
Towards Chunking as a General Learning Mechanism 

John E. Laird, Paul S. Rosenbloom and Allen Newell 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

ABSTRACT 

Chunks have long been proposed as a basic organizational unit 
for human memory. More recently chunks have been used to 
model human learning on simple perceptual-motor skills. In this 
paper we describe recent progress in extending chunking to be a 
general learning mechanism by implementing it within a general 
problem solver. Using the Soar problem-solving architecture, we 
take significant steps toward a general problem solver that can 
learn about all aspects of its behavior. We demonstrate chunking in 
Soar on three tasks: the Eight Puzzle, Tic-Tat-Toe, and a part of 
the RI computer-configuration task. Not only is there improvement 
with practice, but chunking also produces significant transfer of 
learned behavior, and strategy acquisition. 

1 Introduction 
Chunking was first proposed as a model of human memory by 

Miller [8], and has since become a major component of theories of 
cognition. More recently it has been proposed that a theory of 
human learning based on chunking could model the ubiquitous 
power law of practice [12]. In demonstrating that a practice 
mechanism based on chunking is capable of speeding up task 
performance, it was speculated that chunking, when combined with 
a general problem solver, might be capable of more interesting 
forms of learning than just simple speed ups [14]. In this paper we 
describe an initial investigation into chunking as a general learning 
mechanism. 

Our approach to developing a general learning mechanism is 
based on the hypothesis that all complex behavior - which 
includes behavior concerned with learning - occurs as search in 
problem spaces [ll]. One image of a system meeting this 
requirement consists of the combination of a performance system 
based on search in problem spaces, and a complex, analytical, 
learning system also based on search in problem spaces [lo]. An 
alternative, and the one we adopt here, is to propose that all 
complex behavior occurs in the problem-space-based performance 
system. The learning component is simply a recorder of 
experience. It is the experience that determines the form of what is 
learned. 

Chunking is well suited to be such a learning mechanism because 
it is a recorder of goal-based experience [13, 141. It caches the 
processing of a subgoal in such a way that a chunk can substitute 
for the normal (possibly complex) processing of the subgoal the 
next time the same subgoal (or a suitably similar one) is genera&d. 
It is a task-independent mechanism that can be applied to all 
subgoals of any task in a system. Chunks are created during 
performance, through experience with the goals processed. No 
extensive analysis is required either during or after performance. 

This research was sponsored by the Defense Advanced Research Projects 

Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics 
Laboratory Under Contract F33615-81-K-1539. The views and conclusions 
contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or impiied, of the Defense 
Addanced Research Projects Agency or the US Government. 

The essential step in turning chunking into a general learning 
mechanism is to combine it with a general problem-space problem 
solver. One candidate is Soar, a reflective problem-solving 
architecture that has a uniform representation and can create goals 
to reason about any aspect of its problem-solving behavior [5]. 
Implementing chunking within Soar yields four contributions 
towards chunking as a general learning mechanism. 

1. Chunking can be applied to a general problem solver to 
speed up its performance. 

2. Chunking can improve all aspects of a problem solver’s 
behavior. 

3. Significant transfer of chunked knowledge is possible 
via the implicit generalization of chunks. 

4. Chunking can perform strategy acquisition, leading to 
qualitatively new behavior. 

Other systems have tackled individual points, but this is the first 
attempt to do all of them. Other work on strategy acquisition deals 
with the learning of qualitatively new behavior [6, lo], but it is 
limited to learning only one type of knowledge. These systems end 
up with the wandering bottle-neck problem - removal of a 
performance bottleneck from one part of a system means that some 
other locale becomes the bottleneck [lo]. Anderson [l] has 
recently proposed a scheme of knowledge compilation to be a 
general learning mechanism to be applied to all of cognition, 
although it has not yet been used on complex problem solving or 
reasoning tasks that require learning about all aspects of behavior. 

2 Soar - A General Problem-Solving Architecture 
Soar is a problem solving system that is based on formulating all 

activity (both problems and routine tasks) as heuristic search in 
problem spaces. A problem space consists of a set of Hates and a 
set of operators that transform one state into another. Starting from 
an initial state the problem solver applies a sequence of operators 
in an attempt to reach a desired state. Soar uses a production 
system’ to implement elementary operators, tests for goal 
satisfaction and failure, and search control - information relevant 
to the selection of goals, problem spaces, states, and operators. It 
is possible to use a problem space that has no search control, only 
operators and goal recognizers. Such a space will work correctly, 
but will be slow because of the amount of search required. 

In many cases, the directly available knowledge may be 
insufficient for making a search-control decision or applying an 
operator to a state. When this happens, a difficulty occurs that 
results in the automatic creation of a subgoal to perform the 
necessary function. In the subgoal, Soar treats the difficulty as just 
another problem to solve; it selects a problem space for the subgoal 

1 
A modified versions of OpsS [3], which admits parallel execution of all satisfied 

productions. 

188 

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved. 



in which goal attainment is interpreted as finding a state that 
resolves the difficulty. Thus, Soar generates a hierarchy of goals 
and problem spaces. The diversity of task domains is reflected in a 
diversity of problem spaces. Major tasks, such as configuring a 
computer will have a corresponding problem space, but so also will 
each of the various subtasks. In addition, problem spaces will exist 
in the hierarchy for performing tasks generated by problems in the 
system’s own behavior, such as the selection of an operator to 
apply, the application of an operator to a state, and testing for goal 
attainment. With such an organization, all aspects of the system’s 
behavior are open to problem solving when necessary. We call this 
property universal subgoaling (51. 

Figure 1 shows a small example of how these subgoals are used 
in Soar. This is the subgoal/problem-space structure that gets 
generated while trying to take steps in a task problem space. 
Initially (A), the problem solver is at State1 and must select an 
operator. If search control is unable to uniquely determine the next 
operator to apply, a subgoal is created to do the selection. In that 
subgoal (IS), a selection problem space is used that reasons about 
the selection of objects from a set. In order to break the tie 
between objects, the selection problem space has operators to 
evaluate each candidate object. 

A. 

F. 

Task goal r, Select Operator 

tatel 
B. 

peratorl EY perator2 

perator3 

Task goal 

r-1 

peratorl El-+ perator2 

perator3 

s&?ct . . . 

Evaluate[Opl(Statel)] 

State1 

Er 
State2 

perator 1 

perator2 

pera tot-3 

Evaluate[Op2(Statel)] 

State1 

peratorl El+ perator2 

perator3 

State4 

Figure 1: Eight Puzzle subgoal/problem space structure. 

Evaluating an operator, such as Operator1 in the task space, is a 
complex problem requiring a new subgoal. In this subgoal (C), the 
original task problem space and state (Statel) are selected. 
Operator1 is applied, creating a new state (State2). The evaluation 
for State2 is used to compare Operator1 to the other operators. 
When Operator1 has been evaluated, the subgoal terminates, and 
then the whole process is repeated for the other two operators 
(Operator2 and Operator3 in D and E): If, for example, Operator2 
creates a state with a better evaluation than the other operators, it 
will be designated as better than them. The selection subgoal will 
terminate and the designation of Operator2 will lead to its selection 
in the original task goal and problem space, At this point Operator2 
is reapplied to State1 and the process continues (F). 

3 Chunking in Soar 
Chunking was previously defined [14] as a process that acquired 

chunks that generate the results of a goal, given the goal and its 
parameters. The parameters of a goal were defined to be those 
aspects of the system existing prior to the goal’s creation that were 
examined during the processing of the goal. Each chunk was 
represented as a set of three productions, one that encoded the 
parameters of a goal, one that connected this encoding in the 

presence of the goal to (chunked) results, and a third production 
that decoded the results. These chunks were learned bottom-up in 
the goal hierarchy; only terminal goals - goals for which there 
were no subgoals that had not already been chunked - were 
chunked. These chunks improved task performance by 
substituting efficient productions for complex goal processing. 
This mechanism was shown to work for a set of simple perceptual- 
motor skills based on fixed goal hierarchies [13]. 

At the moment, Soar does away with two of the features of 
chunking that existed for psychological modeling purposes: the 
three production chunks, and the the bottom-up nature of 
chunking. In Soar, single-production chunks are built for every 
subgoal that terminates. The power of chunking in Soar stems 
from Soar’s ability to automatically generate goals for problems in 
any aspects of its problem-solving behavior: a goal to select among 
alternatives leads to the creation of a production that will later 
control search; a goal to apply an operator to a state leads to the 
creation of a production that directly implements the operator; and 
a goal to test goal-satisfaction leads to a goal-recognition 
production. As search-control knowledge is added, performance 
improves via a reduction in the amount of search. If enough 
knowledge is added, there is no search; what is left is a method - 
an efficient algorithm for a task. In addition to reducing search 
within a single problem space, chunks can completely eliminate the 
search of entire subspaces whose function is to make a search- 
control decision, apply an operator, or recognize goal-satisfaction. 

The conditions of a chunked production need to test everything 
that was used in creating the results of the subgoal and that existed 
before the subgoal was invoked. In standard problem solvers this 
would consist of the name of the goal and its parameters. However, 
in Soar there are no fixed goal names, nor is there a fixed set of 
parameters. Once a subgoal is selected, all of the information from 
the prior goal is still available. The problem solver makes use of the 
information about why the subgoal was created and any of the 
other information that it needs to solve the problem. 

For each goal generated, the architecture maintains a 
condition-list of all data that existed before the goal was created 
and which was accessed in the goal. A datum is considered 
accessed if a production that matched it fires. Whenever a 
production is fired, all of the data it accessed that existed prior to 
the current goal are added to the goal’s condition-list. When a goal 
terminates (for whatever reason), the condition-list for that goal is 
used to build the conditions of a chunk. Before being turned into 
conditions, the data is selectively variablized so that the conditions 
become tests for object descriptions instead of tests for the specific 
objects experienced. These variables are restricted so that two 
distinct variables can not match the same object. 

The actions of the chunk should be the results of the goal. In 
traditional architectures, a goal produces a specific predefined type 
of result. However, in Soar, anything produced in a subgoal can 
potentially be of use in the parent goal. Although the potential 
exists for all objects to be relevant, the reality is that only a few of 
them will actually be useful. In figuring out the actions of the 
chunk, Soar starts with everything created in the goal, but then 
prunes away the information that does not relate directly to objects 
in any supergoal. What is left is turned into production actions 
after being variablized in accordance with the conditions. 

At first glance, chunking appears, to be simply a caching 
mechanism with little hope of producing results that can be used on 
other than exact duplicates of tasks it has already aJtempted. 
However, if a given task shares subgoals with another task, a chunk 
learned for one task can apply to the other, yielding across-task 

2 
Those that are pruned are also removed from memory because they are 

intermedtate results that wdl never be used again. 



transfer of learning. Within-trial transfer of learning can occur 
when a subgoal arises more than once during a single attempt on a 
task. Generality is possible because a chunk only contains 
conditions for the aspects that were accessed in the subgoal. This 
is an implicit generalization, by which many aspects of the context 
-the irrelevant ones -are automatically ignored by the chunk. 

4 Demonstration 
In this section we describe the results of experiments on three 

tasks: the Eight Puzzle, Tic-Tat-Toe, and computer configuration (a 
part of the Rl expert-system implemented in Soar[15]). These 
tasks exhibit: (1) speed ups with practice; (2) within-trial transfer of 
learning; (3) across-task transfer of learning; (4) strategy 
acquisition (the learning of paths through search spaces); (5) 
knowledge acquisition in a knowledge-intensive system; and (6) 
learning of qualitatively different aspects of behavior. We conclude 
this section with a discussion of how chunking sometimes builds 
over-general productions. 

4.1 Eight Puzzle 
The states for the Eight Puzzle, as implemented in Soar, consist 

of different configurations of eight numbered tiles in a three by 
three grid; the operators move the blank space up (U), down (D), 
left (L) and right (R) [5]. Search-control knowledge was built that 
computed an evaluation of a state based on the number of tiles that 
were moved in and out of the desired positions from the previous 
state.3 At each state in the problem solving, an operator must be 
selected, but there is insufficient search-control knowledge to 
intelligently distinguish between the alternatives. This leads to the 
selection being made using the set of selection and evaluation 
goals described in Section 2. The first column of Figure 2 shows 
the behavior of Soar without chunking in the Eight Puzzle problem 
space. All of the nodes off the main path were expanded in 
evaluate-operator subgoals (nodes on the main path were 
expanded once in a subgoal, and once after being selected in the 
top goal).4 

Task 1 

R 

R 

R 

No Learning 

Task 1 Task 1 

While Learning After Learnlng While Learning 
Task 1 

Task 1 

After Learning 
Task 2 

Figure 2: Within-trial and Across-task Transfer in Eight Puzzle. 

3 
To avoid tight loops, search-control was also added that avoided applying the 

inverse of the operator that created a given state. 

4At two points in the search the correct operator had to be selected manually 

because the evaluation function was Insufficient to pick out the best operator. Our 

purpose is not to evaluate the evaluation function, but to investigate how chunking 

can be used in conjunction with search-control knowledge. 

When Soar with chunking is applied to the task, both the 
selection and evaluation subgoals are chunked. During this run 
(second column of Figure 2), some of the newly created chunks 
apply to subsequent subgoals in the search. This within-trial 
transfer of learning speeds up performance by dramatically 
reducing the amount of search. The third column in the figure 
shows that after one run with learning, the chunked productions 
completely eliminate search. 

To investigate across-task learning, another experiment was 
conducted in which Soar started with a learning trial for a different 
task - the initial and final states are different, and none of the 
intermediate states were the same (the fourth column). The first 
task was then attempted with the productions learned from the 
second task, but with chunking turned off so that there would be no 
additional learning (the final column). The reduced search is 
caused by across-task transfer of learning - some subgoals in the 
second trial were identical in all of the relevant ways to subgoals in 
the first trial. This happens because of the interaction between the 
problem solving only accessing information relevant to the result, 
and the implicit generalization of chunking only recording the 
information accessed. 

4.2 Tic-Tat-Toe 
The implementation of Tic-Tat-Toe includes only the basic 

problem space - the state includes the board and who is on move, 
the operators make a mark on the board for the appropriate player 
and change who is on move - and the ability to detect a win, loss 
or draw [5]. With just this knowledge; Soar searches depth-first 
through the problem space by the sequence of: (1) encountering a, 
difficulty in selecting an operator; (2) evaluating the operators in a 
selection subgoal; (3) applying one of the operators in an 
evaluation subgoal; (4) encountering a difficulty in selecting an 
operator to apply to the resulting state; and (5) so on, until a 
terminal state is reached and evaluated. 

Chunking in Tic-Tat-Toe yields two interesting results: (1) the 
chunks detect board symmetries, allowing a drastic reduction in 
search through within-trial transfer, (2) the chunks encode search- 
control knowledge so that the correct moves through the space are 
remembered. The first result is interesting because there is no 
knowledge in the system about the existence of symmetries, and 
without chunking the search bogs down terribly by re-exploring 
symmetric positions. The chunks make use of symmetries by 
ignoring orientation information that was not used during problem 
solving. The second point seems obvious given our presentation of 
chunking, however, it demonstrates the strategy acquisition [6, lo] 
abilities of chunking. Chunking acquires strategic information on 
the fly, using only its direct experience, and without complex post- 
processing of the complete solution path or knowledge learned 
from other trials. The quality of this path depends on the quality of 
the problem solving, not on the learning. 

4.3 Rl 
Part of the RI expert system [7] was implemented in Soar to 

investigate whether Soar can support knowledge-intensive expert 
systems [15]. Figure 3 shows the subgoal structure that can be 
built up through universal subgoaling, including both subgoals that 
implement complex operators (heavy lines) and subgoals that 
select operators (thin lines to Selection subgoals). Each box shows 
the problem-space operators used in the subgoal. The actual 
subgoal structure extends much further wherever there is an 
ellipsis (...). This subgoal structure does not pre-exist in Soar, but 
is built up as difficulties arise in selecting and applying operators. 

Table 1 presents statistics from the application of RI-Soar to a 
small configuration task. The first three runs (Min. S-C) are with a 
minimal system that has only the problem spaces and goal 
detection defined. This base system consists of 232 productions 
(95 productions come with Soar, 137 define Rf-Soar). The final 
three runs (Added S-C) have 10 additional search-control 

190 



Configure backplane 

Place modules in BP 

Configure all modules 

onfigure backpla 

Place BP in box 

Cable backplace 

select instantiation 

ompare objects 

backplane . . . 

Figure 3: Subgoal Structure in RI-Soar. 

productions that remove much of the search. In the table, the first trial bypasses the subgoal. If the special-case production 
number of search-control decisions is used as the time metric 
because decisions are the basic unit of problem-solving.5 

would lead to a different result for the goal, the chunk is over- 
general and produces an incorrect result. 

Run TVDQ Initial Prod. Final Prod. Decision3 

Min. S-C 232 1731 
Min. S-C with chunking 232 291 
Min. S-C after chunking 291 291 7 

Added S-C 242 242 150 
Added S-C with chunking 242 254 90 
Added S-C after chunking 254 254 7 

Table 1: Run Statistics for RI-Soar. 

The first run shows that with minimal search control, 1731 
decisions are needed to do the task. If chunking is used, 59 
productions are built during the 485 decisions it took to do this task. 
No prior chunking had occurred, so this shows strong within-trial 
transfer. After chunking, rerunning the same task takes only 7 
decisions. 

When Soar is run with 10 hand-crafted search-control rules, it 
only takes 150 decisions. This is only little more than three times 
faster than Soar without those rules took when chunking was used. 
When chunking is applied to this situation - where the additional 
search control already exists - it still helps by decreasing to 90 the 
number of decisions for the first trial. A second trial on this task 
once again takes only 7 decisions. 

Figure 4 contains an example of how the problem solving and 
chunking in Soar ‘can lead to over-generalization. Consider the 
situation where 0 is to move in state 1. It already has the center (E), 
while X is on a side (6). A tie arises between all the remaining 
moves (A,C,D,F-I) .leading to the creation of a subgoal. The 
Selection problem space is chosen in which each of the tieing 
moves are candidates to be evaluated. If position I is evaluated 
first, it leads to a line of play resulting in state 2, which is a win for 0 
because of a fork. On return to the Selection problem space, move 
I is immediately chosen as the best move, the original tie-subgoal 
terminates, move I is made, and 0 goes on to win. When returning 
from the tie-subgoal, a chunk is created, with conditions sensitive 
to all aspects of the original state that were tested in productions 
that fired in the subgoals. All positions that have marks were tested 
(A-C, E, I) as well as those positions that had to be clear for 0 to 
have a fork (G, F). However, positions D and H were not tested. To 
see how this production is over-general consider state 3, where 0 is 
to move. The newly chunked production, being insensitive to the X 
at position D, will fire and suggest position I, which leads to a loss 
for 0. 

4.4 Over-generalization 
The within-trial and across-task transfer in the tasks we have 

examined was possible because of implicit generalization. 
Unfortunately, implicit generalization leads to over-generalization 
when there is special-case knowledge that was almost used in 
solving a subgoal. In Soar this would be a production for which 
most but not all of the conditions were satisfied during a problem 
solving episode. Those conditions that were not satisfied, either 
tested for the absence of something that is available in the subgoal 
(using a negated condition) or for the presence of something 
missing in the subgoal (using a positive condition) . The chunk that 
is built for the subgoal is over-general- because it does not include 
the inverses of these conditions - negated conditions for positive 
conditions, and positive conditions for negated conditions. During 
a later episode, when all of the conditions of a special-case 
production would be satisfied in a subgoal, the chunk learned in the 

1 2 3 
Figure 4: Over-generalization in Tic-Tat-Toe. 

‘on a Symbolics 3600, Soar USually runs at 1 second per decision. Chunkin 
ados an overhead of aPPrOximately 1546, mostly to compile new productions. The 
increased number of Productions has no affect on the overall rate if the chunked 

Productions are fully integrated into the existing production-match network. 

Over-generalization is a serious problem for Soar if we want 
to encode real tasks that are able to improve with experience. 
However, over-generalization is a problem for any learning system 
that works in many different environments and it leads to what is 
called negative-transfer in humans. We believe that the next step in 
handling over-generalization is to investigate how a problem solver 
can recover from over-general knowledge, and then carry out 
problem solving activities so that new chunks can be learned that 
will override the over-general chunks. This would be similar to 
John Anderson’s work on discrimination learning using knowledge 
compilation [l]. 

191 



5 Conclusion 
In this paper we have taken several steps towards the 

establishment of chunking as a general learning mechanism. We 
have demonstrated that it is possible to extend chunking to 
complex tasks that require extensive problem solving. In 
experiments with the Eight Puzzle, Tic-Tat-Toe, and a part of the 
RI computer-configuration task, it was demonstrated that 
chunking leads to performance improvements with practice. We 
have also contributed to showing how chunking can be used to 
improve many aspects of behavior. Though this is only partial, as 
not all of the different types of problem solving arose in the tasks we 
demonstrated, we did see that chunking can be used for subgoals 
that involve selection of operators and application of operators. 
Chunking has this generality because of the ubiquity of goals in 
Soar. Since all aspects of behavior are open to problem solving in 
subgoals, all aspects are open to learning. Not only is Soar able to 
learn about the task (chunking the main goal), it is able to learn 
about how to solve the task (chunking the subgoals). Because all 
aspects of behavior are open to problem solving, and hence to 
learning, Soar avoids the wandering bottle-neck problem. 

In addition to leading to performance speed ups, we have shown 
that the implicit generalization of chunks leads to significant within- 
trial and across-task transfer of learning. This was demonstrated 
most strikingly by the ability of chunks to use symmetries in Tic- 
Tat-Toe positions that are not evident to the problem solving 
system. And finally, we have demonstrated that chunking, which on 
first glance is a limited caching function, is capable of strategy 
acquisition. It can acquire the search control required to turn 
search-based problem solving into an efficient method. 

Though significant progress has been made, there is still a long 
way to go. One of the original goals of the work on chunking was to 
model human learning, but several of the assumptions of the 
original model have been abandoned on this attempt, and a better 
understanding is needed of just why they are necessary. We also 
need to understand better the characteristics of problem spaces 
that allow interesting forms of generalization, such as use of 
symmetry to take place. We have demonstrated several forms of 
learning, but others, such as concept formation [9], problem space 
creation [4], and learning by analogy [2] still need to be covered 
before the proposal of chunking as a general learning mechanism 
can be firmly established. 

References 

1. Anderson, J. Ft. Knoweldge compilation: The general learning 
mechanism. Proceedings of the 1983 Machine Learning Workshop, 
1983. 
2. Carbonell, J. G. Learning by analogy: Formulating arrd 
generalizing plans from past experience. In Machine Learning: An 
ArtificiaI intelligence Approach, Ft. S. Michalski, J. G. Carbonell, & 
T. M. Mitchell, Eds., Tioga, Palo Alto, CA, 1983. 
3. Forgy, C. L. OPS5 Manual. Computer Science Department, 
Carnegie-Mellon University, 1961. 
4. Hayes, J. R. and Simon, H. A. Understanding complex task 
instructions. In Cognition and Instruction, Klahr, D., Ed.,Erlbaum, 
Hillsdale, NJ, 1976. 
5. Laird, J. E. Universal Subgoaling. Ph.D. Th., Computer Science 
Department, Carnegie-Mellon University, 1983. 
6. Langley, P. Learning Effective Search Heuristics. Proceedings 
of IJCAI-83, IJCAI, 1983. 
7. McDermott, J. ‘Xl: A rule-based configurer of computer 
systems,” Artificial intelligence 79 (1982), 39-88. 
8. Miller, G. A. “The magic number seven, plus or minus two: 
Some limits on our capacity for processing information.” 
Psychological Review 63 (1956) 81-97. 
9. Mitchell, T. M. Version Spaces: An approach to concept 
/earning. Ph.D. Th., Stanford University, 1978. 
10. Mitchell, T. M. Learning and Problem Solving. Proceedings of 
IJCAI-83, IJCAI, 1983. 
11. Newell, A. Reasoning, problem solving and decision 
processes: The problem space as a fundamental category. In 
Attention and Performance VIII, R. Nickerson, Ed.,Erlbaum, 
Hillsdale, NJ, 1980. 
12. Newell, A. and Rosenbloom, P. Mechanisms of skill acquisition 
and the law of practice. In Learning and Cognition, Anderson, J. A., 
Ed.,Erlbaum, Hillsdale, NJ, 1981. 
13. Rosenbloom, P. S. The Chunking of Goal Hierarchies: A Mode/ 
of Practice and Stimulus-Response Compatibility. Ph.D. Th., 
Carnegie-Mellon University, 1983. 
14. Rosenbloom, P. S., and Newell, A. The chunking of goal 
hierarchies: A generalized model of practice. Proceedings of the 
1983 Machine Learning Workshop, 1983. 
15. Rosenbloom, P. S., Laird, J. E., McDermott, J. and Newell, A. 
Rl -SOAR: An Experiment in Knowledge-Intensive Programming in 
a ProblemSolving Architecture. Department of Computer Science, 
Carnegie-Mellon University, 1984. 

192 


