is not any more more
general than an action from the action hierarchy, PMA always prefers
an action from the hierarchy, if one exists, because the description lan-
guage for actions in the action hierarchies is less powerful than that for
arbitrary functions, and therefore lower in the undesirability ordering.

3.3 Context Limited Generalization.

However, it is not sufficient to simply order the generalizations by
undesirability and choose the least undesirable. Matching two descrip-
tions involves finding a pairing between the elements of the descriptions.
With a sufficiently powerful description language, a generalization can

10

be found for any pair of the elements. But most of these pairings will
be spurious. We need to place some fimit on the degree of undesir-
ability to which we are prepared to go, but this limit must not eliminate
undesirable generalizations that really are part of the match. The so-
{ution is to use a limit that varies with the justification for believing
that a generalization exists. |f a teacher has asserted that two situations
match, then there is good justification for resorting to a very undesirable
generalization of the two situations. On the other hand, when search-
ing a data base for possibly relevant situations to a problem at hand,
then only generalizations low in the order should be considered. When
matching two structures, the partially completed match consisting of
pairings of very similar components may provide a context that justifies
considering a very undesirable generalization of two components that
fill corresponding positions according to the pairings found so far. In
general, the generalization must be limited to a level of undesirability
consistent with the context in which the generalization takes place.

The several stages of PMA illustrate this principle well. In the first
stage, there is no context to suggest what pairings should be made, and
therefore no event generalization at all is allowed. In the second stage,
the context of the perfectly matched pairs gives more justification to the
pairs found by propagation, so generalized events are considered. The
function induction is only considered in the highly restricted contexts
of paralle! segments or indeterminate branches. If function induction
were allowed in the second stage it would be very likely to find spurious
generalizations. But with this context limited generalization, PMA is
able to use powerful generalization methods without producing spurious
matches.

References.

Anderson, J.R. [1983]; Acquisition of Proof Skilis in Geometry; in
“Machine Learning”, eds. Michalski, Carbonell, Mitchell, Tioga Pub
Co., Palo Alto, California.

Angluin, D. and C.H. Smith [1982]; A Brief Survey of Inductive Inference;
Technical Report 250, Dept. Comp. Sci., Yale University.

Berwick, R.R. [1982); Locality Principles and the Acquisition of Syntactic
Knowledge; PhD thesis, M.L.T..

Langley, P, [1983]; Learning Effective Search Heuristics; Proceedings
of IJCAI-83, Vol 1, 419-421.

Latombe, J-C. and Dufay, B. [1983]; An Approach to Automatic Robot
Programming Based on Inductive Learning; Robotics Workshop,
M.L.T..

Mitchell, T.M. [1982]; Generalization as Search; Artificial Intelligence,
Vol. 18, 203-226.

Mitchell, T.M. [1983]; Learning and Problem Solving; Proceedings of
1JCAI-83, Vol 2, 1139-1151.

Michalski, R.S. [1983]; A Theory and Methodology of Inductive Learning;
in “Machine Learning” eds. Michalski, Carbonell, Mitchell, Tioga Pub.
Co., Palo Alto, California.

Winston, P.H. [1970]; Learning Structural Descriptions From Examples;
PhD Thesis, M.L.T..

Winston, P.H. [1984]; Artificial intelligence;
Reading, Massachusetts.

Van Lehn, Kurt [1983]; Felicity Condition for Human Skill Acquisition;
Validating an Al-based Theory, PhD Thesis, M.I.T..

Ch 12, Addison Wesley,



