
Maintaining Diversity in Genetic Search

Michael L. Mauldin
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Genetic adaptive algorithms provide an efficient way to
search large function spaces, and are increasingly being
used in learning systems. One problem plaguing genetic
learning algorithms is premature convergence, or
convergence of the pool of active structures to a sub-
optimal point in the space being searched. An improvement
to the standard genetic adaptive algorithm is presented
which guarantees diversity of the gene pool throughout the
search. Maintaining genetic diversity is shown to improve
off-line (or best) performance of these algorithms at the
expense of poorer on-line (or average) performance, and to
retard or prevent premature convergence.

1. Int reduction
Genetic adaptive algorithms (GA’s) are one solution to the

blackbox learning problem - given a domain of input
structures and a procedure for determining the value of an
objective function on those structures, find a structure
which maximizes (or minimizes) the objective function,

GA’s are based on the observation that natural systems of
evolving species are very efficient at adapting to changing
environments. By simulating evolutionary processes, GA’s
can harness the power of population genetics to provide
autonomous learning components for artificial systems.
Genetic algorithms have been applied to widely varying
problems in learning and adaptive control such as character
recognition 163, state space learning [ll], pattern tracking
[lo], discovery [7], maze running and poker betting [12],

and gas pipeline operation [5].

2. Applicability of GA’S
The most attractive feature of GA’s is the flexibility of the

technique. As long as there is an objective performance
measure, genetic search through the function space will
find better and better solutions. No initial knowledge of the
domain is required, and as long as the objective function is
not completely random, the underlying structure of the
problem assures that GA’s will outperform random search.
Of course, some domains have objective functions which
are amenable to more specialized and more efficient search
techniques. For example, where the objective function is
quadratic, special numerical analysis techniques can
quickly find the optimum point in the space. If the function
is differentiable, gradient search works equally fast. If the
function is at least unimodal, hill climbing search is very
effective.

In complicated domains, though, these specialized
techniques break down quickly. The conditions for which
GA’s perform well are much less rigid, and empirical studies

have shown that on complicated domains, GA’s outperform
both specialized and random searches [2]. Bethke’s thesis
characterized the set of functions which are genetically
optimizable in terms of the Walsh transforms of the function,
and shows that the coefficients involved can be estimated
during the search to determine whether the function can be
optimized genetically [l].

3. The Basic Genetic Algorithm
The following steps are common to all genetic adaptive

algorithms. They are motivated by the study of population
genetics, and most of the same intuitions and terms apply.

Choose a representation language for describing the
possible behaviors of the organisms you wish to study,
and then encode this language in strings of binary digits
(some genetic algorithms use other alphabets, but bit
strings or bit strings with DON’T CARE symbols are the
most common internal representations). Each string
represents one point in the function space being
optimized.

Choose an objective (or payoff) function which assigns a
scalar payoff to any particular bit string, using the
mapping you chose in step 1, This can be the cost of a
solution to an economic problem, the final score of a
game playing program, or some other measure of
performance. This score is usually called a fitness
rating.

Generate an initial population of strings (often at
random, but the system can be given a priori knowledge
by including some individual strings already known to
perform well).

Evaluate each string using the payoff function to assign
it a non-negative fitness. Better strings receive higher
fitness ratings (when using GA’s to minimize an
objective function, a transformation is applied to the
result to derive an increasing function).

Repeatedly generate a new population. Select one or
more parent strings from the population using weighted
probabilities so that the chance of being selected as a
parent is proportional to the fitness of the string. Then
apply one or more genetic operators to generate one or
more new strings. There are many possible operators,
but the two basic ones are crossover and mutation.

6. Select an equal number of strings in the current
population to “die” and replace these with the newly
generated strings. Some GA’s generate only one new
string at a time; others generate a whole new population
at each step.

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

7. Now evaluate each of the new strings to assign each of
them a fitness value, and go back to step 5.

The best source of information about GA’s is Holland’s
Adaptation in Natural and Artificial Systems [6]. Holland
uses terms borrowed from Mendelian genetics to describe
the process:

l Each position in the string is called a gene.
l The possible values of each gene are called alleles.
l A particular string is called a genotype.
l The population of strings also called the gene pool.
l The organism or behavior pattern specified by a

genotype is called a phenotype.
l If the organism represented is a function with one or

more inputs, these inputs are called detectors.

Each genotype represents a particular point in the
function space being optimized, and the goal of the search
is to find points in the space with the largest objective values
(better performance). Although this formulation of genetic
algorithms is very similar to earlier evolutionary models
(eg [3], [4]), there is one subtle difference: the introduction
of the crossover operator. Early programs were usually
“random generation with preservation of the best.” This
corresponds to a GA where the only genetic operator used
is mutation. But mutation does not take advantage of the
knowledge already present in the gene pool.

The crossover operator mixes building blocks (sets of
alleles) which have been generated during the course of the
search; this approach exploits regularities in the
environment to produce new genotypes which are more
plausible than mutation alone would provide. Holland uses
the term schemata to describe these building blocks, and he
showed that each schema tends to increase or decrease its
presence in the gene pool in proportion to its past
performance [6]. Since this happens for each subset of the
space simultaneously, there is an immense amount of
implicit parallelism in the search for better genotypes [12].

4. Examples of GA’s
Smith’s maze and poker betting programs and Goldberg’s

gas pipeline program (mentioned in Section 1) all use sets of
production rules as an internal representation. Production
rules are encoded as bit strings; the left-hand side of each
rule matches one or more input detectors, and the right-
hand side emits a binary message which encodes the
desired action. Holland’s classifier systems [8] are also rule
based, but the messages emitted by the right-hand side of
each rule are fed back to a global message list. Messages
on this list activate more production rules to give the system
the ability to represent feed-back loops and state memory.

The poker betting problem was based on Waterman’s
work on draw poker betting [13]. For this problem, seven
input detectors were specified: (1) the value of the hand, (2)
the size of the pot, (3) the size of the last bet, (4) the
likelihood that the opponent is bluffing, (5) the “pot odds,”
(6) the number of cards drawn by opponent, and (7) a
measure of the opponent’s playing style. The right-hand
side of each rule can specify one of four actions: drop, call,
bet low, or bet high. Smith’s system learned enough about
poker betting over the course of 4000 trials to generate bets
in accordance with accepted poker axioms 82% of the time.
By contrast, Waterman’s system achieved 86% agreement
only with the help of an additional decision matrix not
available to the genetic system [12].

5. Function Optimization as Sandbox
Much work on genetic algorithms has focused on

function optimization. By using various test functions as
environments, the effects of domain features such as
linearity, differentiability, continuity, modality, and
dimensionality can be studied in isolation [2]. When
optimizing functions which map points in !R” to !R, the
following representation is commonly used: each point in
the domain is an n-tuple of real numbers, each real number
is represented as a fixed binary number, and the binary
representations are concatenated together to form a bit
string. The fitness of the string is the value of the function at
the original point.

Two different performance measures are commonly used
to analyze the effectiveness of function optimizers: on-line
and off-line performance. On-line performance is simply the
mean of all trials, while off-line performance is the mean of
the best previous trial at each time (or trial) t. On-line
performance is an appropriate measure for a task such as
gambling or economics where learning must be done while
performing the task at hand. Off-line performance only
considers the best behavior of the system, and is more
appropriate for systems which either train to solve a
problem, or systems which have a model of the domain.

More formally, if f (t) denotes the average value of trial t
on functions fi, and $ the goal is to minimize each function,
we have the following definitions:

On-line performance x,(t) = f . & f,(i)
i=l

Off-line performance xi(t) = f . & f:(i)
i=l

Best so far f:(i) = min f,(j)
j=l,i

6. Premature Convergence
In genetic search, the process converges when the

elements of the gene pool are identical, or nearly so. Once
this occurs, the crossover operator ceases to produce new
individuals, and the algorithm allocates all of its trials in a
very small subset of the space. Unfortunately, this often
occurs before the true optimum has be found; this behavior
is called premature convergence. The mutation operator
provides a mechanism for reintroducing lost alleles, but it
does so at the cost of slowing down the learning process.
DeJong suggests adding a crowding factor which affects
the replacement algorithm. Rather than merely replacing a
single individual, select a small subset of the gene pool, and
replace the string most similar to the newly generated string.
This method has the advantage that it does not introduce
wild mutations, but unfortunately it does not guarantee that
alleles won’t be lost, it merely reduces the probability of
loss, delaying but not preventing premature convergence.

7. Diversity
The intuitive reason for premature convergence is that

the individuals in the gene pool are too “alike.” This
realization suggests that one method for preventing this
convergence is to assure that different members of the gene
pool are different. Since each structure is represented as a

248

bit string, it suffices to check that whenever a new structure
is added to the pool that it differs from from every other
structure by at least one bit. If the new individual is identical
to another member of the gene pool, randomly change one
bit, and repeat until the result differs from every other
member of the pool.

A more general method is to define a metric over the
space of structures and assure at each point that the
distance between any two structures is greater than some
minimum distance. The most obvious metric is to use the
Hamming distance between the bit strings representing
each structure (ie the number of bits which do not match).
So that a large uniqueness value does not preclude search
in a small subspace at the end of the search, the uniqueness
value of k bits is slowly decreased to one bit as the search
proceeds. If the decrease is linear in the number of bits, we
have the following equation for n trials:

k bit decreasing uniq. Hamming (gi, gi) > [n
k. (n -t) 1

Thus at the start of the search the space is sampled over
a reiatively coarse “grid,” and as the search progresses, the
grid size is gradually reduced until adjacent points are
considered. This process bears a striking similarity to
simulated annealing, with the minimum distance being
analogous to the decreasing temperature used during the
annealing process. But unlike simulated annealing, genetic
search with decreasing uniqueness retains the parallel
flavor of genetic search, while simulated annealing is a
fundamentally serial process.

8. Methodology
To evaluate the usefulness of uniqueness, a learning

program was written which implemented five search
algorithms: (1) standard genetic search with replacement of
worst (Holland R,), (2) h bit decreasing uniqueness, (3)
DeJong’s crowding /actor, (4) random search, and (5)
parallel hill climbing search. These last two algorithms were
included as controls to verify the general utility of genetic
algorithms. The hillclimbing search used was simple
random mutation with preservation of best.

Since search is a stochastic process, each algorithm was
run 10 times with 10 different random seeds. The initial
population depended only on the random seed, not the
specific algorithm; therefore for any one seed, every
algorithm started with the same initial population. This
reduced the chance that an unusual initial population
distribution would favor one particular algorithm. Each of
these 10 runs was for 5000 trials. The domain for the test
was a set of five test functions used by DeJong in his study
[2]. Complete descriptions of each function are given in [Q].

This “environment” included functions which were
continuous and discontinuous, convex and non-convex,
unimodal and multimodal, quadratic and non-quadratic, of
low, medium, and high dimensionality, and both with and
without noise.

9. Results
Table Q-l shows each algorithm’s global performance, ie

the sum of its scores on the five test functions. Since this
was a minimization problem, smaller numbers indicate
better performance. Figure 9-l shows the “Best so far”
curves for each algorithm. This is simply a graph of the best
point in the space found at that point (this is the first
derivative of the off-line performance curve).

lO_

8-

6-

4-

2,

0,

-4-

global Performance On-ltne Off-line

Random Search: 239.336 7.972
HI11 Climbing: 18.871 2.103
Holland Rl: 6,218 1.227
Crowding Factor 4: 3.886 -0.677
Uniqueness 1 bit: 16.938 -0.017
Uniqueness 2 bits: 15.803 -0.140
Uniqueness 4 bits: 17.766 -1.341
Uniqueness 8 bits: 31.300 -2.162
Uniqueness 12 bits: 50.447 -2.776
Crowding 4 + Uniq 12: 9.447 -2.689

Best

6.761
-2.810
-0.207
-2.361
-2.481
-2.209
-3.646
-4.779
-6.287
-6.046

Table Q-l : Global Performance

Iiandom Scatch -
Hill Climbing _--_

Holland R 1 _______
Crowding Factor 4 .-.-I-.
Uniqucncss 1 bit l.-..-*l-l

Uniqucncss 2 bits ,-.-.-..
Uniqueness 4 bits ..-..-..-..
Uniqucncss 8 bits . ..-...w...-..

Uniqueness 12 bits
Crowding 4 + Uniq 12 s-m-m--

r- lOod 200d 300d 400d 500

Figure Q- 1: Global Best Found

random

rl

u2
z4
Ul
hill

u4

US
~4~12
u12

The data in Table 9-1 clearly show that increasing the
uniqueness parameter improves the off-line performance at
the expense of poorer on-line performance. The only limit
seems to be that the Hamming distance between two bit
strings can be no greater than the length of the strings (so
for a gene pool of size M and strings of k bits, the maximum
uniqueness would be k - log, M).

249

Figure 9-l shows that the the standard R, algorithm 11. Acknowledgments
learns very quickly until about 1000 trials, and then the I would like to thank Stephen Smith for his suggestions
curve levels off. Adding DeJong’s crowding factor improves and insights into the world of genetic learning, and
performance significantly, but the curve (marked c4) still especially for access to his collection of hard-to-find
levels off after 2950 and no improvement is found thereafter. literature on genetic algorithms.
The graph for uniqueness of 12 bits (marked u 12) has the
best off-line performance of any algorithm, and is still References
improving at the end of 5000 trials.

One surprising result is that the combination of a
crowding factor of 4 and a uniqueness of 12 bits performed
almost as well off-line as uniqueness of 12 alone, and had a
substantially improved on-line performance over simple
uniqueness. What happens is this: using a crowding factor
greater than 1 means that any new string is likely to be
similar to the string it replaces. Since the string being
replaced was unique, there is a high probability that the new
string will also be unique. Thus fewer mutations are
required to maintain diversity, and on-line performance is
not as badly degraded.

10. Summary
This study confirms earlier work which demonstrated the

robustness of genetic search as a tool for function
optimization. It was shown that guaranteeing genetic
diversity by means of a decreasing uniqueness measure
provides significantly improved off-line performance at the
expense of much poorer on-line performance. This
degraded on-line performance can be ameliorated by
combining DeJong’s crowding factor with uniqueness to
produce a genetic adaptive algorithm with superior off-line
performance and moderate on-line performance.

One avenue for future research is to consider metrics
other than Hamming distance for defining uniqueness.
Another possible variation is to decode the bits strings into
the corresponding real numbers and use Euclidean distance
as a measure. This would tend to violate the black-box
model of genetic learning, but could be viewed as a genetic
heuristic search. Another possible improvement to
uniqueness would be a mutation operator which is not
uniform over the whole bit string. It might be that a mutation
operator which always reintroduces a lost allele would
provide another performance boost.

Another interesting prospect is the author’s conjecture
that a diverse gene pool would be helpful in optimizing time-
varying functions. Pettit has studied the usefulness of
genetic algorithms for tracking changing environments.
She concluded that the standard genetic search performed
very poorly in tracking even slowly changing environments
[lo]. One problem is obvious - if the gene pool ever

converges (even at the correct optimum!) all future trials will
be allocated at the same point, and the time-varying peak
will simply “move out from under it.” If, on the other hand,
the gene pool is kept diverse, the crossover operator will
continue to generate new strings, and should be much more
able to track the peak.

PI

PI

[31

141

El

P31

171

R31

M

[lOI

ml

1121

P31

Bethke, A.D., Genetic Algorithms as Function Optimizers,
PhD dissertation, University of Michigan, January 1981.

DeJong, K.A., Analysis of the Behavior of a Class of Genetic
Adaptive Systems, PhD dissertation, University of Michigan,
August 1975.

Fogel, L.J., Owens, A.J., and Walsh, M.J., Arfificial
lnt&ligence Through Simulated Evolution, Wiley, New York,
1966.

Friedberg, R.M., “A Learning Machine, Part 1,” IBM Journal
of Research and Development, Vol. 2, 1958.

Goldberg, D.E., Computer-Aided Gas Pipeline Operation
Use Genetic Algorithms and Rule Learning, PhD
dissertation, University of Michigan, 1983.

Holland, J.H., Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

Holland, J.H., “Adaptive Algorithms for Discovery and Using
General Patterns in Growing Knowledge Bases,” Intl.
Journal of Policy Analysis and Info. Systems, Vol. 4, No. 2,
1980.

Holland, J.H., “Escaping Brittleness,” Proceedings of the
Second International Machine Learning Conference, July
1983.

Mauldin, M.L., “Using Diversity to Improve Off-line
Performance of Genetic Search,” Tech. report, Computer
Science Department, Cargnegie-Mellon University, 1984.

Pettit, E. and Swigger, K.M., “An Analysis of Genetic-Based
Pattern Tracking and Cognitive-Based Component Models
of Adaptation,” Proceedings AAAI-83, August 1983.

Rendell, L.A., “A Doubly Layered Genetic Penetrance
Learning System,” Proceedings AAAI-83, August 1983.

Smith, S.F., “Flexible Learning of Problem Solving
Heuristics Through Adaptive Search,” Proceedings
IJCAI-83, August 1983 .

Waterman, D.A., “Generalized Learning Techniques for
Automating the Learning of Heuristics,” Artificial
Intelligence. Vol. 1, 1970 .

250

