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Abstract 

Genetic adaptive algorithms provide an efficient way to 
search large function spaces, and are increasingly being 
used in learning systems. One problem plaguing genetic 
learning algorithms is premature convergence, or 
convergence of the pool of active structures to a sub- 
optimal point in the space being searched. An improvement 
to the standard genetic adaptive algorithm is presented 
which guarantees diversity of the gene pool throughout the 
search. Maintaining genetic diversity is shown to improve 
off-line (or best) performance of these algorithms at the 
expense of poorer on-line (or average) performance, and to 
retard or prevent premature convergence. 

1. Int reduction 
Genetic adaptive algorithms (GA’s) are one solution to the 

blackbox learning problem - given a domain of input 
structures and a procedure for determining the value of an 
objective function on those structures, find a structure 
which maximizes (or minimizes) the objective function, 

GA’s are based on the observation that natural systems of 
evolving species are very efficient at adapting to changing 
environments. By simulating evolutionary processes, GA’s 
can harness the power of population genetics to provide 
autonomous learning components for artificial systems. 
Genetic algorithms have been applied to widely varying 
problems in learning and adaptive control such as character 
recognition 163, state space learning [ll], pattern tracking 
[lo], discovery [7], maze running and poker betting [12], 

and gas pipeline operation [5]. 

2. Applicability of GA’S 
The most attractive feature of GA’s is the flexibility of the 

technique. As long as there is an objective performance 
measure, genetic search through the function space will 
find better and better solutions. No initial knowledge of the 
domain is required, and as long as the objective function is 
not completely random, the underlying structure of the 
problem assures that GA’s will outperform random search. 
Of course, some domains have objective functions which 
are amenable to more specialized and more efficient search 
techniques. For example, where the objective function is 
quadratic, special numerical analysis techniques can 
quickly find the optimum point in the space. If the function 
is differentiable, gradient search works equally fast. If the 
function is at least unimodal, hill climbing search is very 
effective. 

In complicated domains, though, these specialized 
techniques break down quickly. The conditions for which 
GA’s perform well are much less rigid, and empirical studies 

have shown that on complicated domains, GA’s outperform 
both specialized and random searches [2]. Bethke’s thesis 
characterized the set of functions which are genetically 
optimizable in terms of the Walsh transforms of the function, 
and shows that the coefficients involved can be estimated 
during the search to determine whether the function can be 
optimized genetically [l]. 

3. The Basic Genetic Algorithm 
The following steps are common to all genetic adaptive 

algorithms. They are motivated by the study of population 
genetics, and most of the same intuitions and terms apply. 

Choose a representation language for describing the 
possible behaviors of the organisms you wish to study, 
and then encode this language in strings of binary digits 
(some genetic algorithms use other alphabets, but bit 
strings or bit strings with DON’T CARE symbols are the 
most common internal representations). Each string 
represents one point in the function space being 
optimized. 

Choose an objective (or payoff) function which assigns a 
scalar payoff to any particular bit string, using the 
mapping you chose in step 1, This can be the cost of a 
solution to an economic problem, the final score of a 
game playing program, or some other measure of 
performance. This score is usually called a fitness 
rating. 

Generate an initial population of strings (often at 
random, but the system can be given a priori knowledge 
by including some individual strings already known to 
perform well). 

Evaluate each string using the payoff function to assign 
it a non-negative fitness. Better strings receive higher 
fitness ratings (when using GA’s to minimize an 
objective function, a transformation is applied to the 
result to derive an increasing function). 

Repeatedly generate a new population. Select one or 
more parent strings from the population using weighted 
probabilities so that the chance of being selected as a 
parent is proportional to the fitness of the string. Then 
apply one or more genetic operators to generate one or 
more new strings. There are many possible operators, 
but the two basic ones are crossover and mutation. 

6. Select an equal number of strings in the current 
population to “die” and replace these with the newly 
generated strings. Some GA’s generate only one new 
string at a time; others generate a whole new population 
at each step. 
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7. Now evaluate each of the new strings to assign each of 
them a fitness value, and go back to step 5. 

The best source of information about GA’s is Holland’s 
Adaptation in Natural and Artificial Systems [6]. Holland 
uses terms borrowed from Mendelian genetics to describe 
the process: 

l Each position in the string is called a gene. 
l The possible values of each gene are called alleles. 
l A particular string is called a genotype. 
l The population of strings also called the gene pool. 
l The organism or behavior pattern specified by a 

genotype is called a phenotype. 
l If the organism represented is a function with one or 

more inputs, these inputs are called detectors. 

Each genotype represents a particular point in the 
function space being optimized, and the goal of the search 
is to find points in the space with the largest objective values 
(better performance). Although this formulation of genetic 
algorithms is very similar to earlier evolutionary models 
(eg [3], [4]), there is one subtle difference: the introduction 
of the crossover operator. Early programs were usually 
“random generation with preservation of the best.” This 
corresponds to a GA where the only genetic operator used 
is mutation. But mutation does not take advantage of the 
knowledge already present in the gene pool. 

The crossover operator mixes building blocks (sets of 
alleles) which have been generated during the course of the 
search; this approach exploits regularities in the 
environment to produce new genotypes which are more 
plausible than mutation alone would provide. Holland uses 
the term schemata to describe these building blocks, and he 
showed that each schema tends to increase or decrease its 
presence in the gene pool in proportion to its past 
performance [6]. Since this happens for each subset of the 
space simultaneously, there is an immense amount of 
implicit parallelism in the search for better genotypes [12]. 

4. Examples of GA’s 
Smith’s maze and poker betting programs and Goldberg’s 

gas pipeline program (mentioned in Section 1) all use sets of 
production rules as an internal representation. Production 
rules are encoded as bit strings; the left-hand side of each 
rule matches one or more input detectors, and the right- 
hand side emits a binary message which encodes the 
desired action. Holland’s classifier systems [8] are also rule 
based, but the messages emitted by the right-hand side of 
each rule are fed back to a global message list. Messages 
on this list activate more production rules to give the system 
the ability to represent feed-back loops and state memory. 

The poker betting problem was based on Waterman’s 
work on draw poker betting [13]. For this problem, seven 
input detectors were specified: (1) the value of the hand, (2) 
the size of the pot, (3) the size of the last bet, (4) the 
likelihood that the opponent is bluffing, (5) the “pot odds,” 
(6) the number of cards drawn by opponent, and (7) a 
measure of the opponent’s playing style. The right-hand 
side of each rule can specify one of four actions: drop, call, 
bet low, or bet high. Smith’s system learned enough about 
poker betting over the course of 4000 trials to generate bets 
in accordance with accepted poker axioms 82% of the time. 
By contrast, Waterman’s system achieved 86% agreement 
only with the help of an additional decision matrix not 
available to the genetic system [12]. 

5. Function Optimization as Sandbox 
Much work on genetic algorithms has focused on 

function optimization. By using various test functions as 
environments, the effects of domain features such as 
linearity, differentiability, continuity, modality, and 
dimensionality can be studied in isolation [2]. When 
optimizing functions which map points in !R” to !R, the 
following representation is commonly used: each point in 
the domain is an n-tuple of real numbers, each real number 
is represented as a fixed binary number, and the binary 
representations are concatenated together to form a bit 
string. The fitness of the string is the value of the function at 
the original point. 

Two different performance measures are commonly used 
to analyze the effectiveness of function optimizers: on-line 
and off-line performance. On-line performance is simply the 
mean of all trials, while off-line performance is the mean of 
the best previous trial at each time (or trial) t. On-line 
performance is an appropriate measure for a task such as 
gambling or economics where learning must be done while 
performing the task at hand. Off-line performance only 
considers the best behavior of the system, and is more 
appropriate for systems which either train to solve a 
problem, or systems which have a model of the domain. 

More formally, if f (t) denotes the average value of trial t 
on functions fi, and $ the goal is to minimize each function, 
we have the following definitions: 

On-line performance x,(t) = f . & f,(i) 
i=l 

Off-line performance xi(t) = f . & f:(i) 
i=l 

Best so far f:(i) = min f,(j) 
j=l,i 

6. Premature Convergence 
In genetic search, the process converges when the 

elements of the gene pool are identical, or nearly so. Once 
this occurs, the crossover operator ceases to produce new 
individuals, and the algorithm allocates all of its trials in a 
very small subset of the space. Unfortunately, this often 
occurs before the true optimum has be found; this behavior 
is called premature convergence. The mutation operator 
provides a mechanism for reintroducing lost alleles, but it 
does so at the cost of slowing down the learning process. 
DeJong suggests adding a crowding factor which affects 
the replacement algorithm. Rather than merely replacing a 
single individual, select a small subset of the gene pool, and 
replace the string most similar to the newly generated string. 
This method has the advantage that it does not introduce 
wild mutations, but unfortunately it does not guarantee that 
alleles won’t be lost, it merely reduces the probability of 
loss, delaying but not preventing premature convergence. 

7. Diversity 
The intuitive reason for premature convergence is that 

the individuals in the gene pool are too “alike.” This 
realization suggests that one method for preventing this 
convergence is to assure that different members of the gene 
pool are different. Since each structure is represented as a 
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bit string, it suffices to check that whenever a new structure 
is added to the pool that it differs from from every other 
structure by at least one bit. If the new individual is identical 
to another member of the gene pool, randomly change one 
bit, and repeat until the result differs from every other 
member of the pool. 

A more general method is to define a metric over the 
space of structures and assure at each point that the 
distance between any two structures is greater than some 
minimum distance. The most obvious metric is to use the 
Hamming distance between the bit strings representing 
each structure (ie the number of bits which do not match). 
So that a large uniqueness value does not preclude search 
in a small subspace at the end of the search, the uniqueness 
value of k bits is slowly decreased to one bit as the search 
proceeds. If the decrease is linear in the number of bits, we 
have the following equation for n trials: 

k bit decreasing uniq. Hamming (gi, gi) > [ n 
k. (n -t) 1 

Thus at the start of the search the space is sampled over 
a reiatively coarse “grid,” and as the search progresses, the 
grid size is gradually reduced until adjacent points are 
considered. This process bears a striking similarity to 
simulated annealing, with the minimum distance being 
analogous to the decreasing temperature used during the 
annealing process. But unlike simulated annealing, genetic 
search with decreasing uniqueness retains the parallel 
flavor of genetic search, while simulated annealing is a 
fundamentally serial process. 

8. Methodology 
To evaluate the usefulness of uniqueness, a learning 

program was written which implemented five search 
algorithms: (1) standard genetic search with replacement of 
worst (Holland R,), (2) h bit decreasing uniqueness, (3) 
DeJong’s crowding /actor, (4) random search, and (5) 
parallel hill climbing search. These last two algorithms were 
included as controls to verify the general utility of genetic 
algorithms. The hillclimbing search used was simple 
random mutation with preservation of best. 

Since search is a stochastic process, each algorithm was 
run 10 times with 10 different random seeds. The initial 
population depended only on the random seed, not the 
specific algorithm; therefore for any one seed, every 
algorithm started with the same initial population. This 
reduced the chance that an unusual initial population 
distribution would favor one particular algorithm. Each of 
these 10 runs was for 5000 trials. The domain for the test 
was a set of five test functions used by DeJong in his study 
[2]. Complete descriptions of each function are given in [Q]. 

This “environment” included functions which were 
continuous and discontinuous, convex and non-convex, 
unimodal and multimodal, quadratic and non-quadratic, of 
low, medium, and high dimensionality, and both with and 
without noise. 

9. Results 
Table Q-l shows each algorithm’s global performance, ie 

the sum of its scores on the five test functions. Since this 
was a minimization problem, smaller numbers indicate 
better performance. Figure 9-l shows the “Best so far” 
curves for each algorithm. This is simply a graph of the best 
point in the space found at that point (this is the first 
derivative of the off-line performance curve). 
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Random Search: 239.336 7.972 
HI11 Climbing: 18.871 2.103 
Holland Rl: 6,218 1.227 
Crowding Factor 4: 3.886 -0.677 
Uniqueness 1 bit: 16.938 -0.017 
Uniqueness 2 bits: 15.803 -0.140 
Uniqueness 4 bits: 17.766 -1.341 
Uniqueness 8 bits: 31.300 -2.162 
Uniqueness 12 bits: 50.447 -2.776 
Crowding 4 + Uniq 12: 9.447 -2.689 
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-2.481 
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-6.287 
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The data in Table 9-1 clearly show that increasing the 
uniqueness parameter improves the off-line performance at 
the expense of poorer on-line performance. The only limit 
seems to be that the Hamming distance between two bit 
strings can be no greater than the length of the strings (so 
for a gene pool of size M and strings of k bits, the maximum 
uniqueness would be k - log, M). 
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Figure 9-l shows that the the standard R, algorithm 11. Acknowledgments 
learns very quickly until about 1000 trials, and then the I would like to thank Stephen Smith for his suggestions 
curve levels off. Adding DeJong’s crowding factor improves and insights into the world of genetic learning, and 
performance significantly, but the curve (marked c4) still especially for access to his collection of hard-to-find 
levels off after 2950 and no improvement is found thereafter. literature on genetic algorithms. 
The graph for uniqueness of 12 bits (marked u 12) has the 
best off-line performance of any algorithm, and is still References 
improving at the end of 5000 trials. 

One surprising result is that the combination of a 
crowding factor of 4 and a uniqueness of 12 bits performed 
almost as well off-line as uniqueness of 12 alone, and had a 
substantially improved on-line performance over simple 
uniqueness. What happens is this: using a crowding factor 
greater than 1 means that any new string is likely to be 
similar to the string it replaces. Since the string being 
replaced was unique, there is a high probability that the new 
string will also be unique. Thus fewer mutations are 
required to maintain diversity, and on-line performance is 
not as badly degraded. 

10. Summary 
This study confirms earlier work which demonstrated the 

robustness of genetic search as a tool for function 
optimization. It was shown that guaranteeing genetic 
diversity by means of a decreasing uniqueness measure 
provides significantly improved off-line performance at the 
expense of much poorer on-line performance. This 
degraded on-line performance can be ameliorated by 
combining DeJong’s crowding factor with uniqueness to 
produce a genetic adaptive algorithm with superior off-line 
performance and moderate on-line performance. 

One avenue for future research is to consider metrics 
other than Hamming distance for defining uniqueness. 
Another possible variation is to decode the bits strings into 
the corresponding real numbers and use Euclidean distance 
as a measure. This would tend to violate the black-box 
model of genetic learning, but could be viewed as a genetic 
heuristic search. Another possible improvement to 
uniqueness would be a mutation operator which is not 
uniform over the whole bit string. It might be that a mutation 
operator which always reintroduces a lost allele would 
provide another performance boost. 

Another interesting prospect is the author’s conjecture 
that a diverse gene pool would be helpful in optimizing time- 
varying functions. Pettit has studied the usefulness of 
genetic algorithms for tracking changing environments. 
She concluded that the standard genetic search performed 
very poorly in tracking even slowly changing environments 
[lo]. One problem is obvious - if the gene pool ever 

converges (even at the correct optimum!) all future trials will 
be allocated at the same point, and the time-varying peak 
will simply “move out from under it.” If, on the other hand, 
the gene pool is kept diverse, the crossover operator will 
continue to generate new strings, and should be much more 
able to track the peak. 
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